Steam Tables 1993

23
ISO 9001 Cert. No. LRQ 0963008 © Copyright 2004 TI-GCM-01 CM Issue 4 Steam Tables Specific enthalpy Specific Pressure Temperature volume Water (hf) Evaporation (hfg) Steam (hg) steam bar kPa °C kJ/kg kJ/kg kJ/kg m 3 /kg 0.30 30 69.113 289.331 2 335.28 2624.61 5.229 76 0.50 50 81.338 340.578 2 304.77 2 645.35 3.240 85 0.75 75 91.782 384.469 2 278.10 2 662.57 2.217 51 0.95 95 98.204 411.524 2 261.38 2 672.91 1.777 59 1.00 100 99.632 417.547 2 257.63 2 675.18 1.694 32 1.013 25 101.325 100.001 419.101 2 256.66 2 675.76 1.673 59 0 0 100.001 419.101 2 256.66 2 675.76 1.673 59 0.1 10 102.660 430.327 2 249.62 2 679.95 1.532 56 0.2 20 105.128 440.758 2 243.05 2 683.81 1.414 08 0.3 30 107.434 450.510 2 236.86 2 687.37 1.313 11 0.4 40 109.600 459.676 2 231.02 2 690.69 1.225 99 0.5 50 111.642 468.331 2 225.47 2 693.80 1.150 03 0.6 60 113.577 476.534 2 220.19 2 696.72 1.083 20 0.7 70 115.416 484.336 2 215.13 2 699.47 1.023 92 0.8 80 117.169 491.779 2 210.29 2 702.07 0.970 98 0.9 90 118.844 498.898 2 205.64 2 704.54 0.923 40 1.0 100 120.449 505.725 2 201.16 2 706.88 0.880 39 1.1 110 121.991 512.284 2 196.83 2 709.12 0.841 33 1.2 120 123.474 518.599 2 192.65 2 711.25 0.805 68 1.3 130 124.903 524.690 2 188.60 2 713.29 0.773 01 1.4 140 126.283 530.574 2 184.67 2 715.25 0.742 97 1.5 150 127.617 536.266 2 180.86 2 717.13 0.715 23 1.6 160 128.909 541.781 2 177.15 2 718.93 0.689 56 1.7 170 130.161 547.130 2 173.54 2 720.67 0.665 71 1.8 180 131.376 552.324 2 170.02 2 722.34 0.643 50 1.9 190 132.557 557.374 2 166.58 2 723.96 0.622 76 2.0 200 133.705 562.289 2 163.23 2 725.52 0.603 36 2.2 220 135.913 571.742 2 156.74 2 728.48 0.568 06 2.4 240 138.011 580.741 2 150.53 2 731.27 0.536 76 2.6 260 140.013 589.333 2 144.55 2 733.89 0.508 82 2.8 280 141.927 597.559 2 138.80 2 736.36 0.483 71 3.0 300 143.762 605.453 2 133.24 2 738.70 0.461 02 3.2 320 145.525 613.044 2 127.87 2 740.92 0.440 41 3.4 340 147.221 620.357 2 122.67 2 743.02 0.421 61 3.6 360 148.858 627.417 2 117.61 2 745.03 0.404 38 3.8 380 150.438 634.242 2 112.70 2 746.94 0.388 54 4.0 400 151.966 640.849 2 107.92 2 748.77 0.373 92 4.5 450 155.584 656.515 2 096.49 2 753.00 0.341 86 5.0 500 158.949 671.117 2 085.70 2 756.82 0.314 96 5.5 550 162.098 684.811 2 075.47 2 760.28 0.292 06 6.0 600 165.059 697.720 2 065.72 2 763.44 0.272 32 6.5 650 167.858 709.944 2 056.39 2 766.33 0.255 12 7.0 700 170.513 721.561 2 047.43 2 768.99 0.239 99 7.5 750 173.039 732.641 2 038.81 2 771.45 0.226 58 8.0 800 175.451 743.238 2 030.49 2 773.72 0.214 61 8.5 850 177.759 753.400 2 022.43 2 775.83 0.203 85 9.0 900 179.974 763.168 2 014.63 2 777.80 0.194 13 9.5 950 182.103 772.576 2 007.05 2 779.62 0.185 31 10.0 1 000 184.154 781.656 1 999.67 2 781.33 0.177 26 10.5 1 050 186.133 790.433 1 992.49 2 782.92 0.169 88 11.0 1 100 188.045 798.931 1 985.48 2 784.41 0.163 10 11.5 1 150 189.897 807.171 1 978.63 2 785.80 0.156 84 12.0 1 200 191.691 815.171 1 971.94 2 787.11 0.151 05 12.5 1 250 193.432 822.948 1 965.38 2 788.33 0.145 67 13.0 1 300 195.123 830.515 1 958.96 2 789.48 0.140 66 13.5 1 350 196.767 837.888 1 952.67 2 790.56 0.135 98 14.0 1 400 198.368 845.077 1 946.49 2 791.57 0.131 60 14.5 1 450 199.928 852.093 1 940.42 2 792.51 0.127 50 15.0 1 500 201.450 858.947 1 934.46 2 793.40 0.123 64 15.5 1 550 202.934 865.648 1 928.59 2 794.24 0.120 01 16.0 1 600 204.384 872.203 1 922.82 2 795.02 0.116 59 17.0 1 700 207.188 884.907 1 911.53 2 796.44 0.110 29 18.0 1 800 209.873 897.116 1 900.57 2 797.68 0.104 63 19.0 1 900 212.450 908.873 1 889.89 2 798.77 0.099 52 20.0 2 000 214.930 920.220 1 879.49 2 799.71 0.094 88 21.0 2 100 217.319 931.192 1 869.32 2 800.51 0.090 64 22.0 2 200 219.626 941.818 1 859.38 2 801.20 0.086 76 23.0 2 300 221.857 952.125 1 849.65 2 801.77 0.083 19 gauge absolute

