Stochastic Processes for Finance

104
Patrick Roger Stochastic Processes for Finance Download free books at

description

A lecture note on stochastic processes for finance by Patrick Roger (bookboon)

Transcript of Stochastic Processes for Finance

Page 1: Stochastic Processes for Finance

Patrick Roger

Stochastic Processes forFinance

Download free books at

Page 2: Stochastic Processes for Finance

Download free eBooks at bookboon.com

2

Stochastic Processes for Finance

Patrick Roger

Strasbourg University, EM Strasbourg Business School

June 2010

Page 3: Stochastic Processes for Finance

Download free eBooks at bookboon.com

3

Stochastic Processes for Finance© 2010 Patrick Roger & Ventus Publishing ApSISBN 978-87-7681-666-7

Page 4: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Click on the ad to read more

Stochastic Processes for Finance

4

Contents

Contents Introduction 7

1 Discrete-time stochastic processes 91.1 Introduction 91.2 The general framework 101.3 Information revelation over time 121.3.1 Filtration on a probability space 121.3.2 Adapted and predictable processes 141.4 Markov chains 171.4.1 Introduction 171.4.2 Definition and transition probabilities 191.4.3 Chapman-Kolmogorov equations 191.4.4 Classification of states 211.4.5 Stationary distribution of a Markov chain 241.5 Martingales 251.5.1 Doob decomposition of an adapted process 291.5.2 Martingales and self-financing strategies 301.5.3 Investment strategies and stopping times 341.5.4 Stopping times and American options 39

2 Continuous-time stochastic processes 432.1 Introduction 43

www.sylvania.com

We do not reinvent the wheel we reinvent light.Fascinating lighting offers an infinite spectrum of possibilities: Innovative technologies and new markets provide both opportunities and challenges. An environment in which your expertise is in high demand. Enjoy the supportive working atmosphere within our global group and benefit from international career paths. Implement sustainable ideas in close cooperation with other specialists and contribute to influencing our future. Come and join us in reinventing light every day.

Light is OSRAM

Page 5: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Click on the ad to read more

Stochastic Processes for Finance

5

Contents

2.2 General framework 442.2.1 Filtrations, adapted and predictable processes 482.2.2 Markov and diffusion processes 512.2.3 Martingales 532.3 The Brownian motion 552.3.1 Intuitive presentation 552.3.2 The assumptions 572.3.3 Definition and general properties 612.3.4 Usual transformations of the Wiener process 642.3.5 The general Wiener process 672.3.6 Stopping times 692.3.7 Properties of the Brownian motion paths 71

3 Stochastic integral and Itô’s lemma 733.1 Introduction 733.2 The stochastic integral 753.2.1 An intuitive approach 753.2.2 Counter-example 783.2.3 Definition and properties of the stochastic integral 803.2.4 Calculation rules 833.3 Itô’s lemma 853.3.1 Taylor’s formula, an intuitive approach to Itô’s lemma 863.3.2 Itô’s lemma 883.3.3 Applications 883.4 The Girsanov theorem 91

© Deloitte & Touche LLP and affiliated entities.

360°thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°thinking.

Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affiliated entities.

360°thinking.

Discover the truth at www.deloitte.ca/careers

Page 6: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Click on the ad to read more

Stochastic Processes for Finance

6

Contents

3.4.1 Preliminaries 913.4.2 Girsanov theorem 933.4.3 Application 933.5 Stochastic differential equations 953.5.1 Existence and unicity of solutions 953.5.2 A specific case: linear equations 97

Bibliography 100

Index 103

We will turn your CV into an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?We will appreciate and reward both your enthusiasm and talent.Send us your CV. You will be surprised where it can take you.

Send us your CV onwww.employerforlife.com

Page 7: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

7

Introduction

0, 1, .., T. [0;T ] .

Page 8: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

8

Introduction

Page 9: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

9

Discrete-time stochastic processes

T

Page 10: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

10

Discrete-time stochastic processes

T = {0, 1, ..., T} T < +∞. T− = {0, 1, ..., T − 1} ; T − 1 T. T

(,A, P ) A P A.

X = (X0, ...,XT ) (,A) R.

Xt n

R BR

Page 11: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Click on the ad to read more

Stochastic Processes for Finance

11

Discrete-time stochastic processes

Xt X

Xt = Xt−1 × Yt

Yt u d p 1 − p. X0 X Xt Xt R+

Maersk.com/Mitas

�e Graduate Programme for Engineers and Geoscientists

Month 16I was a construction

supervisor in the North Sea

advising and helping foremen

solve problems

I was a

hes

Real work International opportunities

�ree work placementsal Internationaor�ree wo

I wanted real responsibili� I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme for Engineers and Geoscientists

Month 16I was a construction

supervisor in the North Sea

advising and helping foremen

solve problems

I was a

hes

Real work International opportunities

�ree work placementsal Internationaor�ree wo

I wanted real responsibili� I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme for Engineers and Geoscientists

Month 16I was a construction

supervisor in the North Sea

advising and helping foremen

solve problems

I was a

hes

Real work International opportunities

�ree work placementsal Internationaor�ree wo

I wanted real responsibili� I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme for Engineers and Geoscientists

Month 16I was a construction

supervisor in the North Sea

advising and helping foremen

solve problems

I was a

hes

Real work International opportunities

�ree work placementsal Internationaor�ree wo

I wanted real responsibili� I joined MITAS because

www.discovermitas.com

Page 12: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

12

Discrete-time stochastic processes

X1(ω) X2(ω)ω1 ω2 ω3 ω4

X1 X2

Xt X1

X2 X1 X2 .

= {ωi, i = 1, ..., 4} A = P() X1 X2

X1 X1 =100 {ω1, ω2} X1 =105 {ω3, ω4} . X2 X1 {ω1, ω2} X1 T = 2 X2

X1 X2

Page 13: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

13

Discrete-time stochastic processes

X1 X2 σ X1

σ (X1, X2) .

t t

s t

(,A, P ) F = {F0,F1, ...,FT} A. (,A, P,F)

Ft

Ft−1 ⊆ Ft

t ≥ 1. T,

T. FT =A.

F0 = {∅ }

F0 = {∅,}F1 = {∅, {ω1, ω2} , {ω3, ω4} ,}F2 = P()

Page 14: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

14

Discrete-time stochastic processes

t = 1 {ω1, ω2} {ω3, ω4} X1

X Xt

t. t, Xt Xt t+ 1 Xt+1 Xt t t.

F = {F0,F1, ...,FT} Ft t {Xt ≤ 100} Xt Xt Ft t).

X = (X0, ..., XT ) F t, Xt Ft

X FX A FX

t Xs, s ≤ t.

Xt =Xt−1Yt Yt u d p 1− p. T = 2, X t = 0 T = 2. 4 = {uu, ud, du, dd} X1 up down . {uu, ud} {du, dd}

Page 15: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Click on the ad to read more

Stochastic Processes for Finance

15

Discrete-time stochastic processes

F1 = {∅, {uu, ud} , {du, dd} ,} . X1

X1(uu) = X1(ud) = uX0

X1(du) = X1(dd) = dX0

F1 F = FX .

Page 16: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

16

Discrete-time stochastic processes

X0 X1(ω) X2(ω)ω1 1 u u2

ω2 1 u udω3 1 d duω4 1 d d2

X

Card() = n n L2 (,A, P ) Rn. L2 (,Ft, P ) , Ft L2 (,A, P )

t. L2 (,F1, P )

L2 (,F1, P ) =(x, y, z, t) ∈ R4 x = y z = t

F1 X0 = 1

K Xk, k = 1, ...,K.

t t+1. t t + 1 θ′

t =θ1t , ...θ

Kt

θ′

t+1 =θ1t+1, ...θ

Kt+1

t t+ 1.

