Stochastic processes Lecture 7 Linear time invariant systems 1.

59
Stochastic processes Lecture 7 Linear time invariant systems 1

Transcript of Stochastic processes Lecture 7 Linear time invariant systems 1.

Page 1: Stochastic processes Lecture 7 Linear time invariant systems 1.

1

Stochastic processes

Lecture 7Linear time invariant systems

Page 2: Stochastic processes Lecture 7 Linear time invariant systems 1.

2

Random process

Page 3: Stochastic processes Lecture 7 Linear time invariant systems 1.

3

1st order Distribution & density function

First-order distribution

First-order density function

Page 4: Stochastic processes Lecture 7 Linear time invariant systems 1.

4

2end order Distribution & density function

2end order distribution

2end order density function

Page 5: Stochastic processes Lecture 7 Linear time invariant systems 1.

5

EXPECTATIONS

โ€ข Expected value

โ€ข The autocorrelation

Page 6: Stochastic processes Lecture 7 Linear time invariant systems 1.

6

Some random processes

โ€ข Single pulseโ€ข Multiple pulsesโ€ข Periodic Random Processesโ€ข The Gaussian Processโ€ข The Poisson Processโ€ข Bernoulli and Binomial Processesโ€ข The Random Walk Wiener Processesโ€ข The Markov Process

Page 7: Stochastic processes Lecture 7 Linear time invariant systems 1.

7

Recap: Power spectrum density

f

Sxx

(f)

Page 8: Stochastic processes Lecture 7 Linear time invariant systems 1.

8

Power spectrum density

โ€ข Since the integral of the squared absolute Fourier transform contains the full power of the signal it is a density function.

โ€ข So the power spectral density of a random process is:

โ€ข Due to absolute factor the PSD is always real

๐‘†๐‘ฅ๐‘ฅ ( ๐‘“ )= ๐‘™ ๐‘–๐‘š๐‘‡โ†’โˆž

๐ธ [|โˆซโˆ’๐‘‡๐‘‡ ๐‘  (๐‘ก )๐‘’โˆ’ ๐‘— 2๐œ‹ ๐‘“๐‘ก๐‘‘๐‘ก|22๐‘‡ ]

Page 9: Stochastic processes Lecture 7 Linear time invariant systems 1.

9

Power spectrum density

โ€ข The PSD is a density function.โ€“ In the case of the random process the PSD is the density

function of the random process and not necessarily the frequency spectrum of a single realization.

โ€ข Exampleโ€“ A random process is defined as

โ€“ Where ฯ‰r is a unifom distributed random variable wiht a range from 0-ฯ€

โ€“ What is the PSD for the process and โ€“ The power sepctrum for a single realization

X (๐‘ก )=sin (๐œ”๐‘Ÿ ๐‘ก)

Page 10: Stochastic processes Lecture 7 Linear time invariant systems 1.

10

Properties of the PSD

1. Sxx(f) is real and nonnegative

2. The average power in X(t) is given by:

3. If X(t) is real Rxx(ฯ„) and Sxx(f) are also even

4. If X(t) has periodic components Sxx(f)has impulses

5. Independent on phase

Page 11: Stochastic processes Lecture 7 Linear time invariant systems 1.

11

Wiener-Khinchin 1

โ€ข If the X(t) is stationary in the wide-sense the PSD is the Fourier transform of the Autocorrelation

Page 12: Stochastic processes Lecture 7 Linear time invariant systems 1.

12

Wiener-Khinchin Two method for estimation of the PSD

X(t)

Fourier Transform

|X(f)|2

Sxx(f)

Autocorrelation

Fourier Transformt

X(t

)

f

X(f

)

Rxx

()

f

Sxx

(f)

Page 13: Stochastic processes Lecture 7 Linear time invariant systems 1.

13

The inverse Fourier Transform of the PSD

โ€ข Since the PSD is the Fourier transformed autocorrelation

โ€ข The inverse Fourier transform of the PSD is the autocorrelation

Page 14: Stochastic processes Lecture 7 Linear time invariant systems 1.

14

Cross spectral densities

โ€ข If X(t) and Y(t) are two jointly wide-sense stationary processes, is the Cross spectral densities

โ€ข Or

Page 15: Stochastic processes Lecture 7 Linear time invariant systems 1.