description

STEAM TOOL

Transcript of Steam Tables 1993

Page 1: Steam Tables 1993

ISO 9001

Cert. No. LRQ 0963008

© Copyright 2004

TI-GCM-01CM Issue 4

Steam TablesSpecific enthalpy Specific

Pressure Temperature volumeWater (hf) Evaporation (hfg) Steam (hg) steam

bar kPa °C kJ /kg kJ /kg kJ /kg m3/kg0.30 30 69.113 289.331 2 335.28 2 624.61 5.229 760.50 50 81.338 340.578 2 304.77 2 645.35 3.240 850.75 75 91.782 384.469 2 278.10 2 662.57 2.217 510.95 95 98.204 411.524 2 261.38 2 672.91 1.777 591.00 100 99.632 417.547 2 257.63 2 675.18 1.694 321.013 25 101.325 100.001 419.101 2 256.66 2 675.76 1.673 590 0 100.001 419.101 2 256.66 2 675.76 1.673 590.1 10 102.660 430.327 2 249.62 2 679.95 1.532 560.2 20 105.128 440.758 2 243.05 2 683.81 1.414 080.3 30 107.434 450.510 2 236.86 2 687.37 1.313 110.4 40 109.600 459.676 2 231.02 2 690.69 1.225 990.5 50 111.642 468.331 2 225.47 2 693.80 1.150 030.6 60 113.577 476.534 2 220.19 2 696.72 1.083 200.7 70 115.416 484.336 2 215.13 2 699.47 1.023 920.8 80 117.169 491.779 2 210.29 2 702.07 0.970 980.9 90 118.844 498.898 2 205.64 2 704.54 0.923 401.0 100 120.449 505.725 2 201.16 2 706.88 0.880 391.1 110 121.991 512.284 2 196.83 2 709.12 0.841 331.2 120 123.474 518.599 2 192.65 2 711.25 0.805 681.3 130 124.903 524.690 2 188.60 2 713.29 0.773 011.4 140 126.283 530.574 2 184.67 2 715.25 0.742 971.5 150 127.617 536.266 2 180.86 2 717.13 0.715 231.6 160 128.909 541.781 2 177.15 2 718.93 0.689 561.7 170 130.161 547.130 2 173.54 2 720.67 0.665 711.8 180 131.376 552.324 2 170.02 2 722.34 0.643 501.9 190 132.557 557.374 2 166.58 2 723.96 0.622 762.0 200 133.705 562.289 2 163.23 2 725.52 0.603 362.2 220 135.913 571.742 2 156.74 2 728.48 0.568 062.4 240 138.011 580.741 2 150.53 2 731.27 0.536 762.6 260 140.013 589.333 2 144.55 2 733.89 0.508 822.8 280 141.927 597.559 2 138.80 2 736.36 0.483 713.0 300 143.762 605.453 2 133.24 2 738.70 0.461 023.2 320 145.525 613.044 2 127.87 2 740.92 0.440 413.4 340 147.221 620.357 2 122.67 2 743.02 0.421 613.6 360 148.858 627.417 2 117.61 2 745.03 0.404 383.8 380 150.438 634.242 2 112.70 2 746.94 0.388 544.0 400 151.966 640.849 2 107.92 2 748.77 0.373 924.5 450 155.584 656.515 2 096.49 2 753.00 0.341 865.0 500 158.949 671.117 2 085.70 2 756.82 0.314 965.5 550 162.098 684.811 2 075.47 2 760.28 0.292 066.0 600 165.059 697.720 2 065.72 2 763.44 0.272 326.5 650 167.858 709.944 2 056.39 2 766.33 0.255 127.0 700 170.513 721.561 2 047.43 2 768.99 0.239 997.5 750 173.039 732.641 2 038.81 2 771.45 0.226 588.0 800 175.451 743.238 2 030.49 2 773.72 0.214 618.5 850 177.759 753.400 2 022.43 2 775.83 0.203 859.0 900 179.974 763.168 2 014.63 2 777.80 0.194 139.5 950 182.103 772.576 2 007.05 2 779.62 0.185 31