θt+1 t

X = (X1..., XT ) t ≥ 1, Xt Ft−1

t = 1

Page 17: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

17

Discrete-time stochastic processes

X1 F0 θ θ0 θ0 θ1.

rt [t; t+ 1] Bt t

rt t r F , B

Bt =t−1

s=0

(1 + rs)

Bt t− 1 Bt Ft−1

p,

p+1. p p+1.

Page 18: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Click on the ad to read more

Stochastic Processes for Finance

18

Discrete-time stochastic processes

p p+1.

Page 19: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

19

Discrete-time stochastic processes

X (,A, P,F) (B1, ..., Bn) ∈ Bn

R (t1, ..., tn) ∈ T n t1 < .... < tn

PXt ∈ Bn

Xt ∈ Bj, j = 1, .., n− 1= P

Xt ∈ Bn

Xt− ∈ Bn−1

tn−1

tn−1 tn. tn−1.

(Xp, p ∈ N) (x1, ..., xn)

(Xp, p ∈ N) (x1, ..., xn) ;

π(xi, p− 1, p, xj) = P (Xp = xj |Xp−1 = xi )

Πp−1 = (π(xi, p− 1, p, xj), i, j = 1, ..., n) p− 1.

p, π(xi, p− 1, p, xj) = πij

π(xi, p − 1, p, xj) X xj

p xi p − 1.

m

Page 20: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

20

Discrete-time stochastic processes

m

X = (Xp, p ∈ N) N π = (πij, i, j = 1, ...,N) .

π(m+n)ij = P (Xm+n = xj |X0 = xi ) m + n

i j.

π(m+n)ij =

n

k=1π

(m)ik π

(n)kj

m = n = 1 N = 3. π(2)12

x2 x1.

πր x1

πց

x1π→ x2

π→ x2

ցπ x3

րπ

π(2)12 = π11π12 + π12π22 + π13π32

xi xj m + n π

(m+n)ij i m

π

(m)ij , i, j = 1, ..., n

j n

π

(n)ij , i, j = 1, ..., n

.

X = (Xp, p ∈ N) N π = (πij, i, j = 1, ...,N) .

π(m)ij = P (Xm = xj |X0 = xi ) m

i j π(m) m π

(m)ij .

π(m) = πm

πm m π.

Page 21: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

21

Discrete-time stochastic processes

xj X xi k > 0

π(k)ij > 0

xi xj k k′

π(k)ij > 0 π

(k′)ji > 0

π.

π =

0.6 0.4 0 00.3 0.7 0 00 0 0.5 0.50 0 0.7 0.3

x1 x2, x3

x4 x1

x2 x3 x4 x1 x2 {x1, x2} {x3, x4} .

X = (Xp, p ∈ N) N π = (πij , i, j = 1, ..., N) . (C1, C2, ...CM) N Ck

R, x R x x x

Page 22: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

22

Discrete-time stochastic processes

S t+ 1

St+1 =

uSt pdSt 1− p

d = 1/u. S0

X = (Xp, p ∈ N) N π = (πij , i, j = 1, ..., N) .

xi, t(i) m π(m)(i, i) > 0. t(i) = 0 m, π(m)(i, i) = 0.

X t(i) = 1 i.

X = (Xp, p ∈ N) π.

Page 23: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Click on the ad to read more

Stochastic Processes for Finance

23

Discrete-time stochastic processes

pi(n) i n i +∞

i=1pi(n) = 1

i

limm→+∞

π(m)ii = qi > 0

i i n

“The perfect start of a successful, international career.”

CLICK HERE to discover why both socially

and academically the University

of Groningen is one of the best

places for a student to be www.rug.nl/feb/education

Excellent Economics and Business programmes at:

Page 24: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

24

Discrete-time stochastic processes

X = (Xp, p ∈ N) .

qi =+∞

j=1qjπij

+∞

i=1qi = 1. qi

∀i, qi ≥ 0 +∞

i=1qi = 1

qi =+∞

i=1qjπij

qi

πm m πm (qi, i = 1, ..., n).

π =

0.6 0.40.4 0.6

π

π2 =

0.52 0.480.48 0.52

π3 =

0.504 0.4960.496 0.504

lim

m→+∞πm =

0.5 0.50.5 0.5

Page 25: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

25

Discrete-time stochastic processes

(Y,Z) L2 (,A, P ) B,B′

A B ⊂ B′

Z c ∈ R, E (Z |B ) = c

∀(a, b) ∈ R2, E (aZ + bY |B ) = aE (Z |B ) + bE (Y |B )

Z ≤ Y, E (Z |B ) ≤ E (Y |B )

E (E (Z |B′ ) |B ) = E (Z |B )

Z B E (ZY |B ) = Z E (Y |B )

Z B, E (Z |B ) = E(Z)

(,A,F , P ) X = (X0, ..., XT ) (F , P )

X F ∀t ∈ T , Xt ∈ L1 (,A, P ) ∀t ∈ T ∗, Xt−1 = E [Xt |Ft−1 ]X (F , P ) Xt−1 ≥ E [Xt |Ft−1 ]X (F , P ) Xt−1 ≤ E [Xt |Ft−1 ]

(F , P )

P

E [Xt −Xt−1 |Ft−1 ] = 0 X F Xt−1 Ft−1

Page 26: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

26

Discrete-time stochastic processes

X (s, t), s ≤ t

E [Xt |Fs ] = (≤,≥) Xs

E [Xt+1 |Ft−1 ] . Xt−1 =E [Xt |Ft−1 ] Xt = E [Xt+1 |Ft ] .

Xt−1 = E [E [Xt+1 |Ft ] |Ft−1 ]

Xt−1 = E [Xt+1 |Ft−1 ]

Ft−1 ⊂ Ft+1.

X E [Xt |Ft−1 ] Ft−1 Xt X Xt−1 Xt t− 1. Xt−1 Xt Ft−1

E(Xt) .

X X0 = c ∈R

Xt = Xt−1 + Yt

Yt

E (E [X |F− ]) = E [X] = E [X−]

Page 27: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Click on the ad to read more

Stochastic Processes for Finance

27

Discrete-time stochastic processes

X0 t Xt

Xt = Xt−1 + Yt

Yt t Ys

t

Xt = X0 +t

s=1

Ys

F Y, Fs Yu, u ≤ s. Ys s Xs s X F

E [Xt |Ft−1 ] = E [Xt−1 + Yt |Ft−1 ]

= E [Xt−1 |Ft−1 ] + E [Yt |Ft−1 ]

X F, Xt−1 Yt Yt Ft−1. E [Yt |Ft−1 ] = E [Yt] = 0⇒ E [Xt |Ft−1 ] = Xt−1, X .

American online LIGS University

▶ enroll by September 30th, 2014 and

▶ save up to 16% on the tuition!

▶ pay in 10 installments / 2 years

▶ Interactive Online education ▶ visit www.ligsuniversity.com to

find out more!

is currently enrolling in theInteractive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any nationally recognized accrediting agency listed by the US Secretary of Education. More info here.

Page 28: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

28

Discrete-time stochastic processes

Y ∈ L1 (,A, P ) X

Xt = E [Y |Ft ]

X

E [Xt |Ft−1 ] = E [E [Y |Ft ] |Ft−1 ]

= E [Y |Ft−1 ] = Xt−1

E [Xt] t)

T t ≤ T Y ( Z) Y Z).

Xt = Yt − Zt t X0 = 0

Xt = Xt−1 + δt

δt = 1 t δt = −1

E [Xt |Ft−1 ] = Xt−1 + E [δt |Ft−1 ]

δt Ft−1. Yt = s Zt = t−s

P (δt+1 = 1 |Yt = s) =T2− s

T − t

12 s = t

2,

E [δt+1 |Yt = s ] = 0.