15

Properties of Cross spectral densities

1. Since is

2. Syx(f) is not necessary real

3. If X(t) and Y(t) are orthogonal Sxy(f)=0

4. If X(t) and Y(t) are independent Sxy(f)=E[X(t)] E[Y(t)] ฮด(f)

Page 16: Stochastic processes Lecture 7 Linear time invariant systems 1.

16

Cross spectral densities example

โ€ข 1 Hz Sinus curves in white noise

Where w(t) is Gaussian noise

0 5 10 15 20-10

0

10

X(t

)

t (s)

Signal X(t)

0 5 10 15 20-10

0

10

Y(t

)

t (s)

Signal Y(t)

๐‘‹ (๐‘ก )=sin (2๐œ‹ ๐‘ก )+3๐‘ค (๐‘ก)๐‘Œ (๐‘ก )=sin(2๐œ‹๐‘ก+๐œ‹2 )+3๐‘ค(๐‘ก)

0 5 10 15 20 25-30

-25

-20

-15

-10

-5

0

5

Frequency (Hz)

Pow

er/f

requ

ency

(dB

/Hz)

Welch Cross Power Spectral Density Estimate

Page 17: Stochastic processes Lecture 7 Linear time invariant systems 1.

17

The periodogramThe estimate of the PSD

โ€ข The PSD can be estimate from the autocorrelation

โ€ข Or directly from the signal

๐‘† ๐‘ฅ๐‘ฅ [ฯ‰ ]= โˆ‘๐‘š=โˆ’๐‘+1

๐‘โˆ’ 1

๐‘…๐‘ฅ๐‘ฅ [๐‘š]๐‘’โˆ’ ๐‘— ฯ‰๐‘š  

๐‘† ๐‘ฅ๐‘ฅ [ฯ‰ ]= 1๐‘ |โˆ‘

๐‘›=0

๐‘โˆ’ 1

๐‘ฅ [๐‘›]๐‘’โˆ’ ๐‘—ฯ‰๐‘›  |2

Page 18: Stochastic processes Lecture 7 Linear time invariant systems 1.

18

Bias in the estimates of the autocorrelation

N=12๐‘…๐‘ฅ๐‘ฅ [๐‘š ]= โˆ‘

๐‘›=0

๐‘โˆ’|๐‘š|โˆ’ 1

๐‘ฅ [๐‘› ] ๐‘ฅ [๐‘›+๐‘š]

-10 -5 0 5 10 15 20-2

-1

0

1

2

n

-10 -5 0 5 10 15 20-2

-1

0

1

2

n+m-15 -10 -5 0 5 10 15

-6

-4

-2

0

2

4

6

8Autocorrelation

M=-10

-10 -5 0 5 10 15 20-2

-1

0

1

2

n

-10 -5 0 5 10 15 20-2

-1

0

1

2

n+m-15 -10 -5 0 5 10 15

-6

-4

-2

0

2

4

6

8Autocorrelation

M=0

-10 -5 0 5 10 15 20-2

-1

0

1

2

n

-10 -5 0 5 10 15 20-2

-1

0

1

2

n+m-15 -10 -5 0 5 10 15

-6

-4

-2

0

2

4

6

8Autocorrelation

M=4

Page 19: Stochastic processes Lecture 7 Linear time invariant systems 1.

19

Variance in the PSD

โ€ข The variance of the periodogram is estimated to the power of two of PSD

๐‘‰๐‘Ž๐‘Ÿ (๐‘†๐‘ฅ๐‘ฅ [๐œ” ] )=๐‘† ๐‘ฅ๐‘ฅ(๐œ”)  2

0 5 10-5

0

5Realization 1

t (s)0 50 100 150 200

0

5

10PSD: Realization 1

f (Hz)

0 5 10-5

0

5

t (s)

Realization 2

0 50 100 150 2000

5

10

f (Hz)

PSD: Realization 2

0 5 10-5

0

5

t (s)

Realization 3

0 50 100 150 2000

5

10

f (Hz)

PSD: Realization 3 0 50 100 150 200

0

0.2

0.4

0.6

0.8

1

f (Hz)

Sxx

(f)

True PSD

Page 20: Stochastic processes Lecture 7 Linear time invariant systems 1.