10.0 1 000 184.154 781.656 1 999.67 2 781.33 0.177 2610.5 1 050 186.133 790.433 1 992.49 2 782.92 0.169 8811.0 1 100 188.045 798.931 1 985.48 2 784.41 0.163 1011.5 1 150 189.897 807.171 1 978.63 2 785.80 0.156 8412.0 1 200 191.691 815.171 1 971.94 2 787.11 0.151 0512.5 1 250 193.432 822.948 1 965.38 2 788.33 0.145 6713.0 1 300 195.123 830.515 1 958.96 2 789.48 0.140 6613.5 1 350 196.767 837.888 1 952.67 2 790.56 0.135 9814.0 1 400 198.368 845.077 1 946.49 2 791.57 0.131 6014.5 1 450 199.928 852.093 1 940.42 2 792.51 0.127 5015.0 1 500 201.450 858.947 1 934.46 2 793.40 0.123 6415.5 1 550 202.934 865.648 1 928.59 2 794.24 0.120 0116.0 1 600 204.384 872.203 1 922.82 2 795.02 0.116 5917.0 1 700 207.188 884.907 1 911.53 2 796.44 0.110 2918.0 1 800 209.873 897.116 1 900.57 2 797.68 0.104 6319.0 1 900 212.450 908.873 1 889.89 2 798.77 0.099 5220.0 2 000 214.930 920.220 1 879.49 2 799.71 0.094 8821.0 2 100 217.319 931.192 1 869.32 2 800.51 0.090 6422.0 2 200 219.626 941.818 1 859.38 2 801.20 0.086 7623.0 2 300 221.857 952.125 1 849.65 2 801.77 0.083 19