X t, E(Yt) = E(Zt) =t2 E [Xt] = 0. X

Page 29: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

29

Discrete-time stochastic processes

0 t t

2

Y Z YT = ZT = T

2 XT = 0.

F0

X F , Xt X

∀t ∈ T , Xt = X0 +Mt +At

M M0 = 0 A A0 = 0. X A (At ≤ At+1)

Xt = X0 +Mt +At,

E [Xt −Xt−1 |Ft−1 ] = E [Mt −Mt−1 |Ft−1 ] + E [At − At−1 |Ft−1 ]

M A At − At−1.

At =t

s=1

E [Xs −Xs−1 |Fs−1 ]

X A M

Mt = Xt −X0 −t

s=1

E [Xs −Xs−1 |Fs−1 ]

Page 30: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

30

Discrete-time stochastic processes

Xt 0 t [s; s+ 1]

Xt −Xt−1 = Mt −Mt−1 +At − At−1

E [Xt −Xt−1 |Ft−1 ] = E [At − At−1 |Ft−1 ] = At −At−1

At −At−1

K t Xt = (X1

t , ....,XKt )

Xk θt = (θ1t , ...., θ

Kt )

t− 1 t. t

Vt(θ) =K

k=1

θktXkt

Vt(θ) V0(θ) s, 0 < s < t 5× $100 + 10× $60 = $1100.

5×$130+10×$65 = $1300.

T

Page 31: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Click on the ad to read more

Stochastic Processes for Finance

31

Discrete-time stochastic processes

5 10 100 60 6 8 130 65 4 11 120 80

S

6×$130+8×$65 = $1300,

.

Page 32: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

32

Discrete-time stochastic processes

θ θ t

K

k=1

θktXkt =

K

k=1

θkt+1Xkt

t θt. θt+1 t

X =X1, ..., XK

RK

θ =θ1, ..., θK

Y

Y0 =K

k=1

θk1Xk0

Yt =K

k=1

θktXkt

Yt t θ, Y0

E [Yt − Yt−1 |Ft−1 ] = E

K

k=1

θktX

kt − θkt−1X

kt−1

|Ft−1

E [Yt − Yt−1 |Ft−1 ] = E

K

k=1

θktXk

t −Xkt−1

|Ft−1

Page 33: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

33

Discrete-time stochastic processes

K

k=1 θktX

kt =

Kk=1 θ

kt+1X

kt .

θ θt

E [Yt − Yt−1 |Ft−1 ] =K

k=1

θktE

Xkt −Xk

t−1

|Ft−1

X

E [Yt − Yt−1 |Ft−1 ] = 0

E [Yt |Ft−1 ] = Yt−1

X =X1, ..., XK

RK

θ =θ1, ..., θK

Z

Z0 = 0

Zt =K

k=1

t

s=1

θksXk

s −Xks−1

E [Zt − Zt−1 |Ft−1 ] = E

K

k=1

θktXk

t −Xkt−1

|Ft−1

E [Zt − Zt−1 |Ft−1 ] =K

k=1

θktE

Xkt −Xk

t−1

|Ft−1

Page 34: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

34

Discrete-time stochastic processes

X

Z Y fY FY

E(Y ) =

+∞

−∞y fY (y) dy =

+∞

−∞y dFY (y)

E(Y ) = E(Y ) = Y,L .

Y y1 <y2, ... < yn;

E(Y ) =

yi (FY (yi)− FY (yi−1)) =

+∞

−∞y dFY (y)

Z

Zt =K

k=1

t

0

θksdXks

t

0θksdX

ks θ k

t. E(X) Zt; E(X) Zt Y Xk

Page 35: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

35

Discrete-time stochastic processes

Xt t;

Xt = X0 +t

s=1

Ys

Ys X0

t Xt = X0 + 1 X0 + 1 T

Page 36: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

36

Discrete-time stochastic processes

v (,A, P ) T

∀t ∈ T {v = t} = {ω ∈ v(ω) = t} ∈ Ft

ν {v = t} ∈Ft t

FT Ft

, {v = t} {v ≤ t} , {v > t} . Ft−1 ⊂ Ft, {v = t− 1} ∈ Ft−1 {v = t− 1} ∈ Ft. t−k k < t. Ft {v ≤ t} ∈Ft ⇒ {v ≤ t}c = {v > t} ∈ Ft.

v X Xv E(Xv) = E (X0) .

v X K t ∈ T

ω ∈ , |Xt(ω)| ≤ K.

Xt

Page 37: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

37

Discrete-time stochastic processes

t , ν

Y

Yt =

Xt t < vXv t ≥ v

Y X, Xv v .

ν X F , Y F X Y.

ξs = {v≥s}; {v ≥ s} Y

Yt = X0 +t

s=1

ξs (Xs −Xs−1)

t < v, Yt = Xt. t > v 1 s ≤ v Yt = Xv. {v ≥ t} = {v ≤ t− 1}c ξ Y

X Y ξ

E [Yt − Yt−1 |Ft ] = E [ξt (Xt −Xt−1) |Ft ]

= ξtE [(Xt −Xt−1) |Ft ]

Page 38: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Click on the ad to read more

Stochastic Processes for Finance

38

Discrete-time stochastic processes

X

E [(Xt −Xt−1) |Ft ] = 0

X0 = 0

t

Xt = −t

s=1

2s−1 = −t−1

s=0

2s

t

Xt = −2t − 1

2− 1= −(2t − 1)

www.mastersopenday.nl

Visit us and find out why we are the best!Master’s Open Day: 22 February 2014

Join the best atthe Maastricht UniversitySchool of Business andEconomics!

Top master’s programmes• 33rdplaceFinancialTimesworldwideranking:MScInternationalBusiness

• 1stplace:MScInternationalBusiness• 1stplace:MScFinancialEconomics• 2ndplace:MScManagementofLearning• 2ndplace:MScEconomics• 2ndplace:MScEconometricsandOperationsResearch• 2ndplace:MScGlobalSupplyChainManagementandChange

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012; Financial Times Global Masters in Management ranking 2012

MaastrichtUniversity is

the best specialistuniversity in the

Netherlands(Elsevier)

Page 39: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

39

Discrete-time stochastic processes

t+ 1 2t. Xt+1 = 1 = X0 + 1.

v = inf {t / Xt = 1}

E(v) =+∞

s=1

1

2s

s

+∞

s=1

1

2s

s =

+∞

s=1

+∞

u=s

1

2u

+∞

u=s

12

= 1

2−

E(v) =+∞

s=1

1

2s= 2

v X

T K K, T T ).

Yt t. Yt = max(K − St; 0), St t t K ≤ St. K

Page 40: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

40

Discrete-time stochastic processes

K − St

Y F X

XT = YT

Xt = max (Yt;E (Xt+1 |Ft )) t < T

Y.

X Y Y, Xt ≥ Yt t.

Xt ≥ E (Xt+1 |Ft ) ; X Z Y ∀t, Zt ≥ Xt . t = T X. Zs ≥ Xs s ≥ t0 Zt−1 ≥ Xt−1.

Z

Zt−1 ≥ E (Zt |Ft−1 ) ≥ E (Xt |Ft−1 )

Z Y ;

Zt−1 ≥ Yt−1

Zt−1 ≥ max (Yt−1;E (Xt |Ft−1 )) = Xt−1

t.

t Xt = Yt.

Page 41: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

41

Discrete-time stochastic processes

v

v = inf (t / Xt = Yt)

v Xv

X v ≤ T

{v = s} =s−1

u=1

{Xu > Yu}{Xs = Ys}

Fs Xu, Yu, u ≤ s Fs {v = s} ∈ Fs v

Xvt ξs = {v≥s},

Xvt = X0 +

t

s=1

ξs (Xs −Xs−1)

Xs = max (Ys;E (Xs+1 |Fs )) Xvs (ω) = Xs(ω) ω ∈

{v ≥ s} ,

Xs(ω) = E (Xs+1 |Fs ) (ω) ω ∈ {v ≥ s} Xv

s − Xvs−1 = ξs (Xs −E (Xs |Fs−1 )) .

