Stopband constraint case and the ambiguity function Daniel Jansson.

29
Stopband constraint case and the ambiguity function Daniel Jansson

Transcript of Stopband constraint case and the ambiguity function Daniel Jansson.

Page 1: Stopband constraint case and the ambiguity function Daniel Jansson.

Stopband constraint case and the ambiguity function

Daniel Jansson

Page 2: Stopband constraint case and the ambiguity function Daniel Jansson.

Info

rmat

ions

tekn

olog

i

Institutionen för informationsteknologi | www.it.uu.se

Stopband constraint case

Goal• Generate discrete, unimodular sequences with frequency notches

and good correlation properties

Why?• Avoiding reserved frequency bands is important in many

applications (communications, navigation..)

• Avoiding other interference

How?• SCAN (Stopband CAN) / WeSCAN (Weighted Stopband CAN)

Page 3: Stopband constraint case and the ambiguity function Daniel Jansson.

Info

rmat

ions

tekn

olog

i

Institutionen för informationsteknologi | www.it.uu.se

Stopband CAN (SCAN)

• Let x(n), n = 1...N be the sought sequence

• Express the bands to be avoided as

• Define the DFT matrix with elements

• Form matrix S from the columns of FÑ corresponding to the frequencies in Ω

• We suppress the spectral power of x(n) in Ω by minimizingwhere

Page 4: Stopband constraint case and the ambiguity function Daniel Jansson.

Info

rmat

ions

tekn

olog

i

Institutionen för informationsteknologi | www.it.uu.se

Stopband CAN (SCAN)

• The problem on the previous slide is equivalent to

where G are the remaining columns of FÑ .

• Suppressing the correlation sidelobes is done using the CAN formulation

Page 5: Stopband constraint case and the ambiguity function Daniel Jansson.

Info

rmat

ions

tekn

olog

i

Institutionen för informationsteknologi | www.it.uu.se

Stopband CAN (SCAN)

• Combining the frequency band suppression and the correlation sidelobe suppression problems we get

where 0 ≤ λ ≤ 1 controls the relative weight on the two penalty functions.

• The problem is solved by using the algorithm on the next slide

Page 6: Stopband constraint case and the ambiguity function Daniel Jansson.

Info

rmat

ions

tekn

olog

i

Institutionen för informationsteknologi | www.it.uu.se

Page 7: Stopband constraint case and the ambiguity function Daniel Jansson.

Info

rmat

ions

tekn

olog

i

Institutionen för informationsteknologi | www.it.uu.se

Stopband CAN (SCAN)

• If a constrained PAR is preferable to unimodularity the problem can be solved in the same way except x for each iteration is given by the solution to

Page 8: Stopband constraint case and the ambiguity function Daniel Jansson.

Info

rmat

ions

tekn

olog

i

Institutionen för informationsteknologi | www.it.uu.se

Weighted SCAN (WeSCAN)

• Minimization of J2 is a way of minimizing the ISL

• The more general WISL (weighted ISL) is given by

where are weights

Page 9: Stopband constraint case and the ambiguity function Daniel Jansson.

Info

rmat

ions

tekn

olog

i

Institutionen för informationsteknologi | www.it.uu.se

Weighted SCAN (WeSCAN)

• Let and D be the square root of Γ. Then the WISL can be minimized by

solving

where

and

• Replace in the SCAN problem with and perform the SCAN algorithm, but do necessary changes that are straightforward.

Page 10: Stopband constraint case and the ambiguity function Daniel Jansson.

Info

rmat

ions

tekn

olog

i

Institutionen för informationsteknologi | www.it.uu.se

Numerical examples

The spectral power of a SCAN sequence generated with parameters N = 100,Ñ = 1000, λ = 0.7 and Ω = [0.2,0.3] Hz. Pstop = -8.3 dB (peak stopband power)

Page 11: Stopband constraint case and the ambiguity function Daniel Jansson.

Info

rmat

ions

tekn

olog

i

Institutionen för informationsteknologi | www.it.uu.se

Numerical examples

The autocorrelation of a SCAN sequence generated with parameters N = 100,Ñ = 1000, λ = 0.7 and Ω = [0.2,0.3] Hz, Pcorr = -19.2 dB (peak sidelobe level)

Page 12: Stopband constraint case and the ambiguity function Daniel Jansson.

Info

rmat

ions

tekn

olog

i

Institutionen för informationsteknologi | www.it.uu.se

Numerical examplesPstop and Pcorr vs λ

Page 13: Stopband constraint case and the ambiguity function Daniel Jansson.

Info

rmat

ions

tekn

olog

i

Institutionen för informationsteknologi | www.it.uu.se

Numerical examples

The spectral power of a WeSCAN sequence generated with γ1=0, γ2=0 and γk=1 for larger k. Pstop = -34.9 dB (peak stopband power)

Page 14: Stopband constraint case and the ambiguity function Daniel Jansson.

Info

rmat

ions

tekn

olog

i

Institutionen för informationsteknologi | www.it.uu.se

Numerical examples

The autocorrelation of the WeSCAN sequence

Page 15: Stopband constraint case and the ambiguity function Daniel Jansson.