gauge

absolute

Page 2: Steam Tables 1993

Steam Tables TI-GCM-01 CM Issue 4

Specific enthalpy SpecificGauge pressure Temperature volume

Water (hf) Evaporation (hfg) Steam (hg) steambar kPa °C kJ /kg kJ /kg kJ /kg m3/kg24 2 400 224.017 962.13 1 840.11 2 802.24 0.079 90625 2 500 226.112 971.87 1 830.74 2 802.62 0.076 85826 2 600 228.145 981.36 1 821.55 2 802.91 0.074 02827 2 700 230.121 990.60 1 812.51 2 803.11 0.071 39328 2 800 232.044 999.62 1 803.61 2 803.24 0.068 93329 2 900 233.916 1 008.44 1 794.86 2 803.30 0.066 63230 3 000 235.741 1 017.06 1 786.23 2 803.28 0.064 47331 3 100 237.521 1 025.49 1 777.72 2 803.21 0.062 44532 3 200 239.259 1 033.74 1 769.32 2 803.07 0.060 53533 3 300 240.957 1 041.83 1 761.04 2 802.87 0.058 73434 3 400 242.617 1 049.77 1 752.85 2 802.62 0.057 03135 3 500 244.241 1 057.55 1 744.77 2 802.32 0.055 42036 3 600 245.831 1 065.20 1 736.77 2 801.97 0.053 89337 3 700 247.389 1 072.71 1 728.86 2 801.57 0.052 44338 3 800 248.915 1 080.09 1 721.04 2 801.13 0.051 06539 3 900 250.411 1 087.35 1 713.29 2 800.64 0.049 75340 4 000 251.879 1 094.50 1 705.62 2 800.12 0.048 50341 4 100 253.320 1 101.53 1 698.02 2 799.55 0.047 31142 4 200 254.735 1 108.46 1 690.49 2 798.95 0.046 17143 4 300 256.126 1 115.28 1 683.02 2 798.30 0.045 08244 4 400 257.492 1 122.01 1 675.62 2 797.63 0.044 03945 4 500 258.835 1 128.64 1 668.28 2 796.92 0.043 04046 4 600 260.156 1 135.19 1 660.99 2 796.18 0.042 08247 4 700 261.455 1 141.64 1 653.76 2 795.40 0.041 16248 4 800 262.735 1 148.02 1 646.58 2 794.60 0.040 27849 4 900 263.994 1 154.31 1 639.45 2 793.76 0.039 42850 5 000 265.234 1 160.53 1 632.36 2 792.90 0.038 61051 5 100 266.456 1 166.68 1 625.33 2 792.00 0.037 82352 5 200 267.660 1 172.75 1 618.33 2 791.08 0.037 06453 5 300 268.847 1 178.75 1 611.38 2 790.14 0.036 33254 5 400 270.017 1 184.69 1 604.48 2 789.16 0.035 62655 5 500 271.171 1 190.56 1 597.60 2 788.17 0.034 94356 5 600 272.309 1 196.37 1 590.77 2 787.14 0.034 28457 5 700 273.432 1 202.12 1 583.97 2 786.10 0.033 64758 5 800 274.541 1 207.82 1 577.21 2 785.03 0.033 03059 5 900 275.635 1 213.45 1 570.48 2 783.94 0.032 43360 6 000 276.716 1 219.04 1 563.78 2 782.82 0.031 85561 6 100 277.783 1 224.56 1 557.12 2 781.68 0.031 29562 6 200 278.836 1 230.04 1 550.48 2 780.52 0.030 75263 6 300 279.878 1 235.47 1 543.87 2 779.34 0.030 22564 6 400 280.907 1 240.85 1 537.29 2 778.14 0.029 71365 6 500 281.923 1 246.19 1 530.73 2 776.92 0.029 21766 6 600 282.928 1 251.48 1 524.20 2 775.67 0.028 73467 6 700 283.922 1 256.72 1 517.69 2 774.41 0.028 26568 6 800 284.905 1 261.93 1 511.20 2 773.13 0.027 80969 6 900 285.877 1 267.09 1 504.74 2 771.82 0.027 36670 7 000 286.838 1 272.21 1 498.29 2 770.50 0.026 93471 7 100 287.789 1 277.29 1 491.87 2 769.16 0.026 51472 7 200 288.730 1 282.34 1 485.47 2 767.80 0.026 10573 7 300 289.661 1 287.34 1 479.08 2 766.42 0.025 70774 7 400 290.582 1 292.31 1 472.71 2 765.03 0.025 31875 7 500 291.494 1 297.25 1 466.36 2 763.61 0.024 93976 7 600 292.397 1 302.15 1 460.03 2 762.18 0.024 57077 7 700 293.292 1 307.02 1 453.71 2 760.73 0.024 21078 7 800 294.177 1 311.86 1 447.40 2 759.26 0.023 85879 7 900 295.054 1 316.67 1 441.11 2 757.78 0.023 51580 8 000 295.922 1 321.45 1 434.83 2 756.27 0.023 17981 8 100 296.782 1 326.19 1 428.56 2 754.75 0.022 85282 8 200 297.635 1 330.91 1 422.31 2 753.22 0.022 53283 8 300 298.479 1 335.60 1 416.06 2 751.66 0.022 21984 8 400 299.316 1 340.26 1 409.83 2 750.09 0.021 91385 8 500 300.145 1 344.90 1 403.60 2 748.50 0.021 61486 8 600 300.967 1 349.51 1 397.39 2 746.90 0.021 32287 8 700 301.781 1 354.09 1 391.18 2 745.27 0.021 03588 8 800 302.589 1 358.65 1 384.98 2 743.64 0.020 75589 8 900 303.389 1 363.19 1 378.79 2 741.98 0.020 48190 9 000 304.183 1 367.70 1 372.61 2 740.31 0.020 21292 9 200 305.751 1 376.66 1 360.25 2 736.91 0.019 69194 9 400 307.293 1 385.53 1 347.92 2 733.45 0.019 19196 9 600 308.810 1 394.32 1 335.60 2 729.93 0.018 71098 9 800 310.303 1 403.04 1 323.30 2 726.34 0.018 247

100 10 000 311.772 1 411.68 1 311.00 2 722.68 0.017 801102 10 200 313.220 1 420.25 1 298.70 2 718.95 0.017 372104 10 400 314.646 1 428.76 1 286.40 2 715.16 0.016 958106 10 600 316.051 1 437.20 1 274.10 2 711.30 0.016 558108 10 800 317.436 1 445.59 1 261.79 2 707.37 0.016 171110 11 000 318.801 1 453.92 1 249.46 2 703.38 0.015 798112 11 200 320.147 1 462.20 1 237.12 2 699.31 0.015 437114 11 400 321.475 1 470.43 1 224.75 2 695.18 0.015 087116 11 600 322.785 1 478.61 1 212.36 2 690.97 0.014 748118 11 800 324.077 1 486.76 1 199.94 2 686.70 0.014 420120 12 000 325.353 1 494.86 1 187.48 2 682.35 0.014 101

Page 3: Steam Tables 1993

Local regulations may restrict the use of this product to below the conditions quoted.In the interests of development and improvement of the product, we reserve the right to change the specification without notice. © Copyright 2005

ISO 9001

Cert. No. LRQ 0963008

TI-GCM-03CM Issue 4

Conversion Tables

The following conversion tables will provide a conversion between SI, metric, USA and Imperial systems. All the tables use a multiplying factor:

