Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL...

41
Properties of nuclei from chiral EFT interactions Stefano Gandolfi Los Alamos National Laboratory (LANL) Progress in Ab Initio Techniques in Nuclear Physics, TRIUMF, Vancouver BC, Canada. Feb 26 - March 1, 2019. www.computingnuclei.org Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 1 / 23

Transcript of Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL...

Page 1: Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL (2018), PRC (2018). Qualitative good description of both energies and radii. Good convergence

Properties of nuclei from chiral EFT interactions

Stefano Gandolfi

Los Alamos National Laboratory (LANL)

Progress in Ab Initio Techniques in Nuclear Physics,TRIUMF, Vancouver BC, Canada. Feb 26 - March 1, 2019.

www.computingnuclei.org

Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 1 / 23

Page 2: Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL (2018), PRC (2018). Qualitative good description of both energies and radii. Good convergence

The big picture

protons

neutrons

The Grand Nuclear Landscape(finite nuclei + extended nucleonic matter)

82

50

28

28

50

82

2082

28

20stable nucleistable nuclei

known nucleiknown nuclei

126terra incognitaterra incognita

neutron stars

neutron

drip line

probably known only up to oxygen

known up to Z=91

superheavynucleiZ=118, A=294

Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 2 / 23

Page 3: Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL (2018), PRC (2018). Qualitative good description of both energies and radii. Good convergence

Outline

The nuclear Hamiltonian and the method

Some “issue” of chiral Hamiltonians

Light nuclei and neutron matter

Medium nuclei

Conclusions

Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 3 / 23

Page 4: Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL (2018), PRC (2018). Qualitative good description of both energies and radii. Good convergence

Nuclear Hamiltonian

Model: non-relativistic nucleons interacting with an effectivenucleon-nucleon force (NN) and three-nucleon interaction (TNI).

H = − ~2

2m

A∑

i=1

∇2i +

i<j

vij +∑

i<j<k

Vijk

vij NN fitted on scattering data.

Vijk typically constrained to reproduce light systems (A=3,4).

“Phenomenological/traditional” interactions (Argonne/Illinois)

Local chiral forces up to N2LO (Gezerlis, et al. PRL 111, 032501(2013), PRC 90, 054323 (2014), Lynn, et al. PRL 116, 062501(2016)).

Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 4 / 23

Page 5: Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL (2018), PRC (2018). Qualitative good description of both energies and radii. Good convergence

Quantum Monte Carlo

Propagation in imaginary time:

H ψ(~r1 . . . ~rN) = E ψ(~r1 . . . ~rN) ψ(t) = e−(H−ET )tψ(0)

Ground-state extracted in the limit of t →∞.

Propagation performed by

ψ(R, t) = 〈R|ψ(t)〉 =

∫dR ′G (R,R ′, t)ψ(R ′, 0)

Importance sampling: G (R,R ′, t)→ G (R,R ′, t) ΨI (R′)/ΨI (R)

Constrained-path approximation to control the sign problem.Unconstrained-path calculation possible in several cases (exact).

GFMC includes all spin-states of nucleons in the w.f., nuclei up to A=12AFDMC samples spin states, bigger systems, less accurate than GFMC

Ground–state obtained in a non-perturbative way. Systematicuncertainties within 2-3 %.

See Carlson, et al., Rev. Mod. Phys. 87, 1067 (2015)

Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 5 / 23

Page 6: Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL (2018), PRC (2018). Qualitative good description of both energies and radii. Good convergence

Traditional approach (credit D. Furnsthal, T. Papenbrock)

Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 6 / 23

Page 7: Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL (2018), PRC (2018). Qualitative good description of both energies and radii. Good convergence

Light nuclei spectrum computed with GFMC

-100

-90

-80

-70

-60

-50

-40

-30

-20

Ene

rgy

(MeV

)

AV18AV18+IL7 Expt.