{v ≥ s} , Xs−Xs−1 Xs. {v < s} , Xv

s = Xvs−1 = Yv

{v < s}

EXv

s −Xvs−1 |Fs−1

= E (ξs (Xs −E (Xs |Fs−1 )) |Fs−1 )

ξ ξs

EXv

s −Xvs−1 |Fs−1

= 0

Xv

v

Page 42: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Click on the ad to read more

Stochastic Processes for Finance

42

Discrete-time stochastic processes

T T, v

v = inf {t / Xt = Yt}

E [Yv] = supu∈T

E [Yu]

Yt = max(K−St; 0) t Xt − Yt

T T, v

v = inf {t / Xt = Yt}

E [Yv] = supu∈T

E [Yu]

Yt = max(K−St; 0) t Xt − Yt

- ©

Pho

tono

nsto

p

> Apply now

redefine your future

AxA globAl grAduAte progrAm 2015

axa_ad_grad_prog_170x115.indd 1 19/12/13 16:36

Page 43: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

43

Continuous-time stochastic processes

Page 44: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

44

Continuous-time stochastic processes

(,A, P ) T T = [0;T ] , T < +∞

X =(Xt, t ∈ T ) (R,BR) .

T

t → Xt(ω) ω ∈ X.

[0;T ]

Page 45: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

45

Continuous-time stochastic processes

t→ Xt(ω)

Page 46: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Click on the ad to read more

Stochastic Processes for Finance

46

Continuous-time stochastic processes

Page 47: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

47

Continuous-time stochastic processes

• Xt(ω) Xs(ω), s < t

T .

Y X t ∈ T t = {Xt = Yt} Y X.

X Y

∃∗ ∈ A P (∗) = 1 ∀ω ∈ ∗, ∀t ∈ T , Xt(ω) = Yt(ω)

= [0; 1] , T =[0; 1] X Xt = 0 t ω. Y

Yt(ω) = 1 t = ω

= 0

P ({Xt = Yt}) = 1 P Y X. X Y

t t = ∅.

Page 48: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

48

Continuous-time stochastic processes

F = {Ft, t ∈ T } A. (,A,F , P )

F t < T, Ft =

s>tFs

F Ft

X F t, Xt Ft

X, FX , X FX

t Xs, s ≤ t.

P (ω) > 0 ω. B ∈ Ft P (B) = 0 A B Ft. P (A) ≤ P (B) A ⊂ B P (A) A

Page 49: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

49

Continuous-time stochastic processes

t t − 1 Xt Ft−1 Xt Ft−1

X F

f : R→R f(x) x < x0. f(x0)?

f

limx→xx<x

f(x) = f(x0)

x → x0 x < x0 x →x−

0 .

t < t0, t

X (,A, P ) ;

X t1 ≤ t2 ≤ ... ≤ tn, Xt −Xt−

X t ∈ T h > 0 t + h ∈ T , Xt+h −Xt h t

B∗ ×T B∗

Page 50: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

50

Continuous-time stochastic processes

X

X0 = 0

Xt = Xt−1 + Yt

Yt X Yt.

Xt S) Xt − Xs [s; t] . Xt = ln(St)

Xt −Xs = ln(St)− ln(Ss) = ln

St

Ss

X Xt −Xs

Page 51: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

51

Continuous-time stochastic processes

X λ X0 = 0 X (s, t) ∈ R+×R+ s ≤ t, Xt−Xs

λ(t− s).

∀k ∈ N, P (Xt −Xs = k) =(λ(t− s))k

k!exp (− (λ(t− s)))

Xt N .

Y t,

Claimt =X

i=1

Yi

Xt t.

h h.

P (Xt+h −Xt = 2) =(λh)2

2exp (−λh) ≃ λ2

2h2

h h λh.

Page 52: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

52

Continuous-time stochastic processes

X (,A, P,F) (B1, ..., Bn) ∈ Bn

R (t1, ..., tn) ∈ T n t1 < .... < tn

PXt ∈ Bn

Xt ∈ Bj , j = 1, .., n− 1= P

Xt ∈ Bn

Xt− ∈ Bn−1

Xs s ≤ tn−1 Xt− .

Bn−1 tn−1 Xt −Xt−. tn−1

X X σ R×T R R+

(x, t) = limh→0

E [Xt+h −Xt |Xt = x ]

h

σ2(x, t) = limh→0

V [Xt+h −Xt |Xt = x ]

h

Page 53: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

53

Continuous-time stochastic processes

σ Xt t Xt+h −Xt [t; t+ h] . (x, t) t X x. h

σ2 σ σ.

(,A,F , P )

(F , P ) X F ,

∀(s, t) ∈ T 2, s ≤ t⇒ E [Xt |Fs ] = Xs

X (F , P ) E [Xt |Fs ] ≤Xs.

X (F , P ) E [Xt |Fs ] ≥Xs.

Page 54: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Click on the ad to read more

Stochastic Processes for Finance

54

Continuous-time stochastic processes

(F , P ) X X X

Get Help Now

Go to www.helpmyassignment.co.uk for more info

Need help with yourdissertation?Get in-depth feedback & advice from experts in your topic area. Find out what you can do to improvethe quality of your dissertation!

Page 55: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

55

Continuous-time stochastic processes

X F X

∀t ∈ T , Xt = X0 +Mt +At

M M0 = 0 A A0 = 0. X A

X

X0 = a

Xn = Xn−1 + Yn

a Yn T [0;T ] N

h = T/N N T

T = {0, 1, ..., N} .

X Yn σ −σ p = 1/2

Page 56: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

56

Continuous-time stochastic processes

X

Cov(Xn, Xm) = σ2 min(n,m)

Yn. m < n

Cov(Xn, Xm) = Cov(Xm +n

k=m+1

Yk,Xm)

= Cov(Xm,Xm) +n

k=m+1

cov(Yk, Xm)

= V (Xm) +n

k=m+1

Cov (Yk,Xm)

Cov(Xm, Xm) = V (Xm). Cov (Yk, Xm) k > m Yk Xm = X0 +

k≤m Yk

V (Yk) = σ2 V (Xm) =m

k=1 V (Yk) = mσ2. n < m, Cov(Xn,Xm) = V (Xn) = nσ2.

Xn t t = nh X0 = 0 Xn [0; t] . T = {0, 1, ..., N} [0;T ]

N → +∞ [0;T ] ΛT , ΛT = limN→+∞ XN .

σ N Nσ2 [0;T ] T N = 13 N = 91

T

Page 57: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

57

Continuous-time stochastic processes

σ N u d

Y Nn , n = 1, ...,N

T = {0, 1, ...,N} σh Y Nn

T XN = X0 +Nn=1 Y

Nn .

N, XN −X0 [0;T ] , ΛT . N h

N

A1 > 0, N,

∀n ∈ T , V (Xn) ≥ A1

A2 > 0, N, :

V (XN ) ≤ A2

A3 > 0, N, n ∈ T

V (Yn)

maxNj=1 V (Yj)≥ A3

• 0 t

Page 58: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

58

Continuous-time stochastic processes

• [0;T ] u d

Page 59: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

59

Continuous-time stochastic processes

A3 = 1.

O o.

f g R R. f(h) = O(g(h)) limh→0

f(h)g(h)

< +∞ f(h) = o(g(h))

limh→0

f(h)g(h)

= 0.

f(h) = O(g(h)) f g h f(h) = o(g(h)) f g h

σ2h

σ2h = O(h) σ2

h = o(h)

O(h) o(h)

V (XN) =N

n=1

V (Y Nn ) = Nσ2

h

Y Nn .

Nσ2h ≤ A2 N T

h

σ2h ≤

A2

Th

σ2h = O(h).

Nσ2h ≥ A1

σ2h ≥ A

Th. σ2

h = o(h).