Table 1 LengthFrom To�� millimetre centimetre metre kilometre inch foot yard milemillimetre 1 0.1 0.001 ⎯ 0.03937 ⎯ ⎯ ⎯centimetre 10 1 0.01 ⎯ 0.393701 0.032808 ⎯ ⎯metre 1000 100 1 0.001 39.3701 3.28084 1.09361 ⎯kilometre ⎯ ⎯ 1000 1 ⎯ 3280.84 1093.61 0.621371inch 25.4 2.54 ⎯ ⎯ 1 0.083333 0.027778 ⎯foot 304.8 30.48 0.3048 ⎯ 12 1 0.33333 ⎯yard 914.4 91.44 0.9144 0.000914 36 3 1 0.000568mile ⎯ ⎯ 1609.344 1.609344 ⎯ 5280 1760 1

Table 2 AreaFrom To�� cm2 m2 km2 in2 ft2 yd2 acre mile2

cm2 1 0.0001 ⎯ 0.155 0.001076 0.0001196 ⎯ ⎯m2 10000 1 0.000001 1550 10.7639 1.19599 0.0002471 ⎯km2 ⎯ 1000000 1 ⎯ ⎯ ⎯ 247.105 0.386102in2 6.4516 0.000645 ⎯ 1 0.006944 0.000772 ⎯ ⎯ft2 929.03 0.092903 ⎯ 144 1 0.111111 0.000023 ⎯yd2 8361.27 0.836127 ⎯ 1296 9 1 0.0002066 ⎯acre ⎯ 4046.86 0.004047 ⎯ 43560 4840 1 0.001562mile2 ⎯ ⎯ 2.589987 ⎯ ⎯ ⎯ 640 1

Table 3 MassFrom To�� kg tonne lb UK cwt UK ton US cwt US tonkg 1 0.001 2.20462 0.019684 0.000984 0.022046 0.001102tonne 1000 1 2204.62 19.6841 0.984207 22.0462 1.10231lb 0.453592 0.000454 1 0.008929 0.000446 0.01 0.0005UK cwt 50.8023 0.050802 112 1 0.05 1.12 0.056UK ton 1016.05 1.01605 2240 20 1 22.4 1.12US cwt 45.3592 0.045359 100 0.892857 0.044643 1 0.05US ton 907.185 0.907185 2000 17.8517 0.892857 20 1

Table 4 Volume and capacityFrom To�� cm3 m3 litre (dm3 ) in3 ft3 yd3 UK pint UK gall US pint US gallcm3 1 ⎯ 0.001 0.061024 0.0000353 ⎯ 0.001760 0.00022 0.002113 0.000264m3 ⎯ 1 1000 61023.7 35.3147 1.30795 1759.75 219.969 2113.38 264.172litre (dm3 ) 1000 0.001 1 61.0237 0.035315 0.001308 1.75975 0.219969 2.11338 0.264172in3 16.3871 ⎯ 0.016387 1 0.0005787 0.0000214 0.028837 0.003605 0.034632 0.004329ft3 28316.8 0.028317 28.3168 1728 1 0.037037 49.8307 6.22883 59.8442 7.48052yd3 764555 0.764555 764.555 46656 27 1 1345.429 168.1784 1615.793 201.974UK pint 568.261 0.0005683 0.568261 34.6774 0.020068 0.000743 1 0.125 1.20095 0.150119UK gall 4546.09 0.0045461 4.54609 277.42 0.160544 0.005946 8 1 9.6076 1.20095US pint 473.176 0.0004732 0.473176 28.875 0.01671 0.000619 0.832674 0.104084 1 0.125US gall 3785.41 0.0037854 3.785411 231 0.133681 0.004951 6.661392 0.832674 8 1

Table 5 PressureFrom To�� atmos mm Hg m bar bar pascal in H2O in Hg psiatmos 1 760 1013.25 1.0132 101325 406.781 29.9213 14.6959mm Hg 0.0013158 1 1.33322 0.001333 133.322 0.53524 0.03937 0.019337m bar 0.0009869 0.750062 1 0.001 100 0.401463 0.02953 0.014504bar 0.9869 750.062 1000 1 100000 401.463 29.53 14.504pascal 0.0000099 0.007501 0.01 0.00001 1 0.004015 0.0002953 0.000145in H2O 0.0024583 1.86832 2.49089 0.002491 249.089 1 0.073556 0.036127in Hg 0.033421 25.4 33.8639 0.0338639 3386.39 13.5951 1 0.491154psi 0.068046 51.7149 68.9476 0.068948 6894.76 27.6799 2.03602 1

Note: 1 pascal = 1 N/m2

Page 4: Steam Tables 1993

Converesion Tables TI-GCM-03 CM Issue 4

Additional informationAtmosphere - (standard reference)A.N.R. (Atmosphère Normale de Référence) ISO R558.This is the agreed atmosphere to control specification values andtest results, as given in ISO R554.

Pneumatic fluid power uses 1013 mbar, 20°C, 65% RH (ISO R554).Compressor and pneumatic tool industries prefer 1000 mbar, 20°C,65% RH (ISO 2787).Aerospace, Petroleum and British Gas Industries prefer 1013 mbar,15°C, Dry (ISO 2533 and ISO 5024).

