Storage Technology for Process Heat Applications€¦ · • Indirect storage: Thermal energy...

27
Folie 1 ISEC-2005 Storage Technology for Process Heat Applications Rainer Tamme DLR – German Aerospace Center Institute of Technical Thermodynamics – Stuttgart [email protected] PREHEAT Symposium June 21, 2007 - Freiburg

Transcript of Storage Technology for Process Heat Applications€¦ · • Indirect storage: Thermal energy...

  • Folie 1ISEC-2005

    Storage Technology for Process Heat Applications

    Rainer TammeDLR – German Aerospace Center

    Institute of Technical Thermodynamics – [email protected]

    PREHEAT SymposiumJune 21, 2007 - Freiburg

  • Folie 2 Storage for Process Heat – Preheat Symposium Freiburg 2007 > Rainer TammeISEC 2005

    Presentation directed to:

    Energy Storage for Process Heat

    Higher temperature than required for domestic heating Temperature range 100 – 300 °C

    Water (at low pressure) not applicable as TES material

    single phase or 2-phase flow fluids as HTF

    Emphasis on PCM storage

    Introduction

  • Folie 3 Storage for Process Heat – Preheat Symposium Freiburg 2007 > Rainer TammeISEC 2005

    Process heat T < 100 °C Process heat 100 °C < T < 300 °C Process heat T > 400 °C

    Survey - Industrial Process Applications

  • Folie 4 Storage for Process Heat – Preheat Symposium Freiburg 2007 > Rainer TammeISEC 2005

    Requirements

    Generation of Solar Heat for Process Heat Applications

    Extension of solar heating to higher temperature range

    Concentrating collector elements needed

    CPC Collector Fresnel Collector Trough Collector

  • Folie 5 Storage for Process Heat – Preheat Symposium Freiburg 2007 > Rainer TammeISEC 2005

    Efficient and economic storage technology neededto meet energy demand and required operation conditions of a specific process

    Storage Integration Aspects

    Selection of storage concept depends on system aspects

  • Folie 6 Storage for Process Heat – Preheat Symposium Freiburg 2007 > Rainer TammeISEC 2005

    • Direct storage of the primary working fluid:- single phase fluid (thermal oil, pressurized water)- fluid with phase change (Steam accumulator)

    • Indirect storage: Thermal energy transferred to separate storage medium- sensible heat storage medium (solid or liquid)- phase change material

    Classification of storage systems

    2-phase fluid / water-SteamSingle phase fluidHTF Medium

    Salt (single component)Eutectic Mixtures

    ConcreteThermal oilMolten SaltPressurized Water

    Storage Medium

    Latent Heat StorageSensible Heat Storage

  • Folie 7 Storage for Process Heat – Preheat Symposium Freiburg 2007 > Rainer TammeISEC 2005

    Direct Storage – Sensible Heat

    2- tank storage Single tank storage

    Thermal Process

    Hot Tank

    Cold Tank

    5 - 10100 - 200Pressurized Water1 - 5100 - 300Thermal Oil

    Pressure [bar]

    Temperature range [°C]

    Storage Concept

  • Folie 8 Storage for Process Heat – Preheat Symposium Freiburg 2007 > Rainer TammeISEC 2005

    Direct Storage - Steam Accumulator / Sensible Heat

    Steam Discharging

    Isolated Pressure Vessel

    Liquid Phase

    Steam

    Steam Charging

    Liquid water Charging / Discharging

    Charging processraising temperature inliquid water volume bycondensating steam

    Discharging processgeneration of steamby lowering pressure insaturated liquid watervolume

    5 - 100100 - 300Steam AccumulatorPressure [bar]Temperature range [°C]Storage Concept

  • Folie 9 Storage for Process Heat – Preheat Symposium Freiburg 2007 > Rainer TammeISEC 2005

    Indirect Storage – Sensible Heat / Concrete

    Test storage at Almeria100 kW, 350 kWh

    Test storage at Stuttgart100 kW, 400 kWh

    Max. Operation temperature: 400°C

  • Folie 10 Storage for Process Heat – Preheat Symposium Freiburg 2007 > Rainer TammeISEC 2005