Page 60: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

60

Continuous-time stochastic processes

Yn O(h), Yn σh = c

√h −c

√h c

O(√h) h.

c = 1 X

Xn = Xn−1 + δn√h

δn +1 −1

h = 1

h = 1 h = 0.2

±

√hh, ± 1√

h.

h h h

Page 61: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

61

Continuous-time stochastic processes

h = 0.2

ΛT = limN→+∞

TN

Nn=1 δn δn

. ΛT

√T .

T T ′ , T < T ′, ΛT ′−ΛT

√T ′ − T ΛT ′ −ΛT

ΛT − Λ0.

,A, P ) Z

Z0 = 0 P.a.s

Z

Page 62: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Click on the ad to read more

Stochastic Processes for Finance

62

Continuous-time stochastic processes

∀(s, t) ∈ R+ ×R+, s < t, Zt − Zs ∼ N (0,√t− s)

Z

Zt

√t.

Z t t + h

√h

h

By 2020, wind could provide one-tenth of our planet’s electricity needs. Already today, SKF’s innovative know-how is crucial to running a large proportion of the world’s wind turbines.

Up to 25 % of the generating costs relate to mainte-nance. These can be reduced dramatically thanks to our systems for on-line condition monitoring and automatic lubrication. We help make it more economical to create cleaner, cheaper energy out of thin air.

By sharing our experience, expertise, and creativity, industries can boost performance beyond expectations.

Therefore we need the best employees who can meet this challenge!

The Power of Knowledge Engineering

Brain power

Plug into The Power of Knowledge Engineering.

Visit us at www.skf.com/knowledge

Page 63: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

63

Continuous-time stochastic processes

Z

Z

cov(Zt, Zs) = min(t, s)

(1)

Zt =Zs + (Zt − Zs) s < t) Zs (Zt − Zs) (Zt − Zs) FZ

s , Z.

(2), s t s < t.

EZt

FZs

= E

Zs + (Zt − Zs)

FZs

= EZs

FZs

+ E

Zt − Zs

FZs

Zt−Zs FZ

s EZt − Zs

FZs

= E [Zt − Zs] = 0

Z FZ , Zs FZs

EZs

FZs

= Zs

EZt

FZs

= Zs

(3), s < t)

cov(Zt, Zs) = cov(Zt − Zs + Zs, Zs)

= cov(Zt − Zs, Zs) + V (Zs)

= cov(Zt − Zs, Zs − Z0) + s

= s

Page 64: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

64

Continuous-time stochastic processes

Zt − Zs Zs − Z0

t < s, Zs Zs − Zt + Zt .

(x, t) = limh→0

E [Xt+h −Xt |Xt = x ]

h

σ2(x, t) = limh→0

V [Xt+h −Xt |Xt = x ]

h

((x, t) = 0) σ(x, t) 1

X Y

Xt = Z2t − t

Yt = exp

γZt −

γ2t

2

γ X Y FZ .

Z Xt Zt Yt

Zt = Zs+(Zt−Zs) s < t. E

Xt

FZs

EXt

FZs

= E

Z2

t

FZs

− t

= E(Zt − Zs)

2 + 2ZtZs − Z2s

FZs

− t

Page 65: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

65

Continuous-time stochastic processes

Zs FZ

s − Z Zt − Zs FZ

s .

EXt

FZs

= E

(Zt − Zs)

2FZ

s

+ 2E

ZtZs

FZs

− E

Z2

s

FZs

− t

= E(Zt − Zs)

2FZ

s

+ 2E

ZtZs

FZs

− Z2

s − t

= E(Zt − Zs)

2FZ

s

+ 2ZsE

Zt

FZs

− Z2

s − t

= E(Zt − Zs)

2FZ

s

+ 2Z2

s − Z2s − t

E(Zt − Zs)

2+ Z2

s − t

(t− s) + Z2s − t

= Z2s − s = Xs

Y

EYt

FZs

= exp

−γ2t

2

Eexp (γZt)

FZs

= exp

−γ2t

2

Eexp (γ(Zt − Zs)) exp(γZs)

FZs

= exp

−γ2t

2

E (exp (γ(Zt − Zs))) exp(γZs)

exp (γ(Zt − Zs)) 0 γ

√t− s. E (exp (γ(Zt − Zs))) = γ(t−s)

2.

EYt

FZs

= exp

γZs −

γ2s

2

= Ys

X Y

(x, t) → f(x, t) = x2 − t

(x, t) → g(x, t) = exp

γx− γ2t

2

Page 66: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

66

Continuous-time stochastic processes

z(x, t) Zt

z(x, t) =1√2πt

exp

−x2

2t

f g

h(0, s) =

+∞

−∞h(u, t+ s)z(u, t)du

f, f(0, s) = −s

+∞

−∞f(u, t+ s)z(u, t)du =

1√2πt

+∞

−∞(u2 − (t+ s)) exp

−u2

2t

du

=1√2πt

+∞

−∞u2 exp

−u2

2t

du− (t+ s)

1√2πt

+∞−∞ u2 exp

−u

2t

du Zt, t. g,

+∞

−∞g(u, t+ s)z(u, t)du =

1√2πt

+∞

−∞exp

γu− γ2(t+ s)

2− u2

2t

du

= exp

−γ2(t+ s)

2

1√2πt

+∞

−∞exp

γu− u2

2t

du

exp

γu− u2

2t

= exp

− 1

2t(u− γt)2 +

γ2t

2

+∞

−∞g(u, t+ s)z(u, t)du = exp

−γ2s

2

1√2πt

+∞

−∞exp

− 1

2t(u− γt)2

du

= exp

−γ2s

2

= g(0, s)

Page 67: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Click on the ad to read more

Stochastic Processes for Finance

67

Continuous-time stochastic processes

E(Zt) = 0 t. V (Zt) = t

σ σ2

W σ Wt

W0 = 0

Wt = t+ σZt

Z

Page 68: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

68

Continuous-time stochastic processes

W Z.

W

s < t, Wt −Ws ∼ N ((t− s), σ

t− s)

cov(Wt,Ws) = σ2(t− s)

W (<)0.

W

1. Wt [0; t] , 0 r, r.

h W [t; t+ h]

Wt+h −Wt = h+ σ(Zt+h − Zt)

Z, Zt+h−Zt

O(√h), h h

W , σ(Zt+h − Zt) h h .

= 0, [a; b])

Page 69: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

69

Continuous-time stochastic processes

=10% σ = 20%)

= 10% σ = 20%, . t = 0.75),

(,A,F , P ) τ T {+∞} {τ ≤ t} ∈Ft t ∈ T .

{τ ≤ t} {τ = t} . P ({τ = t}) = 0 t

Page 70: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

70

Continuous-time stochastic processes

+∞ τ = +∞.

T (C1, ..., CT ) t Ft < Ct τ τ = inf {t / Ft < Ct} τ = +∞ T.

τ τ ′ F τ + τ ′, min(τ , τ ′), max(τ , τ ′)

min(τ , τ ′) τ ∧ τ ′ τ ∨ τ ′ max(τ , τ ′).

τ ∧ τ ′ τ ∨ τ ′ τ τ ′ min(τ , τ ′)) max(τ , τ ′)) |τ − τ ′|

t t ∧ τ

Fτ τ A {τ ≤ t} A ∈ A

τ X

τ Fτ

τ X F Xτ Fτ

τ τ ′ τ ≤ τ ′, Fτ ⊆ Fτ ′

Page 71: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

71

Continuous-time stochastic processes

W (0, σ) a b a < 0 < b τ

τ = inft ∈ R+ / Wt = a Wt = b

P (Wτ = a) =b

b− a

E(τ) =−ab

σ2

τ a b. a τ b σ, τ a b σ P (Wτ = a) =P (Zτ = a).