Table 6 Volume rate of flowFrom To���L/sec

(dm3/sec) L/h m3/s m3/h cfm ft3/h UK gall /m UK gall /h US gall /m US gall /hL /s(dm3/sec) 1 3600 0.001 3.6 2.118882 127.133 13.19814 791.8884 15.85032 951.019L/h 0.000278 1 ⎯ 0.001 0.000588 0.035315 0.003666 0.219969 0.004403 0.264172m3/s 1000 3600000 1 3600 2118.88 127133 13198.1 791889 15850.3 951019m3/h 0.277778 1000 0.000278 1 0.588578 35.3147 3.66615 219.969 4.402863 264.1718cfm 0.471947 1699.017 0.000472 1.699017 1 60 6.228833 373.73 7.480517 448.831ft3/h 0.007866 28.3168 ⎯ 0.028317 0.016667 1 0.103814 6.228833 0.124675 7.480517UK gall /m 0.075768 272.766 0.0000758 0.272766 0.160544 9.63262 1 60 1.20095 72.057UK gall /h 0.001263 4.54609 ⎯ 0.004546 0.002676 0.160544 0.016667 1 0.020016 1.20095US gall /m 0.06309 227.125 0.0000631 0.227125 0.133681 8.020832 0.832674 49.96045 1 60US gall /h 0.001052 3.785411 ⎯ 0.003785 0.002228 0.133681 0.013878 0.832674 0.016667 1

Table 7 PowerFrom To�� Btu/h W Kcal /h KWBtu/h 1 0.293071 0.251996 0.000293W 3.41214 1 0.859845 0.001Kcal /h 3.96832 1.163 1 0.001163KW 3412.14 1000 859.845 1

Table 8 EnergyFrom To�� Btu Therm J kJ CalBtu 1 0.00001 1055.06 1.055 251.996Therm 100000 1 ⎯ 105 500 25 199 600J 0.00094 ⎯ 1 0.001 .2388kJ 0.9478 0.000009478 1000 1 238.85Cal 0.0039683 0.0039683 x 10-5 4.1868 ⎯ 1

Table 9 Specific heatFrom To�� Btu/lb °F J/kg °CBtu/lb °F 1 4186.8J/kg °C 0.00023 1

Table 10 Heat flowrateFrom To�� Btu/ft2h W/m2 Kcal /m2hBtu /ft2h 1 3.154 2.712W/m2 0.3169 1 0.859Kcal /m2h 0.368 1.163 1

Table 11 Thermal conductanceFrom To�� Btu/ft2 h °F W/m2 °C Kcal /m2 h °CBtu /ft2 h °F 1 5.67826 4.88243W/m2 °C 0.176110 1 0.859845Kcal /m2 h °C 0.204816 1.163 1

Table 12 Heat per unit massFrom To�� Btu/lb kJ/kgBtu /lb 1 2.326kJ/kg 0.4299 1

Table 13 Linear velocityFrom To�� ft /min ft /s m/sft /min 1 0.016666 0.00508ft /s 60 1 0.3048m/s 196.850 3.28084 1

Temperature conversionCan be achieved by using the following formula:°F = (°C x 1.8) + 32°C = (°F - 32) � 1.8

Fluid power users are sometimes confused by Nm³. This is notNewton-metres³ but refers to meters³ ANR, i.e. a volume of airmeasured against the standard or normal atmosphere reference.The equivalent imperial term is S.C.F. (Standard Cubic Feet).

LitreThe symbol l is being superceded by L to avoid confusion with 1(one).1 L = 1 dm³.

bar1 bar = 100 kPa = 100 kN/m².

kg/cm²This unit is still used in some areas. The conversions are as follows:1 kg /cm² = 0.980665 bar = 0.967841 atmos = 14.2233 psi

Page 5: Steam Tables 1993

Local regulations may restrict the use of this product to below the conditions quoted.In the interests of development and improvement of the product, we reserve the right to change the specification. © Copyright 2005

ISO 9001

Cert. No. LRQ 0963008

TI-F01-27ST Issue 4

Steam TrapInternational Standards

With so many steam trap manufacturers displaying a wide range of product information in many different formats it is easy to see whymany purchasers and specifiers find the selection of steam traps confusing. Many customers are also under pressure to comply withlocal and Governmental legislation for their steam systems such as Pressurised Systems Regulations, The Factories Act, Health andSafety Executive and the European Pressure Equipment Directive 97/23/EC.Misleading product information such as inaccurate condensate capacities are just one of the problems encountered. To make capacity figuresappear higher than they really are many manufacturers supply capacities for cold water and claim they are hot water capacities. In practice hotwater capacities are typically 60 - 70% lower than cold water capacitiesProducts need to be clearly identified so that in the event of any problems the correct supplier can be contacted. It is hard to believe that intodays quality conscious world there are many manufacturers who only mark their products with the pipe size and direction of flow - nomanufacturers identification at all.The only safe and professional way to ensure that high quality, system safety and reliability is maintained is to install only products of provenand guaranteed quality.The following National /International standards apply to steam traps and are intended to ensure that any purchaser / specifier has the fullknowledge and confidence that the equipment used meets known legislation. The vast majority of steam trap manufacturers do not conform tothese International Standards.Spirax Sarco are always at the forefront of steam trapping developments and together with the British Standards Institute have been very activeover the years, in their efforts to establish official standards for steam traps. In recent years certain British Standards have been modified tocomply with both European (EN) standards and International (ISO) standards. A brief description of each is given below.