20

Averaging

โ€ข Divide the signal into K segments of M length

โ€ข Calculate the periodogram of each segment

โ€ข Calculate the average periodogram

Page 21: Stochastic processes Lecture 7 Linear time invariant systems 1.

21

Illustrations of Averaging

0 1 2 3 4 5 6 7 8 9 10-4

-2

0

2X

(t)

0 100 2000

5

10

0 100 2000

2

4

0 100 2000

5

10

0 100 2000

2

4

6

0 50 100 150 2000

5

10

f (Hz)

Page 22: Stochastic processes Lecture 7 Linear time invariant systems 1.

22

PSD units

โ€ข Typical units:โ€ข Electrical measurements: V2/Hz or dB V/Hzโ€ข Sound: Pa2/Hz or dB/Hz

โ€ข How to calculate dB I a power spectrum:PSDdB(f) = 10 log10 { PSD(f) }

.

-100 -50 0 50 1000

1

2

3

4

5

6x 10

8

f (Hz)

Sxx

(f)

V2 /

Hz

-100 -50 0 50 10040

50

60

70

80

90

f (Hz)

Sxx

(f)

dB V

/H

z

Page 23: Stochastic processes Lecture 7 Linear time invariant systems 1.

23

Agenda (Lec. 7)

โ€ข Recap: Linear time invariant systemsโ€ข Stochastic signals and LTI systems

โ€“ Mean Value functionโ€“ Mean square value โ€“ Cross correlation function between input and outputโ€“ Autocorrelation function and spectrum output

โ€ข Filter examples โ€ข Intro to system identification

Page 24: Stochastic processes Lecture 7 Linear time invariant systems 1.

24

Focus continuous signals and system

Continuous signal:

Discrete signal:

0 20 40 60 80 100-1

0

1

t (s)

x(t)

0 2 4 6 8 10-1

-0.5

0

0.5

1

n

x[n]

Page 25: Stochastic processes Lecture 7 Linear time invariant systems 1.

25

Systems

Page 26: Stochastic processes Lecture 7 Linear time invariant systems 1.

26

Recap: Linear time invariant systems (LTI)

โ€ข What is a Linear system:โ€“ The system applies to superposition

)()()()( 2121 txTbtxTatxbtxaT

0 1 2 3 4 50

2

4

6

8

10

12

14

16

18

20Linear system

x(t)

y(t)

0 1 2 3 4 5-20

-15

-10

-5

0

5

10

15

20

25Nonlinear systems

x(t)

y(t)

x[n]2

ร–x[n]

20 log(x[n])

Page 27: Stochastic processes Lecture 7 Linear time invariant systems 1.

27

Recap: Linear time invariant systems (LTI)

โ€ข Time invariant:โ€ข A time invariant systems is independent on explicit time

โ€“ (The coefficient are independent on time)

โ€ข That means If: y2(t)=f[x1(t)]

Then: y2(t+t0)=f[x1(t+t0)]

The same to Day tomorrow and in 1000 years

70 years45 years20 yearsA non Time invariant

Page 28: Stochastic processes Lecture 7 Linear time invariant systems 1.

28

Examples

โ€ข A linear systemy(t)=3 x(t)

โ€ข A nonlinear systemy(t)=3 x(t)2

โ€ข A time invariant system y(t)=3 x(t)

โ€ข A time variant system y(t)=3t x(t)

Page 29: Stochastic processes Lecture 7 Linear time invariant systems 1.

The impulse response

T{โˆ™}

)]([][ tfnh )(th)(t

The output of a system if Dirac delta is input

-10 -5 0 5 10 15 20

0

t

y(t)

Impuls response

-10 -5 0 5 10 15 200

inf

t

x(t)

Impuls

Page 30: Stochastic processes Lecture 7 Linear time invariant systems 1.

30

Convolution

โ€ข The output of LTI system can be determined by the convoluting the input with the impulse response

Page 31: Stochastic processes Lecture 7 Linear time invariant systems 1.