0+

4He0+2+

6He 1+3+2+1+

6Li3/2−1/2−7/2−5/2−5/2−7/2−

7Li

0+2+

8He0+

2+2+

2+1+3+

1+

4+

8Li

1+

0+2+

4+2+1+3+4+

0+

8Be

3/2−1/2−5/2−

9Li

3/2−1/2+5/2−1/2−5/2+3/2+

7/2−

3/2−

7/2−5/2+7/2+

9Be

1+

0+2+2+0+3,2+

10Be 3+1+

2+

4+

1+

3+2+

3+

10B

3+

1+

2+

4+

1+

3+2+

0+

2+0+

12C

Argonne v18with Illinois-7

GFMC Calculations

Carlson, et al., Rev. Mod. Phys. 87, 1067 (2015)

Also radii, densities, matrix elements, ...

Unfortunately phenomenological Hamiltonians are not useful to addresssystematical uncertainties.

Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 7 / 23

Page 8: Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL (2018), PRC (2018). Qualitative good description of both energies and radii. Good convergence

Neutron matter and the ”puzzle” of the three-body force

0.04 0.06 0.08 0.1 0.12 0.14 0.16

ρ [fm-3

]

6

8

10

12

14

16

18

20

En

erg

y p

er N

eutr

on

[M

eV]

AV8’+UIXAV8’+IL7AV8’

Note: AV8’+UIX and (almost) AV8’ are stiff enough to support observedneutron stars. → How to reconcile with nuclei???

Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 8 / 23

Page 9: Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL (2018), PRC (2018). Qualitative good description of both energies and radii. Good convergence

Nuclear Hamiltonian

Expansion in powers of Q/Λ, Q∼100 MeV, Λ ∼1 GeV.

Long-range physics given by pion-exchanges (no free parameters).

Short-range physics: contact interactions (LECs) to fit.

Operators need to be regulated → cutoff dependency!

Order’s expansion provides a way to quantify uncertainties!

Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 9 / 23

Page 10: Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL (2018), PRC (2018). Qualitative good description of both energies and radii. Good convergence

Truncation error estimate

Error quantification (one possible scheme). Define

Q = max

(p

Λb,mπ

Λb

),

where p is a typical nucleon’s momentum or kF for matter, Λb is thecutoff, and calculate:

∆(N2LO) = max(Q4|OLO |, Q2|OLO − ONLO |, Q|ONLO − ON2LO

)

Epelbaum, Krebs, Meissner (2014).

Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 10 / 23

Page 11: Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL (2018), PRC (2018). Qualitative good description of both energies and radii. Good convergence

Chiral three-body forces, issue (I)?

π π π

c1, c3, c4 cD cE

In the Fourier transformation of VD two possible operator structures arise:

VD1 =gAcDm

96πΛχF 4π

∑i<j<k

∑cyc

τi · τk[Xik(rkj)δ(rij) + Xik(rij)δ(rkj) −

m2π

σi · σkδ(rij)δ(rkj)

]

VD2 =gAcDm

96πΛχF 4π

∑i<j<k

∑cyc

τi · τk[Xik(rik) − 4π

m2π

σi · σkδ(rik)

] [δ(rij) + δ(rkj)

]Xij(r) = T (r)Sij + Y (r)σi · σj

Navratil (2007), Tews et al PRC (2016), Lynn et al PRL (2016).

Equivalent only in the limit of an infinite cutoff. Implications in real life?

Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 11 / 23

Page 12: Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL (2018), PRC (2018). Qualitative good description of both energies and radii. Good convergence

Chiral three-body forces, issue (II)?

π π π

c1, c3, c4 cD cE

Equivalent forms of operators entering in VE (Fierz-rearrangement):

1, σi ·σj , τi ·τj , σi ·σjτi ·τj , σi ·σjτi ·τk , [(σi×σj)·σk ][(τi×τj)·τk ]

Epelbaum et al (2002). We investigated the following choices:

VEτ =cE

ΛχF 4π

i<j<k

cyc

τi · τkδ(rkj)δ(rij)

VE1 =cE

ΛχF 4π

i<j<k

cyc

δ(rkj)δ(rij)

Qualitative differences expected, i.e. consider 4He vs neutron matter!

Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 12 / 23

Page 13: Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL (2018), PRC (2018). Qualitative good description of both energies and radii. Good convergence

Chiral three-body forces

Coefficients cD and cE fit to reproduce the binding energy of 4He andneutron-4He scattering. → more information on T=3/2 part ofthree-body interaction. (vs A=3, 4)

0 1 2 3 4 50

30

60

90

120

150

180

Ec.m. (MeV)

δ JL (

degr

ees)

12

+

12

-

AV18AV18+UIXAV18+IL2R-Matrix

32

-

GFMC neutron-4He resultsusing Argonne Hamiltonians.

Nollett, Pieper, Wiringa,Carlson, Hale, PRL (2007).

Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 13 / 23

Page 14: Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL (2018), PRC (2018). Qualitative good description of both energies and radii. Good convergence

4He binding energy and p-wave n-4He scattering

Regulator: δ(r) = 1πΓ(3/4)R3

0exp(−(r/R0)4)

Cutoff R0 taken consistently with the two-body interaction.

−1.0 0.0 1.0 2.0 3.0 4.0cD

−1.5

−1.0

−0.5

0.0

0.5

1.0

c E

R0 = 1.0 fm

R0 = 1.2 fm

R0 = 1.0 fm(a)

N2LO (D1, Eτ )

N2LO (D2, Eτ )

N2LO (D2, E1)

N2LO (D2, EP)

0 1 2 3 4Ecm (MeV)

0

20

40

60

80

100

120

140

δ(d

eg.)

32

12

(b) NLO

N2LO (D2, Eτ )

N2LO (D2, EP)

R−matrix

No fit can be obtained for R0 = 1.2 fm and VD1 - Issue (I)

Lynn, Tews, Carlson, Gandolfi, Gezerlis, Schmidt, Schwenk PRL (2016).

Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 14 / 23

Page 15: Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL (2018), PRC (2018). Qualitative good description of both energies and radii. Good convergence

A=3, 4 nuclei at N2LO

−9

−8

−7

−6

−5

E(M

eV)

3H 3He 4He−31

−25

−19

−13

3H 3He 4He0.8

1.0

1.2

1.4

1.6

1.8

2.0

√〈r

2pt 〉

(fm)

NLO

N2LO (D2, Eτ )

Exp.

Lynn, Tews, Carlson, Gandolfi, Gezerlis, Schmidt, Schwenk PRL (2016).Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 15 / 23

Page 16: Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL (2018), PRC (2018). Qualitative good description of both energies and radii. Good convergence

Neutron matter at N2LO

EOS of pure neutron matter at N2LO, R0=1.0 fm

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

n (fm−3)

0

2

4

6

8

10

12

14

16

18

E/A

(MeV

)

N2LO (D2, E1)

N2LO (D2, EP)

N2LO (D2, Eτ )

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Neutron Density (fm-3

)

0

2

4

6

8

10

12

14

16

18

En

erg

y p

er

Ne

utr

on

(M

eV

)

AV8’+UIX

AV8’

Lynn, Tews, Carlson, Gandolfi, Gezerlis, Schmidt, Schwenk PRL (2016).

Significant dependence to the choice of VE (Issue (II)), but similar resultsto phenomenological Hamiltonians.

Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 16 / 23

Page 17: Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL (2018), PRC (2018). Qualitative good description of both energies and radii. Good convergence

Neutron matter at N2LO

EOS of pure neutron matter at N2LO, R0=1.0 fm

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

n (fm−3)

0

2

4

6

8

10

12

14

16

18

E/A

(MeV

)

N2LO (D2, E1)

N2LO (D2, EP)

N2LO (D2, Eτ )

0.00 0.05 0.10 0.15 0.20 0.25 0.30

n[fm−3

]0

5

10

15

20

25

30

35

40

45

E/A

[ MeV

]

AV8′ + UIX

N2LO (TPE + VE1)

N2LO (TPE− only)

N2LO (TPE + VEτ)

Tews, Carlson, Gandolfi, Reddy, APJ (2018).