    Storage for Process Heat with Steam

    Important AREA for process heat applications for the temperaturerange 100-250 °C

    • Generation of process steam at low or intermediate pressure for isothermalprocesses

    • Food processing• Manufacturing of construction materials• Production of paper, textile industry etc.• Water purification, desalination• Double effect sorption cooling

  • Folie 11 Storage for Process Heat – Preheat Symposium Freiburg 2007 > Rainer TammeISEC 2005

    Potential for high effective cooling systems

    Dampfkreislauf

    150-155°C

    Spei

    cher

    Kälte

    mas

    chin

    e

    Dampfkreislauf4 bar

  • Folie 12 Storage for Process Heat – Preheat Symposium Freiburg 2007 > Rainer TammeISEC 2005

    Characteristic Issues of Steam

    93% Evaporation

    3% Superheating4% Preheating

    10bar steamT - range 160 to 200°C

    evaporation temperature (10bar): 180°C0 5 10 15 20 25

    80

    100

    120

    140

    160

    180

    200

    220

    240

    Druck [bar]S

    iede

    tem

    pera

    tur

    [°C

    ]

  • Folie 13 Storage for Process Heat – Preheat Symposium Freiburg 2007 > Rainer TammeISEC 2005

    Working fluid water/steam:=> Evaporation phase (T=const)

    Phase change storage medium=> Melting phase (T=const)

    Significant advantage of PCM technology in steam productiondue to constant temperature

    Correlation of storage medium and working fluidWhy using Phase Change Material (PCM) ?

    spec. enthalpy

    tem

    pera

    ture

    solid phaseliquid phase

    two phasesolid / liquid

    spec. enthalpy

    tem

    pera

    ture

    pressurized water

    superheated steam

    saturated steam

  • Folie 14 Storage for Process Heat – Preheat Symposium Freiburg 2007 > Rainer TammeISEC 2005

    Survey of potential PCM storage materials

    0

    50

    100

    150

    200

    250

    300

    350

    400

    100 150 200 250 300 350Temperature [°C]

    Ent

    halp

    y [J

    /g]

    KNO3

    NaNO3NaNO2

    KNO3-NaNO3

    LiNO3-NaNO3

    KNO3-LiNO3

    KNO3-NaNO2-NaNO3

    LiNO3

    Ca(NO3)2-KNO3

    KSCN

    KSCN

    0

    50

    100

    150

    200

    250

    300

    350

    400

    100 150 200 250 300 350Temperature [°C]

    Ent

    halp

    y [J

    /g]

    KNO3

    NaNO3NaNO2

    KNO3-NaNO3

    LiNO3-NaNO3

    KNO3-LiNO3

    KNO3-NaNO2-NaNO3

    LiNO3

    Ca(NO3)2-KNO3

    KSCN

    KSCN

  • Folie 15 Storage for Process Heat – Preheat Symposium Freiburg 2007 > Rainer TammeISEC 2005

    Flexible PCM`s with Binary Systems

    Advantage to cover broad range of temperature and applications

  • Folie 16 Storage for Process Heat – Preheat Symposium Freiburg 2007 > Rainer TammeISEC 2005

    Challenge for PCM: Heat Transfer

    solid

    liquid

    Fluid

    Heat transfer coefficient is dominated by the thermal conductivity of the solid PCM

    → Low thermal conductivity is bottle neck for PCM´s

  • Folie 17 Storage for Process Heat – Preheat Symposium Freiburg 2007 > Rainer TammeISEC 2005

    PCM

    Kapsel mit PCM

    Druckbehälter mitgekapseltem PCM zusätzliche Wärmeübertragungsflächen

    Wärmeübertragerrohre

    PCM - Composite Material

    Increasing heat conductivity

    Increasing specific heat transfer surface

    Design Options für PCM StorageBasic Concepts

  • Folie 18 Storage for Process Heat – Preheat Symposium Freiburg 2007 > Rainer TammeISEC 2005

    Intercalation and exfoliation

    Grinding

    graphite

    Expandedgraphite

    worm

    Ground expandedgraphite

    Compressed expandedgraphite plates

    Compression

    1.

    2.3.

    Intercalation and exfoliation

    Grinding

    graphite

    Expandedgraphite

    worm

    Ground expandedgraphite

    Compressed expandedgraphite plates

    Compression

    1.