X,

Xt = Z2t − t

τ ∗ = τ ∧ s s Xτ∗

t EXτ∗

t

= E(Xτ∗

0 ) = 0

EZ2

t∧τ∗

= E(t ∧ τ ∗) ≤ (b− a)2

τ Z a b. s,

E(τ ) = lims→+∞

E(τ ∗) ≤ (b− a)2

τ E(Zτ ) = E(Z0) = 0

E(Zτ ) = aP (Zτ = a) + b(1− P (Zτ = a)) = 0

Page 72: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Click on the ad to read more

Stochastic Processes for Finance

72

Continuous-time stochastic processes

P (Zτ = a) =b

b− a

X

E (Xτt ) = 0 = E

Z2

τ − τ

E(Z2τ ) = a2 b

b− a+ b2

−a

b− a= −ab

Wt = σZt,

Z

Page 73: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

73

Stochastic integral and Itô’s lemma

Yn.

Page 74: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

74

Stochastic integral and Itô’s lemma

(x, t) σ(x, t)

Page 75: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

75

Stochastic integral and Itô’s lemma

[0;T ] N h h = T/N. 0, h, 2h, ...., Nh

X

X0 = 0

Xn = Xn−1 + Yn

n ∈ T = {1, ...,N} . Xn(ω) X nh ω h Yn h.

Page 76: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

76

Stochastic integral and Itô’s lemma

Yn

Yn = n−1h+ σn−1

Znh − Z(n−1)h

Z n−1 σn−1 F(n−1)h F Z n−1 σn−1

n−1 X [(n− 1)h;nh] σn−1 σ− F(n−1)h. σn−1 Znh−Z(n−1)h V

Znh − Z(n−1)h

= h.

X Y

ΛT [0;T ] ΛT

XN N

XN =N

n=1

Yn = hN

n=1

n−1 +N

n=1

σn−1

Znh − Z(n−1)h

h TN,

XN =N

n=1

Yn = T

1

N

N

n=1

n−1

+N

n=1

σn−1

Znh − Z(n−1)h

= AN +BN

AN = T

1N

Nn=1 n−1

BN =

Nn=1 σn−1

Znh − Z(n−1)h

A = limN→+∞ AN B = limN→+∞ BN .

αN

αNs = n−1 s ∈ [(n− 1)h;nh[

αNs (ω)

[(n− 1)h;nh[ . αN(ω)

Page 77: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Click on the ad to read more

Stochastic Processes for Finance

77

Stochastic integral and Itô’s lemma

ω,

AN (ω) =

T

0

αNs (ω)ds

N → +∞ ω, A(ω)

A(ω) =

T

0

αs(ω)ds

αs(ω) = limN→+∞ αNs (ω). α

BN ,

Znh − Z(n−1)h

√h.

σ Z

limN→+∞

BN =

T

0

σsdZs

EXPERIENCE THE POWER OF FULL ENGAGEMENT…

RUN FASTER. RUN LONGER.. RUN EASIER…

READ MORE & PRE-ORDER TODAY WWW.GAITEYE.COM

Challenge the way we run

1349906_A6_4+0.indd 1 22-08-2014 12:56:57

Page 78: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

78

Stochastic integral and Itô’s lemma

CN DN

CN =N

n=1

Znh

Znh − Z(n−1)h

DN =N

n=1

Z(n−1)h

Znh − Z(n−1)h

Z Z

limN→+∞

CN = limN→+∞

DN =

T

0

ZsdZs =Z2

T − Z20

2=

Z2T

2

CN DN N Zt = Zs + (Zt−Zs)

E(CN ) = E

N

n=1

Znh

Znh − Z(n−1)h

=N

n=1

EZnh

Znh − Z(n−1)h

Znh = Z(n−1)h + (Znh − Z(n−1)h),

E(CN) =N

n=1

E

Z(n−1)h + (Znh − Z(n−1)h)

Znh − Z(n−1)h

= E

N

n=1

Z(n−1)h

Znh − Z(n−1)h

+E

N

n=1

Znh − Z(n−1)h

2

=N

n=1

E

Znh − Z(n−1)h

2+

N

n=1

EZ(n−1)h

Znh − Z(n−1)h

Page 79: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

79

Stochastic integral and Itô’s lemma

Znh − Z(n−1)h

E

Znh − Z(n−1)h

2= V

Znh − Z(n−1)h

= nh− (n− 1)h = h

Nh = T.

N

n=1

EZ(n−1)h

Znh − Z(n−1)h

=

N

n=1

EZ(n−1)h

EZnh − Z(n−1)h

= 0

E(CN ) = T

[0;T ] N.

E(DN) CN DN

DN

gn =

n

s=1

θnhXnh −X(n−1)h

θnh F(n−1)h θ

σn−1 Yn F(n−1)h

BN

Page 80: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

80

Stochastic integral and Itô’s lemma

E (B2N)

EB2

N

= E

(BN −BN−1 +BN−1)

2

= E(BN −BN−1)

2+ EB2

N−1

+ 2E (BN−1 (BN −BN−1))

= Eσ2N−1

ZNh − Z(N−1)h

2+ E

B2

N−1

+ 2E (BN−1)E (BN −BN−1)

= hEσ2N−1

+ E

B2

N−1

B.

ZNh − Z(N−1)h

σ2

N−1 E

ZNh − Z(N−1)h

2=

h.

EB2

N

= T

1

N

N

n=1

E(σ2n−1)

βN [0;T ]

βNs = σn−1 s ∈ [(n− 1)h;nh[

EB2

N

= E

T

0

βNs

2ds

βN σ.

E T

0(σs)

2 ds

< +∞ BN

Z ,A,FZ , P

σ FZ σ

E

T

0

σ2sds

< +∞

Page 81: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Click on the ad to read more

Stochastic Processes for Finance

81

Stochastic integral and Itô’s lemma

σ [0;T ] Z T

0σsdZs

T

0

σsdZs = limN→+∞

N

n=1

σn−1

Znh − Z(n−1)h

n [0;T ] N [0;T ] [ti; ti+1[ tN = T

T

0

σsdZs = limN→+∞

N

i=1

σt−

Zt − Zt−

max(ti− ti−1) N → +∞. T.

u

0σsdZs, u ∈ T

(Iu(σ), u ∈ T ) . σ σn−1

σn θ,

T

0θsdZs

Z.

Page 82: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

82

Stochastic integral and Itô’s lemma

X Y t

0XsdZs

t

0YsdZs t ≤ T

∀(a, b) ∈ R2, t

0(aXs + bYs)dZs = a

t

0XsdZs + b

t

0bYsdZs

∀(t, u) ∈ T × T , t < u, u

0XsdZs =

t

0XsdZs +

u

tXsdZs

∀(t, u) ∈ T × T , t < u, E u

0XsdZs |Ft

= t

0XsdZs

∀t ∈ T , E

t

0XsdZs

2= E

t

0X2

sds

X

u

0XsdZs, u ∈ T

t

0XsdZs L2

X

X0 = 0

Xn = Xn−1 + Yn = Xn−1 + n−1h+ σn−1

Znh − Z(n−1)h

X

Xt = X0 +

t

0

sds+

t

0

σsdZs

X s = (Xs, s) σs = σ(Xs, s)

dXt = (Xt, t)dt+ σ(Xt, t)dZt

X dZt

Page 83: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

83

Stochastic integral and Itô’s lemma

X W σ ,

dWt = dt+ σdZt

W0 = 0)

t

0

dWs = Wt =

t

0

ds+

t

0

σdZs

=

t

0

ds+ σ

t

0

dZs

= t+ σZt

dZt). dZt Zt+dt − Zt dt > dt dt.

E(dZt) = 0 V (dZt) = dt

V (dZ2t ) = o(dt)

dZt.dt = o(dt)

E (dZtdZt) = 0 t1 = t2

Z Z∗

E (dZtdZ∗t ) = rtdt

V (dZtdZ∗t ) = o(dt)

dZt Zt+dt−Zt V (Zt − Zs) = t− s t > s.

Page 84: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Click on the ad to read more

Stochastic Processes for Finance

84

Stochastic integral and Itô’s lemma

(dZt)2

Z

√dt −

√dt (dZt)

2

dt. dZt = O(

√dt) dZt.dt = O(dt

) = o(dt).

t1 = t2, dZt dZt

rt O(

√dt). O(dt).