Errors grow quickly with the density.

Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 17 / 23

Page 18: Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL (2018), PRC (2018). Qualitative good description of both energies and radii. Good convergence

Heavier nuclei

What about heavier nuclei?

Many chiral Hamiltonians cannot predict both energies and radii.

Strategy: include medium nuclei properties in the fit (but sacrificenucleon-nucleon data)?

Ekstrom, Hagen, et al., Phys. Rev. C 91, 051301(R) (2015)

Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 18 / 23

Page 19: Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL (2018), PRC (2018). Qualitative good description of both energies and radii. Good convergence

AFDMC calculations

Energies and charge radii, cutoff 1.0 fm:

-16

-14

-12

-10

-8

-6

-4

-2

3H 3He 4He 6He 6Li 12C 16O

(a) R0 = 1.0 fm

E/A

(MeV

)

Exp

LO

NLO

N2LO Eτ

N2LO E1

-16

-14

-12

-10

-8

-6

-4

-2

3H 3He 4He 6He 6Li 12C 16O

1.0

1.5

2.0

2.5

3.0

3.5

3H 3He 4He 6He 6Li 12C 16O

(a) R0 = 1.0 fm

r ch (f

m)

Exp

LO

NLO

N2LO Eτ

N2LO E1

1.0

1.5

2.0

2.5

3.0

3.5

3H 3He 4He 6He 6Li 12C 16O

Lonardoni, et al., PRL (2018), PRC (2018).

Qualitative good description of both energies and radii.

Good convergence (although uncertainties still large if LO included).

Different VE operators give similar results.

Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 19 / 23

Page 20: Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL (2018), PRC (2018). Qualitative good description of both energies and radii. Good convergence

AFDMC calculations

Energies and charge radii, cutoff 1.2 fm:

-16

-14

-12

-10

-8

-6

-4

-2

3H 3He 4He 6He 6Li 12C 16O

(b) R0 = 1.2 fm

E/A

(MeV

)

Exp

LO

NLO

N2LO Eτ

N2LO E1

-16

-14

-12

-10

-8

-6

-4

-2

3H 3He 4He 6He 6Li 12C 16O

1.0

1.5

2.0

2.5

3.0

3.5

3H 3He 4He 6He 6Li 12C 16O

(b) R0 = 1.2 fm

r ch (f

m)

Exp

LO

NLO

N2LO Eτ

N2LO E1

1.0

1.5

2.0

2.5

3.0

3.5

3H 3He 4He 6He 6Li 12C 16O

Lonardoni, et al., PRL (2018), PRC (2018).

Qualitative good description up to A=6.

Different VE operators give very different results for 16O.

Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 20 / 23

Page 21: Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL (2018), PRC (2018). Qualitative good description of both energies and radii. Good convergence

Energy contribution

Expectation value of the N2LO energy contributions 16O:

Potential Ekin + vij Vijk V 2π,P V 2π,S VD VE

2b, 1.0 −134(2)Eτ , 1.0 −130(2) −44(1) −55(1) 0.85(1) 0 8.50(4)E1, 1.0 −131(2) −41(1) −54(1) 0.72(1) −4.03(5) 15.7(1)

2b, 1.2 −151(3)Eτ , 1.2 −156(7) −202(3) −101(2) −0.72(9) −94(2) −5.43(3)E1, 1.2 −152(2) −26(1) −34(1) 0.94(1) 4.53(8) 1.90(1)

LECs cD and cE for different cutoffs and parametrizations of thethree-body force (other strengths are the same):

Vijk R0 (fm) cD cEEτ 1.0 0.0 −0.63E1 1.0 0.5 0.62Eτ 1.2 3.5 0.09E1 1.2 −0.75 0.025

Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 21 / 23

Page 22: Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL (2018), PRC (2018). Qualitative good description of both energies and radii. Good convergence

Charge form factor

10-5

10-4

10-3

10-2

10-1

100

101

102

0.0 1.0 2.0 3.0 4.0

16O|FL(q)

|

q (fm-1)

exp

N2LO (1.0 fm)

N2LO (1.2 fm)

10-5

10-4

10-3

10-2

10-1

100

101

102

0.0 1.0 2.0 3.0 4.0

10-4

10-3

10-2

10-1

100

0.0 1.0 2.0 3.0 4.0

12C

AV18+IL7

10-4

10-3

10-2

10-1

100

0.0 1.0 2.0 3.0 4.0

Lonardoni, et al., PRL (2018), PRC (2018).