Info

rmat

ions

tekn

olog

i

Institutionen för informationsteknologi | www.it.uu.se

Numerical examples

The spectral power of a SCAN sequence generated with PAR ≤ 2

Page 16: Stopband constraint case and the ambiguity function Daniel Jansson.

Info

rmat

ions

tekn

olog

i

Institutionen för informationsteknologi | www.it.uu.se

The Ambiguity Function

• The response of a matched filter to a signal with various time delays and Doppler frequency shifts (extension of the correlation concept).

• The (narrowband) ambiguity function is

where u(t) is a probing signal which is assumed to be zero outside [0,T], τ is the time delay and f is the Doppler frequency shift.

Page 17: Stopband constraint case and the ambiguity function Daniel Jansson.

Info

rmat

ions

tekn

olog

i

Institutionen för informationsteknologi | www.it.uu.se

The Ambiguity Function

Three properties worth noting

1. The maximum value of |χ(τ,f)| is achieved at | χ(0,0)| and is the energy of the signal, E

2. d|χ(τ,f)|= |χ(-τ,-f)|

3. D

Page 18: Stopband constraint case and the ambiguity function Daniel Jansson.

Info

rmat

ions

tekn

olog

i

Institutionen för informationsteknologi | www.it.uu.se

The Ambiguity FunctionProofs1. Cauchy-Schwartz gives

and since | χ(0,0)| = E, property 1 follows.

2. Use the variable change t -> t+ τ

which implies property 2.

Page 19: Stopband constraint case and the ambiguity function Daniel Jansson.

Info

rmat

ions

tekn

olog

i

Institutionen för informationsteknologi | www.it.uu.se

The Ambiguity FunctionProofs3. The volume of |χ(τ,f)|2 is given by

Let Wτ(f) be the Fourier transform of u(t)u*(t- τ). Parseval gives

therefore

Page 20: Stopband constraint case and the ambiguity function Daniel Jansson.

Info

rmat

ions

tekn

olog

i

Institutionen för informationsteknologi | www.it.uu.se

The Ambiguity FunctionAmbiguity function of a chirp

Page 21: Stopband constraint case and the ambiguity function Daniel Jansson.

Info

rmat

ions

tekn

olog

i

Institutionen för informationsteknologi | www.it.uu.se

The Ambiguity FunctionAmbiguity function of a Golomb sequence

Page 22: Stopband constraint case and the ambiguity function Daniel Jansson.

Info

rmat

ions

tekn

olog

i

Institutionen för informationsteknologi | www.it.uu.se

The Ambiguity FunctionAmbiguity function of CAN generated sequences

Page 23: Stopband constraint case and the ambiguity function Daniel Jansson.

Info

rmat

ions

tekn

olog

i

Institutionen för informationsteknologi | www.it.uu.se

The Ambiguity Function• Why is there a vertical stripe at the zero delay cut?

• The ZDC is nothing but the Fourier transform of u(t)u*(t). Since u(t) is unimodular we get

and the sinc-function decreases quickly as f increases.

• No universal method that can synthesize an arbirtrary ambiguity function.

Page 24: Stopband constraint case and the ambiguity function Daniel Jansson.

Info

rmat

ions

tekn

olog

i

Institutionen för informationsteknologi | www.it.uu.se

The Discrete AF• Assume u(t) is on the form

where pn(t) is an ideal rectangular pulse of length tp

• The ambiguity function can be written as

• Inserting τ = ktp and f = p/(Ntp) gives

where

is called the discrete AF.

• If |p|<<N then

Page 25: Stopband constraint case and the ambiguity function Daniel Jansson.

Info

rmat

ions

tekn

olog

i

Institutionen för informationsteknologi | www.it.uu.se

The Discrete AF• Minimizing the sidelobes of the discrete AF in a certain region

where and are the index sets specifying the region.

• Define the set of sequences as

Page 26: Stopband constraint case and the ambiguity function Daniel Jansson.

Info

rmat

ions

tekn

olog

i

Institutionen för informationsteknologi | www.it.uu.se

The Discrete AF• Denote the correlation between xm(n) and xl(n) by

• All values of are contained in the set

• Minimizing the correlations is thus equivalent to minimizing the discrete AF sidelobes.

Page 27: Stopband constraint case and the ambiguity function Daniel Jansson.

Info

rmat

ions

tekn

olog

i

Institutionen för informationsteknologi | www.it.uu.se

The Discrete AF• Define where

• All elements of appear in We can thus minimizewhich as we saw before is almost equivalent to

• Minimize by using the cyclic algorithm on the next slide

Page 28: Stopband constraint case and the ambiguity function Daniel Jansson.

Info

rmat

ions

tekn

olog

i

Institutionen för informationsteknologi | www.it.uu.se

The Discrete AF

Page 29: Stopband constraint case and the ambiguity function Daniel Jansson.

Info

rmat

ions

tekn

olog

i

Institutionen för informationsteknologi | www.it.uu.se

The Discrete AF