O(dt2), o(dt).

www.sylvania.com

We do not reinvent the wheel we reinvent light.Fascinating lighting offers an infinite spectrum of possibilities: Innovative technologies and new markets provide both opportunities and challenges. An environment in which your expertise is in high demand. Enjoy the supportive working atmosphere within our global group and benefit from international career paths. Implement sustainable ideas in close cooperation with other specialists and contribute to influencing our future. Come and join us in reinventing light every day.

Light is OSRAM

Page 85: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

85

Stochastic integral and Itô’s lemma

T K.

CT = max (XT −K; 0) .

C = (Ct, t ∈ T ) C0 . Ct = g(Xt, t) g R+×T R+. X C.

X Yt = exp(Xt)? Y Xt = ln(Yt)?

Page 86: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

86

Stochastic integral and Itô’s lemma

f R2 R f (x0, t0)

f(x, t) = f(x0, t0) +∂f

∂x(x0, t0)(x− x0) +

∂f

∂t(x0, t0)(t− t0)

+1

2

∂2f

∂x2(x0, t0)(x− x0)

2 +1

2

∂2f

∂t2(x0, t0)(t− t0)

2

+∂2f

∂x∂t(x0, t0)(x− x0)(t− t0) + ε(x0, t0)

ε(x0, t0) ∼ o ((x− x0)2 + (t− t0)

2) . ε

x t− t0

√t− t0.

∂f∂x

(x0, t0)(x − x0)2

O(t− t0). ∂f∂t(x0, t0)(t− t0).

df(x0, t0) = f(x, t)−f(x0, t0) ; t−t0 = dt x−x0 =dx;

df(x0, t0) =∂f

∂x(x0, t0)dx+

∂f

∂t(x0, t0)dt+

1

2

∂2f

∂x2(x0, t0)(dx)

2

+1

2

∂2f

∂t2(x0, t0)(dt)

2 +∂2f

∂x∂t(x0, t0)dxdt+ ε(x0, t0)

x Xt X

dXt = (Xt, t)dt+ σ(Xt, t)dZt

Page 87: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

87

Stochastic integral and Itô’s lemma

(Xt, t)

df(Xt, t) =∂f

∂x[(Xt, t)dt+ σ(Xt, t)dZt] +

∂f

∂tdt

+1

2

∂2f

∂x2[(Xt, t)dt+ σ(Xt, t)dZt]

2

+1

2

∂2f

∂t2(dt)2 +

∂2f

∂x∂t[(Xt, t)dt+ σ(Xt, t)dZt] dt+ ε(Xt, t)

∂f

∂t ∂f

∂x∂t o(dt)).

df(Xt, t) =∂f

∂x[(Xt, t)dt+ σ(Xt, t)dZt] +

∂f

∂tdt

+1

2

∂2f

∂x2[(Xt, t)dt+ σ(Xt, t)dZt]

2 + ε′(Xt, t)

ε′ = o(dt).

[(Xt, t)dt+ σ(Xt, t)dZt]2 ,

O(dt2)) dZtdt O(dt ))

dZ2t O(dt)

df(Xt, t) =∂f

∂x((Xt, t)dt+ σ(Xt, t)dZt) +

∂f

∂tdt

+1

2

∂2f

∂x2σ2(Xt, t)dt+ ε′′(Xt, t)

ε′′ = o(dt). f(Xt, t)

dt dZt

df(Xt, t) =

∂f

∂x(Xt, t) +

∂f

∂t+

1

2

∂2f

∂x2σ2(Xt, t)

dt+σ(Xt, t)

∂f

∂xdZt+ε′′(Xt, t)

ε(Xt, t) ε dt

Page 88: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

88

Stochastic integral and Itô’s lemma

X

dXt = (Xt, t)dt+ σ(Xt, t)dZt

f : R2 → R Y Yt = f(Xt, t)

dYt =

∂f

∂x(Xt, t) +

∂f

∂t+

1

2

∂2f

∂x2σ2(Xt, t)

dt+ σ(Xt, t)

∂f

∂xdZt

Y

dYt = Y (Yt, t) dt+ σY (Yt, t) dZt

Y (Yt, t) =∂f

∂x(Xt, t) +

∂f

∂t+

1

2

∂2f

∂x2σ2(Xt, t)

σY (Yt, t) = σ(Xt, t)∂f

∂x

Y (Yt, t) f(Xt, t) σY (Yt, t)

W σ W Y Yt = f(Wt) = exp (Wt) . Y t ∂f

∂t= 0

Y

Y (Yt, t) =∂f

∂x+

∂f

∂t+

1

2

∂2f

∂x2σ2 = exp (Wt)

+

σ2

2

= Yt

+

σ2

2

σY (Yt, t) = σ∂f

∂x= σYt

Page 89: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

89

Stochastic integral and Itô’s lemma

dYt

Yt=

+

σ2

2

dt+ σdZt

Y

Y

Y0 = 1

dYt = Ytdt+ σYtdZt

X Xt = g(Yt) = ln(Yt).

∂g

∂x(Yt, t) +

∂g

∂t+

1

2

∂2g

∂x2σ2(Yt, t) =

∂g

∂xYt +

1

2

∂2g

∂x2σ2Yt

= − σ2

2

σYt∂g

∂x= σ

dXt =

− σ2

2

dt+ σdZt

X

dXt = α(β −Xt)dt+ σdZt

Xt

Page 90: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Click on the ad to read more

Stochastic Processes for Finance

90

Stochastic integral and Itô’s lemma

β) Xt

β. α

σ Xt. Z dt

√dt,

Z

dXt = α(β −Xt)dt+ σ

XtdZt

αβdt

β

β) Xt

β. α

σ Xt. Z dt

√dt,

Z

dXt = α(β −Xt)dt+ σ

XtdZt

αβdt

β

© Deloitte & Touche LLP and affiliated entities.

360°thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°thinking.

Discover the truth at www.deloitte.ca/careers

© Deloitte & Touche LLP and affiliated entities.

360°thinking.

Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affiliated entities.

360°thinking.

Discover the truth at www.deloitte.ca/careers

Page 91: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

91

Stochastic integral and Itô’s lemma

W (, σ) , (,A,F , P ) F W. Z, Wt = t + σZt. Wt = ln(St) St Wt−Ws [s; t] . r Q W r.

P Q EP EQ P Q.

r = .

X ∼ N (0, 1) (,A, P ) Q

∀A ∈ A, Q(A) = EP

A exp

αX − α2

2

Q P X ∼ N (α, 1) Q.

EP

exp

αX − α

2

= exp

−α

2

EP [exp (αX)] exp (αX)

(0, α) ,

EP [exp (αX)] = exp

α

2

.

Q() = EP

exp

αX − α

2

= 1.

P Q

Page 92: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

92

Stochastic integral and Itô’s lemma

EQ [X] =

XdQ =

X exp

αX − α2

2

dP

=

+∞

−∞x exp

αx− α2

2

fX(x)dx

=1√2π

+∞

−∞x exp

αx− α2

2

exp

−x2

2

dx

=1√2π

+∞

−∞x exp

−1

2(x− α)2

dx = α

fX X P. X Q, α exp

αX − α

2

Q P, dQ

dP.

Xt ∼ N (t, σ2t) t = EP (Xt) σ2t = VP (Xt) Xt rt =EQ(Xt) σ2t = VQ (Xt) .