Hard interaction reproduces exp.

Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 22 / 23

Page 23: Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL (2018), PRC (2018). Qualitative good description of both energies and radii. Good convergence

Conclusions

Quantum Monte Carlo calculations for larger nuclei is now possible(at least up to A=16, work in progress...)

Chiral EFT provides a way to constrain nuclear interactions andestimate systematic uncertainties

But...

Effect of the cutoff important to explore

Effect of using different (“equivalent”) operators important toexplore

Similar issues with electroweak currents?

Acknowledgments:

J. Carlson (LANL), D. Lonardoni (LANL and FRIB)

J. Lynn, A. Schwenk (Darmstadt)

K.E. Schmidt (ASU)

Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 23 / 23

Page 24: Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL (2018), PRC (2018). Qualitative good description of both energies and radii. Good convergence

Extra slides

Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 1 / 18

Page 25: Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL (2018), PRC (2018). Qualitative good description of both energies and radii. Good convergence

Scattering data and neutron matter

Two neutrons have

k ≈√Elab m/2 , → kF

that correspond to

kF → ρ ≈ (Elab m/2)3/2/2π2 .

Elab=150 MeV corresponds to about 0.12 fm−3.

Elab=350 MeV to 0.44 fm−3.

Argonne potentials useful to study dense matter above ρ0=0.16 fm−3

Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 2 / 18

Page 26: Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL (2018), PRC (2018). Qualitative good description of both energies and radii. Good convergence

Phase shifts, AV8’

0 100 200 300 400 500 600E

lab (MeV)

-40

-20

0

20

40

60δ (

deg

)Argonne V8’

SAID

1S

0

0 100 200 300 400 500 600E

lab (MeV)

-20

0

20

40

60

80

100

120

δ (

deg

)

Argonne V8’

SAID

3S

1

0 100 200 300 400 500 600E

lab (MeV)

-40

-20

0

δ (

deg

)

Argonne V8’

SAID

1P

1

0 100 200 300 400 500 600E

lab (MeV)

-40

-20

0

20

δ (

deg

)

Argonne V8’

SAID

3P

0

0 100 200 300 400 500 600E

lab (MeV)

-50

-40

-30

-20

-10

0

δ (

deg

)

Argonne V8’

SAID

3P

1

0 100 200 300 400E

lab (MeV)

-10

0

10

20

30

δ (

deg

)

Argonne V8’

SAID

3P

2

0 100 200 300 400 500 600E

lab (MeV)

-40

-30

-20

-10

0

δ (

deg

)

Argonne V8’

SAID

3D

1

0 100 200 300 400 500 600E

lab (MeV)

0

10

20

30

40

50

60

δ (

deg

)

Argonne V8’

SAID

3D

2

0 100 200 300 400 500 600E

lab (MeV)

0

2

4

6

8

δ (

deg

)

Argonne V8’

SAID

ε1

Difference AV8′-AV18 less than 0.2 MeV per nucleon up to A=12.Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 3 / 18

Page 27: Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL (2018), PRC (2018). Qualitative good description of both energies and radii. Good convergence

Nuclear Hamiltonian

Phase shifts, LO, NLO and N2LO with R0=1.0 and 1.2 fm:

0 50 100 150 200 250

Lab. Energy [MeV]

0

10

20

30

40

50

60

70

Ph

ase

Sh

ift

[deg

]

LONLO

N2LO

0 50 100 150 200 250

Lab. Energy [MeV]

0

50

100

150

200

0 50 100 150 200 250

Lab. Energy [MeV]

-25

-20

-15

-10

-5

0

0 50 100 150 200 250

Lab. Energy [MeV]