31

Fourier transform of the impulse response

โ€ข The Transfer function (System function) is the Fourier transformed impulse response

โ€ข The impulse response can be determined from the Transfer function with the invers Fourier transform

Page 32: Stochastic processes Lecture 7 Linear time invariant systems 1.

32

Fourier transform of LTI systems

โ€ข Convolution corresponds to multiplication in the frequency domain

-10 -5 0 5 10 15 20

0

t

y(t)

Impuls response

-2 -1 0 1 20

0.5

1

1.5

f (Hz)

|H(f

)|

-10 -5 0 5 10 15 20-3

-2

-1

0

1

2

3

t

x(t)

Input

-2 -1 0 1 20

500

1000

1500

2000

2500

3000

f (Hz)

|X(f

)|

-2 -1 0 1 20

200

400

600

800

1000

1200

f (Hz)

|Y(f

)|

-10 -5 0 5 10 15 20-3

-2

-1

0

1

2

3

t

y(t)

Output

Time domain

Frequency domain

* =

x =

Page 33: Stochastic processes Lecture 7 Linear time invariant systems 1.

33

Causal systems

โ€ข Independent on the future signal

-10 -5 0 5 10 15 20

0

t

y(t)

Impuls response

Page 34: Stochastic processes Lecture 7 Linear time invariant systems 1.

34

Stochastic signals and LTI systems

โ€ข Estimation of the output from a LTI system when the input is a stochastic process

ฮ‘ is a delay factor like ฯ„

Page 35: Stochastic processes Lecture 7 Linear time invariant systems 1.

35

Statistical estimates of output

โ€ข The specific distribution function fX(x,t) is difficult to estimate. Therefor we stick toโ€“ Mean โ€“ Autocorrelation โ€“ PSD โ€“ Mean square value.

Page 36: Stochastic processes Lecture 7 Linear time invariant systems 1.

36

Expected Value of Y(t) (1/2)

โ€ข How do we estimate the mean of the output?

๐ธ [๐‘Œ (๐‘ก ) ]=๐ธ[โˆซโˆ’โˆž

โˆž

๐‘‹ (๐‘กโˆ’๐›ผ )h (๐›ผ )๐‘‘๐›ผ ]๐ธ [๐‘Œ (๐‘ก ) ]=โˆซ

โˆ’โˆž

โˆž

๐ธ [ ๐‘‹ (๐‘กโˆ’๐›ผ ) ] h (๐›ผ ) ๐‘‘๐›ผ

๐ธ [๐‘Œ (๐‘ก ) ]=โˆซโˆ’โˆž

โˆž

๐‘š๐‘ฅ (๐‘กโˆ’๐›ผ)h (๐›ผ )๐‘‘๐›ผ

If mean of x(t) is defined as mx(t)

๐‘Œ (๐‘ก)=โˆซโˆ’โˆž

โˆž

๐‘‹ (๐‘กโˆ’๐›ผ )h (๐›ผ )๐‘‘๐›ผ

Page 37: Stochastic processes Lecture 7 Linear time invariant systems 1.

37

Expected Value of Y(t) (2/2)

If x(t) is wide sense stationary

๐‘š๐‘ฅ (๐‘กโˆ’๐›ผ )=๐‘š๐‘ฅ (๐‘ก )=๐‘š๐‘ฅ(๐‘š๐‘ฅ๐‘–๐‘ ๐‘Ž๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก)

Alternative estimate:At 0 Hz the transfer function is equal to the DC gain

โˆซโˆ’โˆž

โˆž

h (๐›ผ )๐‘‘๐›ผ=๐ป (0)

Therefor: ๐‘š๐‘ฆ=๐ธ [๐‘Œ (๐‘ก ) ]=๐‘š๐‘ฅ๐ป (0)

Page 38: Stochastic processes Lecture 7 Linear time invariant systems 1.