X Xt = t+ σZt = t+ σ

√tYt

Z Yt ∼ N (0, 1) . Yt N (α, 1) α Q

EQ [Xt] = t+ σ√tα = rt

α

α =(r − )

√t

σ

dQ

dP= exp

(r − )

√t

σYt −

1

2

(r − )

√t

σ

2

= exp

−− r

σZt −

t

2

− r

σ

2

Page 93: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

93

Stochastic integral and Itô’s lemma

λ = (λt, t ∈ [0;T ]) F L = (Lt, t ∈ [0;T ])

Lt = exp

− t

0

λsdZs −1

2

t

0

λ2sds

λ

EP

exp

1

2

T

0

λ2sds

< +∞

λ

L P− Z∗

Z∗t = Zt +

t

0

λsds

(,A,F , Q) Q

dQ

dP= LT

λ L

Lt = exp

−λZt −

λ2

2t

Page 94: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Click on the ad to read more

Stochastic Processes for Finance

94

Stochastic integral and Itô’s lemma

dSt = Stdt+ σStdZt

St = S0 exp

− σ2

2

t+ σZt

exp (−rt)St = S0 exp

− r − σ2

2

t+ σZt

St = S0 exp

−σ2

2t+ σZ∗

t

Z∗t = Zt +

−rσ

t.

We will turn your CV into an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?We will appreciate and reward both your enthusiasm and talent.Send us your CV. You will be surprised where it can take you.

Send us your CV onwww.employerforlife.com

Page 95: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

95

Stochastic integral and Itô’s lemma

σ

F (,A, P ) Z.

X0 = c

dXt = (Xt, t) dt+ σ (Xt, t) dZt

c c

X [0;T ]

X F σ

T

0

| (Xt, t)| dt < +∞ T

0

σ2 (Xt, t) dt < +∞

X

Xt = X0 +

t

0

(Xs, s) ds+

t

0

σ (Xs, s) dZs

σ

Page 96: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

96

Stochastic integral and Itô’s lemma

P X

F , EP

T

0X2

t dt

< +∞.

m > 0 ∀t ∈ [0;T ] , ∀ (x, y) ∈ R2

max (|(x, t)− (y, t)| ; |σ(x, t)− σ(y, t)|) ≤ m |x− y|(x, t)2 + σ(x, t)2 ≤ m

1 + x2

(x, t)

X0 Ft t.

σ t. σ X (1 + x2)

.

(x, t) = exp(x).

Z (X,Z) σ

Xt

c.

σ t, X σ.

Page 97: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

97

Stochastic integral and Itô’s lemma

X0 = c

dXt = aXtdt+ σtdZt

a

Xt = c exp(at) +

t

0

exp [a (t− s)] σsdZs

Xt exp(−at) = c+

t

0

exp (−as) σsdZs

Y,

Y0 = c

dYt = exp(−at)σtdZt

exp(at)Yt = f (Yt, t) , f

∂f

∂t= a exp(at)Yt

∂f

∂Yt

= exp(at)

∂2f

∂Y 2t

= 0

df (Yt, t) = a exp(at)Ytdt+ exp(at) exp(−at)σtdZt

= a exp(at)Ytdt+ σtdZt

Yt exp(−at)Xt

dXt = aXtdt+ σtdZt

Page 98: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

98

Stochastic integral and Itô’s lemma

X0 = c

dXt = a(t)Xtdt+ σtdZt

X

Xt = γt

c+

t

0

γ−1s σsdZs

γ

f′(t) = a(t)f(t)

Y

Y0 = y0

dYt = α (β − Yt) dt+ σdZt

Xt = (Yt − β) exp(αt) = f(Yt, t); f

∂f

∂t= α exp(αt) (Yt − β)

∂f

∂Yt= exp(αt)

∂2f

∂Y 2t

= 0

dXt = [α (Yt − β) exp(αt) + exp(αt)α (β − Yt)] dt+ σ exp(αt)dZt

= σ exp(αt)dZt

X0 = y0 − β,

Xt = y0 − β + σ

t

0

exp(αs)dZs

Page 99: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Click on the ad to read more

Stochastic Processes for Finance

99

Stochastic integral and Itô’s lemma

X Y

Yt = β +Xt exp(−αt)

Yt = β + exp(−αt)

y0 − β + σ

t

0

exp(αs)dZs

= β (1− exp(−αt)) + y0 exp(−αt) + σ

t

0

exp(−α(t− s))dZs

Yt

EP [Yt |Y0 = y0 ] = β (1− exp(−αt)) + y0 exp(−αt)

VP [Yt |Y0 = y0 ] = σ2

t

0

exp(−2α(t− s))ds

=σ2

2α[1− exp (−2αt)]

Maersk.com/Mitas

�e Graduate Programme for Engineers and Geoscientists

Month 16I was a construction

supervisor in the North Sea

advising and helping foremen

solve problems

I was a

hes

Real work International opportunities

�ree work placementsal Internationaor�ree wo

I wanted real responsibili� I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme for Engineers and Geoscientists

Month 16I was a construction

supervisor in the North Sea

advising and helping foremen

solve problems

I was a

hes

Real work International opportunities

�ree work placementsal Internationaor�ree wo

I wanted real responsibili� I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme for Engineers and Geoscientists

Month 16I was a construction

supervisor in the North Sea

advising and helping foremen

solve problems

I was a

hes

Real work International opportunities

�ree work placementsal Internationaor�ree wo

I wanted real responsibili� I joined MITAS because

Maersk.com/Mitas

�e Graduate Programme for Engineers and Geoscientists

Month 16I was a construction

supervisor in the North Sea

advising and helping foremen

solve problems

I was a

hes

Real work International opportunities

�ree work placementsal Internationaor�ree wo

I wanted real responsibili� I joined MITAS because

www.discovermitas.com

Page 100: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

100

Bibliography

Page 101: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

101

Bibliography

Page 102: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

102

Bibliography

Page 103: Stochastic Processes for Finance

Download free eBooks at bookboon.com

Stochastic Processes for Finance

103

Index

Index

Brownian motion, 57 general, 63 geometric, 85 Markov process, 59 martingale, 59 path simulation, 65 stopping time, 67 transformation, 60

Doob decomposition, 25, 51 martingale, 24

Filtration, 9, 44 complete, 44 filtered probability space, 44 natural, 10, 44 right-continuous, 44 Girsanov theorem, 89 application, 89 Novikov condition, 89

Itô lemma, 84 application, 84 Taylor series expansion, 82 process, 48 diffusion coefficient, 49 drift, 49

Landau notations, 55

Markov chain, 15 accessible, 17 aperiodic, 18 Chapman-Kolmogorov equations, 16 communicating class, 17 communication, 17 homogeneous, 15 irreducible, 18 periodicity, 18

positively recurrent, 19 recurrent, 19 stationary distribution, 20 transient, 19 no memory process, 48 process, 15, 48 Brownian motion, 59 transition matrix, 15Martingale, 21, 49 Brownian motion, 59 Doob, 24 submartingale, 21, 49 super-martingale, 21, 49Modi cation stochastic process, 43

Novikov condition, 89

Path, 40 càdlàg, 41 càglàd, 43 continuous, 40 Brownian motion, 58 LCRL, 43 nowhere differentiable, 59 RCLL, 41Poisson distribution, 47 process, 47Probability transition, 15

Snell envelope, 36Stochastic differential equation, 91 linear, 93 solution conditions, 92 de nition, 91 Markov, 92Stochastic integral, 71 calculation rules, 79 definition, 76 properties, 78 stochastic differential, 78

Page 104: Stochastic Processes for Finance

Stochastic Processes for Finance

104

Index

Stochastic process adapted, 10, 44 Brownian motion, 57 continuous-time, 40 diffusion, 48 diffusion coefficient, 49 discrete-time, 6 drift, 49 increments independent, 45 stationary, 45 indistinguishable, 43 Itô, 48 Markov, 15, 48 modification, 43 Ornstein-Uhlenbeck, 85 path, 40 Poisson, 47 predictable, 12, 45 random walk, 22, 46, 51 square root, 86 stopped process, 33, 37 trajectory, 40 Wiener, 57Stopping time, 32, 37, 65 American option, 35 optional stopping theorem, 32Strategy doubling, 34 portfolio, 28 self- nancing, 28

Transition matrix, 15 probability, 15

Wiener process, 57 general, 63