    2.3.

    Manufactured by

    Inceasing Thermal ConductivityComposite material approach PCM/Graphit

    Infiltration

    Extrusion+

    Compression

  • Folie 19 Storage for Process Heat – Preheat Symposium Freiburg 2007 > Rainer TammeISEC 2005

    Achievements

    0

    5

    10

    15

    20

    25

    30

    0 0,1 0,2 0,3 0,4 0,5 0,6 0,7Graphitanteil [g/cm3]

    Wär

    mel

    eitfä

    higk

    eit [

    W/m

    K]

    EG Formkörper ohneSalz

    VM EG Formkörper(infiltrieren) ρges=1,6-1,8 g/cm3 (Route 1)

    VM EG Pulver(verpressen) ρges=1,9-2,0 g/cm3 (Route 2)

    VM NG Schüttung(infiltrieren) ρges=2,1g/cm3 (Route 3)

  • Folie 20 Storage for Process Heat – Preheat Symposium Freiburg 2007 > Rainer TammeISEC 2005

    300 kg Storage Module with composite Salt-Graphite

    Heat exchanger tubes with first PCM/Graphite Segment without external containment (left)

    Storage module during integration in the test facility (right)

  • Folie 21 Storage for Process Heat – Preheat Symposium Freiburg 2007 > Rainer TammeISEC 2005

    „Sandwich“ design

    PCMPCM PCM

    PCMPCM PCM

    Graphite-foil

    PCM

    Steam pipe

    10 mm

    0,5 mm

    Graphite-foil

    Increasing specific heat transfer surface High effective thermal conductivity through heat conducting elements

  • Folie 22 Storage for Process Heat – Preheat Symposium Freiburg 2007 > Rainer TammeISEC 2005

    Experimental Verification with Nitrate salts

    before filling with PCM Im beladenen Zustand

    Graphitfolie

    PCM liquid

  • Folie 23 Storage for Process Heat – Preheat Symposium Freiburg 2007 > Rainer TammeISEC 2005

    400 kg “sandwich Design” Storage Module

  • Folie 24 Storage for Process Heat – Preheat Symposium Freiburg 2007 > Rainer TammeISEC 2005

    Status of PCM Storage at DLR for the range 120 - 250 °C

    100 kW 2)2000 kgKNO3-NaNO3Sandwich concept

    10 kW 1)400 kgNaNO2 -NaNO3 - KNO3Sandwich concept

    10 kW 2)300 kgCompressed EG / KNO3-NaNO3Composite EG/salt

    2-4 kW 1)100 kgKNO3-NaNO3Sandwich concept

    Power rangeSizeStorage materialDesignConcept

    1) national BMWi Project 2) FP 6 Project

  • Folie 25 Storage for Process Heat – Preheat Symposium Freiburg 2007 > Rainer TammeISEC 2005

    ExampleContainment and TES Material Volume- 100 kWh, providing saturated steam at 140°C –- Impact of exit temperature of the solar field during charging - impact of different HTF`s – oil, pressurised water, steam

    Comparison storage systems

    heat transfer oil

    13.5m ³

    0.8m ³

    solid media

    pressurized water

    steam accumulator

    PCM

    4.2m ³

    0.7m ³Case 1: 160°C Case 2: 200°C

  • Folie 26 Storage for Process Heat – Preheat Symposium Freiburg 2007 > Rainer TammeISEC 2005

    Conclusions

    large potential for heat storage in the process heat sector

    type of the selected collector/HTF has significant influence on thestorage concept

    Significant potential for PCM storage in connection withwater/steam systems

    New “sandwich design “ and/or new Salt/Graphite compositematerials are solving the bottleneck of the low salt heat conductivity

    the Nitrate salt based PCM storage technique is ready for pilot scale demonstration

  • Folie 27 Storage for Process Heat – Preheat Symposium Freiburg 2007 > Rainer TammeISEC 2005

    Further Information

    http://www.dlr.de/tt/institut/abteilungen/thermischept/DISTOR

    http://www.dlr.de/tt/institut/abteilungen/thermischept

    http://www.iea-eces.org/

    Joint IEA Annex19 / FP6 DISTOR Workshop in September in Spain