0

1

2

3

4

1S03S1

3D1 ε1

0 50 100 150 200 250

Lab. Energy [MeV]

-30

-25

-20

-15

-10

-5

0

Ph

ase

Sh

ift

[deg

]

0 50 100 150 200 250

Lab. Energy [MeV]

-10

-5

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250

Lab. Energy [MeV]

-30

-25

-20

-15

-10

-5

0

1P1

3P03P1

Gezerlis, et al. PRC 90, 054323 (2014)Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 4 / 18

Page 28: Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL (2018), PRC (2018). Qualitative good description of both energies and radii. Good convergence

Three-body forces

Urbana–Illinois Vijk models processes like

π

π

π

π

π

π∆

π

π

π

π

+ short-range correlations (spin/isospin independent).

Chiral forces at N2LO:

π π π

c1, c3, c4 cD cE

Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 5 / 18

Page 29: Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL (2018), PRC (2018). Qualitative good description of both energies and radii. Good convergence

Quantum Monte Carlo

H ψ(~r1 . . . ~rN) = E ψ(~r1 . . . ~rN) ψ(t) = e−(H−ET )tψ(0)

Ground-state extracted in the limit of t →∞.

Propagation performed by

ψ(R, t) = 〈R|ψ(t)〉 =

∫dR ′G (R,R ′, t)ψ(R ′, 0)

Importance sampling: G (R,R ′, t)→ G (R,R ′, t) ΨI (R′)/ΨI (R)

Constrained-path approximation to control the sign problem.Unconstrained calculation possible in several cases (exact).

Ground–state obtained in a non-perturbative way. Systematicuncertainties within 1-2 %.

Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 6 / 18

Page 30: Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL (2018), PRC (2018). Qualitative good description of both energies and radii. Good convergence

Overview

Recall: propagation in imaginary-time

e−(T+V )∆τψ ≈ e−T∆τe−V∆τψ

Kinetic energy is sampled as a diffusion of particles:

e−∇2∆τψ(R) = e−(R−R′)2/2∆τψ(R) = ψ(R ′)

The (scalar) potential gives the weight of the configuration:

e−V (R)∆τψ(R) = wψ(R)

Algorithm for each time-step:

do the diffusion: R ′ = R + ξ

compute the weight w

compute observables using the configuration R ′ weighted using wover a trial wave function ψT .

For spin-dependent potentials things are much worse!

Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 7 / 18

Page 31: Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL (2018), PRC (2018). Qualitative good description of both energies and radii. Good convergence

Branching

The configuration weight w is efficiently sampled using the branchingtechnique:

Configurations are replicated or destroyed with probability

int[w + ξ]

Note: the re-balancing is the bottleneck limiting the parallel efficiency.

Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 8 / 18

Page 32: Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL (2018), PRC (2018). Qualitative good description of both energies and radii. Good convergence

GFMC and AFDMC

Because the Hamiltonian is state dependent, all spin/isospin states ofnucleons must be included in the wave-function.

Example: spin for 3 neutrons (radial parts also needed in real life):

GFMC wave-function:

ψ =

a↑↑↑a↑↑↓a↑↓↑a↑↓↓a↓↑↑a↓↑↓a↓↓↑a↓↓↓

A correlation like

1 + f (r)σ1 · σ2

can be used, and the variational wave

function can be very good. Any operator

accurately computed.

AFDMC wave-function:

ψ = A[ξs1

(a1

b1

)ξs2

(a2

b2

)ξs3

(a3

b3

)]We must change the propagator by usingthe Hubbard-Stratonovich transformation:

e12

∆tO2=

1√

∫dxe−

x2

2+x√

∆tO

Auxiliary fields x must also be sampled.

The wave-function is pretty bad, but we

can simulate larger systems (up to

A ≈ 100). Operators (except the energy)

are very hard to be computed, but in some

case there is some trick!

Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 9 / 18

Page 33: Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL (2018), PRC (2018). Qualitative good description of both energies and radii. Good convergence

Propagator

We first rewrite the potential as:

V =∑

i<j

[vσ(rij)~σi · ~σj + vt(rij)(3~σi · rij~σj · rij − ~σi · ~σj)] =

=∑

i,j

σiαAiα;jβσjβ =1

2

3N∑

n=1

O2nλn

where the new operators are

On =∑

σjβψn,jβ

Now we can use the HS transformation to do the propagation:

e−∆τ 12

∑n λO

2nψ =

n

1√2π

∫dxe−

x2

2 +√−λ∆τxOnψ

Computational cost ≈ (3N)3.

Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 10 / 18

Page 34: Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL (2018), PRC (2018). Qualitative good description of both energies and radii. Good convergence

Three-body forces

Three-body forces, Urbana, Illinois, and local chiral N2LO can be exactlyincluded in the case of neutrons.

For example:

O2π =∑

cyc

[{Xij ,Xjk} {τi · τj , τj · τk}+

1

4[Xij ,Xjk ] [τi · τj , τj · τk ]

]

= 2∑

cyc

{Xij ,Xjk} = σiσk f (ri , rj , rk)

The above form can be included in the AFDMC propagator.

Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 11 / 18

Page 35: Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL (2018), PRC (2018). Qualitative good description of both energies and radii. Good convergence

Three-body forces

V 2π,PWa = A2π,PW

a

∑i<j<k

∑cyc{~τi · ~τk , ~τj · ~τk}{σ

αi σ

γk, σµkσβj}XiαkγXkµjβ

= 4A2π,PWa

∑i<j

~τi · ~τjσαi σ

βj

∑k 6=i,j

XiαkγXkγjβ , (1)

V 2π,PWc = A2π,PW

c

∑i<j<k

∑cyc

[~τi · ~τk , ~τj · ~τk ][σαi σγk, σµkσβj

]XiαkγXkµjβ

= −4A2π,PWc

∑i<j<k

∑cycτηiτξjτφkεηξφσ

αi σ

βjσνk ενγµXiαkγXkµjβ (2)

= A2π,PWc

∑i<j<k

∑cyc

[~τi · ~τk , ~τj · ~τk ][σαi σγk, σµkσβj

]

Xiαkγ − δαγ4π

m3π

∆(rik )

Xkµjβ − δµβ4π

m3π

∆(rkj )

(3)

= V∆∆c + V∆δ

c + Vδδc (4)

V 2π,SW = A2π,SW ∑i<j<k

∑cycZikαZjkασ

αi σ

βj~τi · ~τj

= A2π,SW ∑i<j

σαi σ

βj~τi · ~τj

∑k 6=i,j

ZikαZjkα (5)

VD = AD

∑i<j

σαi σ

βj~τi · ~τj

∑k 6=i,j

Xiαjβ [∆(rik ) + ∆(rjk )] (6)

VE = AE

∑i<j

~τi · ~τj∑k 6=i,j

∆(rik )∆(rjk ) (7)

Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 12 / 18

Page 36: Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL (2018), PRC (2018). Qualitative good description of both energies and radii. Good convergence

Three-body forces

H ′ = H − V 2π,PWc + α1V

2π,PWa + α2VD + α3VE . (8)

The Hamiltonian H ′ can be exactly included in the AFDMC propagation.The three constants αi are adjusted in order to have:

〈V∆∆c 〉 ≈ 〈α1V

2π,PWa 〉

〈V∆δc 〉 ≈ 〈α2VD〉

〈V δδc 〉 ≈ 〈α3VE 〉 (9)

Once the ground state Ψ of H ′ is calculated with AFDMC as explainedabove, the expectation value of the Hamiltonian H is given by

〈H〉 = 〈Ψ|H ′|Ψ〉+ 〈Ψ|H − H ′|Ψ〉= 〈Ψ|H ′|Ψ〉+ 〈Ψ|V 2π,PW

c − α1V2π,PWa − α2VD − α3VE |Ψ〉 (10)

Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 13 / 18

Page 37: Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL (2018), PRC (2018). Qualitative good description of both energies and radii. Good convergence