Glossary of technical terms for automatic steam traps ISO 6552 : 1980 (BS 6023 : 1981)This standard establishes precise definitions for all technical terms and expressions used to describe steam traps under operating conditions.Only by specifying these operating conditions can a customer be confident that the steam trap will safely operate within their system.

PN Nominal pressure Permissible working pressure which is dependant on materials, design and workingtemperatures /pressures.

PMA Maximum allowable pressure (bar) That the shell of the trap can withstand at a given temperature.

PMO Maximum operating pressure (bar) Which is given by the manufacturer.Sometimes restricted by the pressure limitations of internal mechanisms.

PO Operating pressure Measured at the trap inlet (bar)POB Operating backpressure Measured at the outlet of the trap (bar)PMOB Maximum operating backpressure (bar) Maximum permissible pressure at the trap outlet allowing correct operation.�P Operating differential pressure (bar) Difference between operating pressure and operating backpressure (bar)�PMX Maximum differential pressure (bar) Maximum difference between operating pressure and operating backpressure.�PMN Minimum differential pressure (bar) Minimum difference between operating pressure and operating backpressure.PT Test pressure (bar) Pressure applied to the steam trap under test.PTMX Maximum test pressure (bar) Maximum cold hydraulic test pressure the trap can withstand, with internals fitted.

TMA Maximum allowable temperature (oC) Maximum temperature to which the shell of the trap can be raised permanently, at agiven pressure.

TMO Maximum operating temperature (oC) Maximum temperature for which the operation of the trap is guaranteed.TO Operating temperature (oC) Temperature measured at the inlet of the trap being tested.

Marking of automatic steam traps EN 26553 : 1991 ISO 6553 : 1980

Establishes certain minimum basic requirements for the marking and identification of steam traps. To conform to this standard all traps shouldbe marked with the following :-

Manufacturer’s name and/or trade markMaximum allowable pressure (PMA)Maximum allowable temperature (TMA)Indication of the flow direction

Optional markings to include:-Nominal pressure (PN)Maximum operating pressure (PMO) or maximum differential pressure (�PMX)Shell material designationNominal size (DN)Maximum test pressure (PTMX)

If steam traps do not have this information clearly marked on them many insurance companies may not validate or insure thesteam system.

Page 6: Steam Tables 1993

Steam Trap International Standards TI-F01-27 ST Issue 4

Face-to-face dimensions for flanged automaticsteam traps EN 26554 : 1991 ISO 6554 : 1980

This standard specifies face-to-face dimensions for steam traps in the size range DN15 to DN50, for pressures up to PN40. It is mainly used inEuropean influenced markets. There are 6 series of dimensions with the most commonly used being Series 1.The following face-to-face dimensions are specified for Series 1 steam traps:

Series 1 DN15 150 mmDN20 150 mmDN25 160 mmDN32 230 mmDN40 230 mmDN50 230 mm Note: There is currently no ASTM / ANSI equivalent for steam traps.

Classification of automatic steam traps EN 26704 : 1991 ISO 6704 : 1982

Specification details the various types of operating principle for steam traps including mechanical, thermostatic and thermodynamic types.

Many manufacturers claim that a trap operates in a different manner than it actually does. This is not only confusing but may also lead tooperational problems. An example is where a bimetal trap (classed as a thermostatic trap) is incorrectly claimed to be a thermodynamictrap. This implies that it discharges condensate at steam temperature when in fact it may cause subcooling by up to 40oC below steamsaturation temperature. This type of trap must not be confused with a true thermodynamic steam trap with a disc.

Determination of steam loss ofautomatic steam traps EN 27841 : 1991 ISO 7841 : 1988

This specifies two alternative test methods to determine the steam loss of automatic steam traps. One of these was developed as a result of thework that Spirax Sarco undertook with the National Engineering Laboratory in the UK. Steam trap buyers can now make comparisons of truesteam trap losses through various types of steam traps with the assurance that the figures published are accurate and all tests are conducted inaccordance with this standard. Spriax Sarco are able to undertake these tests if required. Any manufacturers test figures that are not obtainedwithin the parameters of this standard must be treated with caution.

It is important to understand that under normal conditions steam traps do not waste steam. Wastage can only occur if there is no load (notpractical even in a superheated system) or if the internals have been damaged. The following table shows the results of extensive testing todetermine steam wastage from all trap types at a pressure of 5 bar g. It can be clearly seen that radiation losses from the trap surface are muchgreater than losses through the trap orifice!