38

Expected Mean square value (1/2)

๐ธ [๐‘Œ (๐‘ก )2 ]=๐ธ [๐‘Œ (๐‘ก )๐‘Œ (๐‘ก ) ] ๐‘Œ (๐‘ก)=โˆซโˆ’โˆž

โˆž

๐‘‹ (๐‘กโˆ’๐›ผ )h (๐›ผ )๐‘‘๐›ผ

๐ธ [๐‘Œ (๐‘ก )2 ]=๐ธ[(โˆซโˆ’โˆžโˆž

๐‘‹ (๐‘กโˆ’๐›ผ1 )h (๐›ผ1 ) ๐‘‘๐›ผ1)(โˆซโˆ’โˆž

โˆž

๐‘‹ (๐‘กโˆ’๐›ผ2 )h (๐›ผ2 )๐‘‘๐›ผ2) ]๐ธ [๐‘Œ (๐‘ก )2 ]=๐ธ[โˆซ

โˆ’โˆž

โˆž

โˆซโˆ’โˆž

โˆž

๐‘‹ (๐‘กโˆ’๐›ผ1 )๐‘‹ (๐‘กโˆ’๐›ผ2 )h (๐›ผ1 )h (๐›ผ2 )๐‘‘๐›ผ1๐‘‘๐›ผ2 ]๐ธ [๐‘Œ (๐‘ก )2 ]=โˆซ

โˆ’โˆž

โˆž

โˆซโˆ’โˆž

โˆž

๐ธ [๐‘‹ (๐‘กโˆ’๐›ผ1 ) ๐‘‹ (๐‘กโˆ’๐›ผ2 ) ] h (๐›ผ1 )h (๐›ผ2 )๐‘‘๐›ผ1๐‘‘๐›ผ2

๐ธ [๐‘Œ (๐‘ก )2 ]=โˆซโˆ’โˆž

โˆž

โˆซโˆ’โˆž

โˆž

๐‘…๐‘ฅ๐‘ฅ (๐‘กโˆ’๐›ผ1, ๐‘กโˆ’๐›ผ2)h (๐›ผ1 )h (๐›ผ2 )๐‘‘๐›ผ1๐‘‘๐›ผ2

๐ธ [๐‘Œ (๐‘ก )2 ]=โˆซโˆ’โˆž

โˆž

โˆซโˆ’โˆž

โˆž

๐‘…๐‘ฅ๐‘ฅ (๐›ผ1 ,๐›ผ2)h (๐‘กโˆ’๐›ผ1 )h (๐‘กโˆ’๐›ผ2 )๐‘‘๐›ผ1๐‘‘๐›ผ2

Page 39: Stochastic processes Lecture 7 Linear time invariant systems 1.

39

Expected Mean square value (2/2)

๐ธ [๐‘Œ (๐‘ก )2 ]=โˆซโˆ’โˆž

โˆž

โˆซโˆ’โˆž

โˆž

๐‘…๐‘ฅ๐‘ฅ (๐›ผ1 ,๐›ผ2)h (๐‘กโˆ’๐›ผ1 )h (๐‘กโˆ’๐›ผ2 )๐‘‘๐›ผ1๐‘‘๐›ผ2

๐ธ [๐‘Œ (๐‘ก )2 ]=โˆซโˆ’โˆž

โˆž

โˆซโˆ’โˆž

โˆž

๐‘…๐‘ฅ๐‘ฅ (๐›ผโˆ’ ๐›ฝ)h (๐›ผ )h (๐›ฝ )๐‘‘๐›ผ1๐‘‘๐›ผ2

By substitution:

๐ธ [๐‘Œ (๐‘ก )2 ]=โˆซโˆ’โˆž

โˆž

โˆซโˆ’โˆž

โˆž

๐‘…๐‘ฅ๐‘ฅ (๐‘กโˆ’๐›ผ ,๐‘กโˆ’ ๐›ฝ)h (๐›ผ )h ( ๐›ฝ)๐‘‘๐›ผ1๐‘‘๐›ผ2

If X(t)is WSS

Thereby the Expected Mean square value is independent on time

Page 40: Stochastic processes Lecture 7 Linear time invariant systems 1.