Variational wave function

E0 ≤ E =〈ψ|H|ψ〉〈ψ|ψ〉 =

∫dr1 . . . drN ψ

∗(r1 . . . rN)Hψ∗(r1 . . . rN)∫dr1 . . . drN ψ∗(r1 . . . rN)ψ∗(r1 . . . rN)

→ Monte Carlo integration. Variational wave function:

|ΨT 〉 =

i<j

fc(rij)

i<j<k

fc(rijk)

1 +

i<j,p

k

uijk fp(rij)Opij

|Φ〉

where Op are spin/isospin operators, fc , uijk and fp are obtained byminimizing the energy. About 30 parameters to optimize.

|Φ〉 is a mean-field component, usually HF. Sum of many Slaterdeterminants needed for open-shell configurations.

BCS correlations can be included using a Pfaffian.

Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 14 / 18

Page 38: Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL (2018), PRC (2018). Qualitative good description of both energies and radii. Good convergence

Variational wave function

〈RS |ΨV 〉 = 〈RS |[∏

i<j

f c(rij)][

1 +∑

i<j

Fij +∑

i<j<k

Fijk

]|ΦJM〉 ,

〈RS |ΦJM〉 =∑

n

kn[∑

D{φα(ri , si )}]JM,

φα(ri , si ) = Φnlj(ri ) [Ylml(ri )ξsms (si )]jmj

,

In particular, we included orbitals in 1S1/2, 1P3/2, 1P1/2, 1D5/2, 2S1/2,and 1D3/2.

Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 15 / 18

Page 39: Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL (2018), PRC (2018). Qualitative good description of both energies and radii. Good convergence

The Sign problem in one slide

Evolution in imaginary-time:

ψI (R′)Ψ(R ′, t + dt) =

∫dR G (R,R ′, dt)

ψI (R′)

ψI (R)ψI (R)Ψ(R, t)

note: Ψ(R, t) must be positive to be ”Monte Carlo” meaningful.

Fixed-node approximation: solve the problem in a restricted space whereΨ > 0 (Bosonic problem) ⇒ upperbound.

If Ψ is complex:

|ψI (R′)||Ψ(R ′, t + dt)| =

∫dR G (R,R ′, dt)

∣∣∣∣ψI (R

′)

ψI (R)

∣∣∣∣ |ψI (R)||Ψ(R, t)|

Constrained-path approximation: project the wave-function to the real

axis. Extra weight given by cos ∆θ (phase of Ψ(R′)Ψ(R) ), Re{Ψ} > 0 ⇒ not

necessarily an upperbound.

Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 16 / 18

Page 40: Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL (2018), PRC (2018). Qualitative good description of both energies and radii. Good convergence

Unconstrained-path

GFMC unconstrained-path propagation:

0 10 20 30 40

-93

-92

-91

nu

⟨H⟩

(M

eV)

12C(0+) − AV18 & AV18+IL7 with various corrs. − ⟨H⟩ − 27 Feb 2010

g.s., IL7, 6 state 18

Changing the trial wave function gives same results.

Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 17 / 18

Page 41: Stefano Gandol Los Alamos National Laboratory (LANL) · 2019. 2. 27. · Lonardoni, et al., PRL (2018), PRC (2018). Qualitative good description of both energies and radii. Good convergence

Unconstrained-path

AFDMC unconstrained-path propagation:

0 0.0005 0.001 0.0015 0.002 0.0025

τ (MeV-1

)

-110

-108

-106

-104

-102

-100

-98

-96

-94

-92

-90

E (

MeV

)

16O, AV6’+Coulomb

0 0.00025 0.0005 0.00075 0.001

τ (MeV-1

)

-100

-95

-90

-85

-80

E (

MeV

)

16O, AV7’+Coulomb

The difference between CP and UP results is mainly due to the presenceof LS terms in the Hamiltonian. Same for heavier systems.

Work in progress to improve Ψ to improve the constrained-path.

Stefano Gandolfi (LANL) Properties of nuclei from chiral interactions 18 / 18