40

Cross correlation function between input and output

โ€ข Can we estimate the Cross correlation between input and out if X(t) is wide sense stationary

๐‘…๐‘ฆ๐‘ฅ (๐‘ก+๐œ , ๐‘ก )=๐ธ [๐‘Œ (๐‘ก+๐œ )๐‘‹โˆ—(๐‘ก)]

๐‘…๐‘ฆ๐‘ฅ (๐‘ก+๐œ , ๐‘ก )=๐ธ[(โˆซโˆ’โˆžโˆž

๐‘‹ (๐‘กโˆ’๐›ผ+๐œ )h (๐›ผ ) ๐‘‘๐›ผ) ๐‘‹โˆ—(๐‘ก)]๐‘…๐‘ฆ๐‘ฅ (๐‘ก+๐œ , ๐‘ก )=๐ธ[โˆซ

โˆ’โˆž

โˆž

๐‘‹ (๐‘กโˆ’๐›ผ+๐œ ) ๐‘‹โˆ—(๐‘ก)h (๐›ผ )๐‘‘๐›ผ ]

๐‘…๐‘ฆ ๐‘ฅ (๐œ )=โˆซโˆ’โˆž

โˆž

๐‘…๐‘ฅ๐‘ฅ (๐œโˆ’๐›ผ )h (๐›ผ ) ๐‘‘๐›ผ=๐‘…๐‘ฅ๐‘ฅ (๐œ )โˆ—h (๐œ)  

-10 -5 0 5 10 15 20-3

-2

-1

0

1

2

3

t

x(t)

Input

-10 -5 0 5 10 15 20-3

-2

-1

0

1

2

3

t

y(t)

Output

๐‘…๐‘ฅ๐‘ฅ (๐œ )=๐ธ [ ๐‘‹ (๐‘ก+๐œ )๐‘‹ (๐‘ก)]

-30 -20 -10 0 10 20 30-1500

-1000

-500

0

500

1000

1500

(s)

Rxy

()

Cross-correlation between y(t) and x(t)

Thereby the cross-correlation is the convolution between the auto-correlation of x(t) and the impulse response

Page 41: Stochastic processes Lecture 7 Linear time invariant systems 1.

41

Autocorrelation of the output (1/2)

๐‘…๐‘ฆ๐‘ฆ (๐œ )=๐‘…๐‘ฆ๐‘ฆ (๐‘ก+๐œ , ๐‘ก )=๐ธ [๐‘Œ (๐‘ก+๐œ )๐‘Œ (๐‘ก) ]

๐‘…๐‘ฆ๐‘ฆ (๐œ )=โˆซโˆ’โˆž

โˆž

โˆซโˆ’โˆž

โˆž

๐ธ [ ๐‘‹ (๐‘ก+๐œโˆ’๐›ผ ) ๐‘‹ (๐‘กโˆ’ ๐›ฝ )]h (๐›ผ )h (๐›ฝ )๐‘‘๐›ผ ๐‘‘๐›ฝ

๐‘Œ (๐‘ก+๐œ)=โˆซโˆ’โˆž

โˆž

๐‘‹ (๐‘ก+๐œโˆ’๐›ผ )h (๐›ผ )๐‘‘๐›ผ

๐‘Œ (๐‘ก)=โˆซโˆ’โˆž

โˆž

๐‘‹ (๐‘กโˆ’ ๐›ฝ)h (๐›ฝ )๐‘‘ ๐›ฝ

Y(t) and Y(t+ฯ„) is :

๐‘…๐‘ฆ๐‘ฆ (๐œ )=โˆซโˆ’โˆž

โˆž

โˆซโˆ’โˆž

โˆž

๐‘…๐‘ฅ๐‘ฅ(๐œโˆ’๐›ผ+๐›ฝ)h (๐›ผ )h (๐›ฝ )๐‘‘๐›ผ ๐‘‘๐›ฝ

Page 42: Stochastic processes Lecture 7 Linear time invariant systems 1.

42

Autocorrelation of the output (2/2)

๐‘…๐‘ฆ๐‘ฆ (๐œ )=โˆซโˆ’โˆž

โˆž

โˆซโˆ’โˆž

โˆž

๐ธ [ ๐‘‹ (๐‘ก+๐œโˆ’๐›ผ ) ๐‘‹ (๐‘กโˆ’ ๐›ฝ )]h (๐›ผ )h (๐›ฝ )๐‘‘๐›ผ ๐‘‘๐›ฝ

By substitution: ฮฑ=-ฮฒ

๐‘…๐‘ฆ๐‘ฆ (๐œ )=โˆซโˆ’โˆž

โˆž

โˆซโˆ’โˆž

โˆž

๐ธ [ ๐‘‹ (๐‘ก+๐œโˆ’๐›ผ ) ๐‘‹ (๐‘ก+๐›ผ )] h (๐›ผ )h (โˆ’๐‘Ž )๐‘‘๐›ผ ๐‘‘๐›ผ

Remember:

-30 -20 -10 0 10 20 30-1000

-500

0

500

1000

(s)

Rxy

()

Autocorrelation of y(t)

๐‘…๐‘ฆ๐‘ฆ (๐œ )=๐‘…๐‘ฆ ๐‘ฅ (๐œ )โˆ—h(โˆ’๐œ)

๐‘…๐‘ฆ๐‘ฆ (๐œ )=๐‘…๐‘ฅ ๐‘ฅ (๐œ )โˆ—h (๐œ)โˆ—h(โˆ’๐œ )

Page 43: Stochastic processes Lecture 7 Linear time invariant systems 1.

43-2 -1 0 1 2

0

2

4

6

8

10

12x 10

5

f (Hz)

Syy

(f)

Spectrum of output

โ€ข Given:

โ€ข The power spectrum is

๐‘…๐‘ฆ ๐‘ฆ (๐œ )=๐‘…๐‘ฅ๐‘ฅ (๐œ )โˆ—h (๐œ )โˆ—h(โˆ’๐œ )

-2 -1 0 1 20

0.5

1

1.5

f (Hz)

|H(f

)|2

-2 -1 0 1 20

2

4

6

8

10x 10

6

f (Hz)

Sxx

(f)

x =

ยฟ๐ป ( ๐‘“ )โˆจยฟ2=๐ป ( ๐‘“ )๐ปโˆ—( ๐‘“ )ยฟ

Page 44: Stochastic processes Lecture 7 Linear time invariant systems 1.

44

Filter examples

Page 45: Stochastic processes Lecture 7 Linear time invariant systems 1.

45

Typical LIT filters

โ€ข FIR filters (Finite impulse response)โ€ข IIR filters (Infinite impulse response)

โ€“ Butterworthโ€“ Chebyshevโ€“ Elliptic

Page 46: Stochastic processes Lecture 7 Linear time invariant systems 1.

Ideal filters

โ€ข Highpass filter

โ€ข Band stop filter

โ€ข Bandpassfilter

Page 47: Stochastic processes Lecture 7 Linear time invariant systems 1.

47

Filter types and rippels

Page 48: Stochastic processes Lecture 7 Linear time invariant systems 1.

Analog lowpass Butterworth filter

โ€ข Is โ€all poleโ€ filterโ€“ Squared frequency transfer function

โ€ข N:filter orderโ€ข fc: 3dB cut off frequency

โ€ข Estimate PSD from filter

NcfffH 2

2

/1

1)(

Nc

xxyyff

ffS 2/1

1)(S)(

Page 49: Stochastic processes Lecture 7 Linear time invariant systems 1.

Chebyshev filter type I

โ€ข Transfer function

โ€ข Where ฮต is relateret to ripples in the pass band

โ€ข Where TN is a N order polynomium

pN ffTfH

/1

122

2

1

1

)coshcosh(

)coscos()(

1

1

x

x

xN

xNxTN

Page 50: Stochastic processes Lecture 7 Linear time invariant systems 1.

Transformation of a low pass filter to other types (the s-domain)

Filter type Transformation New Cutoff frequency

Lowpas>Lowpas

Lowpas>Highpas

Lowpas>Highpas

Lowpas>Stopband

ssp

p

'

p'

ss pp '

p'

)(

2

lu

ulp s

ss

ul

lup s

ss

2

)(

ul ,

ul ,

Lowest Cutoff frequency

Highest Cutoff frequency:

:

u

l

p

New Cutoff frequencyp'

Old Cutoff frequency

Page 51: Stochastic processes Lecture 7 Linear time invariant systems 1.

51

Discrete time implantation of filters

โ€ข A discrete filter its Transfer function in the z-domain or Fourier domain

โ€“ Where bk and ak is the filter coefficients

โ€ข In the time domain:

Mm

Mm

zazazaa

zbzbzbbzH

zX

zY

.......ยด

.......ยด)(

)(

)(2

21

10

22

110

][......]2[]1[

][......]2[]1[][][

21

210

Mnyanyanya

Mnxanxbnxbnxbny

M

M

Page 52: Stochastic processes Lecture 7 Linear time invariant systems 1.

52

Filtering of a Gaussian process

โ€ข Gaussian processโ€“ X(t1),X(t2),X(t3),โ€ฆ.X(tn) are jointly Gaussian for all t

and n valuesโ€ข Filtering of a Gaussian process

โ€“ Where w[n] are independent zero mean Gaussian random variables.

][......]2[]1[

][......]2[]1[][][

21

210

Mnyanyanya

Mnwanwbnwbnwbny

M

M

Page 53: Stochastic processes Lecture 7 Linear time invariant systems 1.

The Gaussian Process

โ€ข X(t1),X(t2),X(t3),โ€ฆ.X(tn) are jointly Gaussian for all t and n values

โ€ข Example: randn() in Matlab

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000-4

-3

-2

-1

0

1

2

3

4

5Gaussian process

-4 -3 -2 -1 0 1 2 3 4 50

100

200

300

400

500

600

700Histogram of Gaussian process

Page 54: Stochastic processes Lecture 7 Linear time invariant systems 1.

The Gaussian Process and a linear time invariant systems

โ€ข Out put = convolution between input and impulse response

Gaussian input Gaussian output

Page 55: Stochastic processes Lecture 7 Linear time invariant systems 1.

Example

โ€ข x(t):

โ€ข h(t): Low pass filterโ€ข y(t):

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000-4

-3

-2

-1

0

1

2

3

4

5Gaussian process

-4 -3 -2 -1 0 1 2 3 4 50

100

200

300

400

500

600

700Histogram of Gaussian process

-1.5 -1 -0.5 0 0.5 1 1.50

100

200

300

400

500

600Histogram of y(t)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000-1.5

-1

-0.5

0

0.5

1

1.5

Page 56: Stochastic processes Lecture 7 Linear time invariant systems 1.

56

Filtering of a Gaussian process example 2

0 100 200 300 400 500-1000

-500

0

Frequency (Hz)

Pha

se (

degr

ees)

0 100 200 300 400 500-100

-50

0

Frequency (Hz)

Mag

nitu

de (

dB) Transfere function of filter

0 100 200 300 400 500 600 700 800 900 1000-4

-2

0

2

4

t (ms)

x(t)

White noise

Band pass filter

0 100 200 300 400 500 600 700 800 900 1000-1

-0.5

0

0.5

1

t (ms)

y(t)

Output

Page 57: Stochastic processes Lecture 7 Linear time invariant systems 1.

57

Intro to system identification

โ€ข Modeling of signals using linear Gaussian models:

โ€ข Example: AR models

โ€ข The output is modeled by a linear combination of previous samples plus Gaussian noise.

][][......]2[]1[][ 21 nwMnyanyanyany M

Page 58: Stochastic processes Lecture 7 Linear time invariant systems 1.

58

Modeling example

โ€ข Estimated 3th order model

][]3[0.7299-]2[2.3903]1[-2.6397][ nwnynynyny

0 100 200 300 400 500 600 700 800 900 1000-1

-0.5

0

0.5

1

t (ms)

y(t)

Output

451 451.5 452 452.5 453 453.5 4540.25

0.3

0.35

0.4

t (ms)y(

t)

Output

signal

points used for predictionPrediction

True point

453.98 453.99 454 454.01 454.02

0.282

0.284

0.286

0.288

0.29

0.292

0.294

t (ms)

y(t)

Output

w[n]

Page 59: Stochastic processes Lecture 7 Linear time invariant systems 1.

59

Agenda (Lec. 7)

โ€ข Recap: Linear time invariant systemsโ€ข Stochastic signals and LTI systems

โ€“ Mean Value functionโ€“ Mean square value โ€“ Cross correlation function between input and outputโ€“ Autocorrelation function and spectrum output

โ€ข Filter examples โ€ข Intro to system identification