Energy requirements of various steam traps - expressed in kg/h of steam at 5 bar

No-load Reasonable load

Traps Through trap From trap Total Through trap From trap Total

BPT/SM 0.5 0.50 1.00 0 0.50 0.50

FT 0.0 1.40 1.40 0 1.40 1.40

IB 0.5 1.20 1.70 0 1.20 1.20

TD 0.5 0.25 0.75 0 0.25 0.25

The purpose of the above table is not to establish the fact that one type of trap is marginally more efficient than another. It is simply to show thatsteam traps require only a minimal amount of energy. Losses only become significant when traps are defective.The important thing therefore is to combine selection, checking and maintenance to achieve reliability. Properly done, costs andsteam wastage will be minimised.

Determination of discharge capacityof automatic steam traps EN 27842 : 1991 ISO 7842 : 1988

Like EN 27841and ISO 7841, this specifies two alternative test methods for use by manufacturers in order to determine discharge capacity forsteam traps. A manufacturer’s compliance with this standard will put an end to difficulties experienced in the past over trap selection. Thecustomer will no longer have to ask whether the capacity curves produced for any particular manufacturer of steam trap are based upon coldwater or hot water condensate tests. All steam traps manufactured in the UK and France by Spirax Sarco have capacity tests conducted inaccordance with this standard. By comparison some manufacturers will include the capacity of internal air vents in the overall capacity of theirfloat traps - the air vent is only open when condensate has subcooled.

Production and performance characteristic testsfor automatic steam traps EN 26948 : 1991 ISO 6948 : 1981

This standard specifies tests which are used to ensure that the steam trap functions correctly and that the performance is acceptable for thedesign. The tests include product inspection, hydrostatic and operational checks. Testing of capacities and the identification of any steamlosses are also discussed.

Other standards are also used in the design and manufacture of Spirax Sarco steam traps. These include :-TRB 801 Nr45, DIN 3548, DIN 2501, DIN 3840, AD 2000-Merkblatt, EN 287, EN 288, EN 289, EN 12569, BS 5500, ASME VIII, ASME IXand TÜV.

Face-to-face

Page 7: Steam Tables 1993

Local regulations may restrict the use of this product to below the conditions quoted.In the interests of development and improvement of the product, we reserve the right to change the specification. © Copyright 2005

ISO 9001

Cert. No. LRQ 0963008

���

���

���

���

���

���

� � �� �� �� ���

���

���

���

� � �� �� �� ��

��

���

���

���

� �� �� �� ��

TI-GCM-02CM Issue 6

Pressure / Temperature Limits

Technical Information sheets (TI's) for products in pressurised systems contain a 'Pressure / temperature limits' diagram. This diagram indicatesthe envelope of the product(s) at the full range of pressures and temperatures. The construction of the 'Pressure / temperature limits' diagram isshown below. Note: A table 'Definition of technical terms' and a typical example (no specific product) is displayed overleaf.

��

���

���

���

� �� �� �� ���

���

���

���

� �� �� �� ��

���

��

���

���

���

� �� �� �� ��

Tem

pera

ture

°C

Pressure bar g

Tem

pera

ture

°C

Pressure bar g

Tem

pera

ture

°C

Pressure bar g

Tem

pera

ture

°C

Pressure bar g

Tem

pera

ture

°C

Pressure bar g

Tem

pera

ture

°C

Pressure bar g

d - The steam saturation curve is added(where relevant) to enable users toeasily find the specific operating points,e.g. 10 bar g saturated steam @ 185°C,10 bar g steam with 20°C superheator 10 bar g /250°C steam.

e - Sometimes end connections or internalcomponents may restrict the operatingenvelope of the product below thestandard rating. Care must thereforebe taken in selecting appropriate endconnections. In this case the productshould not be used in area 'e' and willbe worded:

The product should not be usedin this region because...(the actualreason will depend on theproduct being described).

f - If a product should not be used above acertain temperature, or an ancillaryproduct is required to operate above acertain limit then it will be tinted andworded appropriately. e.g.:

High temperature bolting requiredfor use in this region (the actualreason will depend on theproduct being described).

Steamsaturationcurve

Steamsaturationcurve

a

a - Is the maximum allowable temperature(TMA) the shell of the product can beraised to permanently, at a givenpressure.

b c

e

Tem

pera

ture

°C

Pressure bar g

Warning:Care must also be taken concerning Differential pressure limits and these are tabulated in addition to the 'Product / temperature limits' diagram.

Steamsaturationcurve C B

A

f

2

b - Is the maximum allowable pressure(PMA) which can be tolerated withinthe shell of the product at a giventemperature. It is a function of thePN rating and body design/material.

c - Is a prohibited area and the productmust not be used in this region andwill be worded:

d

Note:This line will illustratethe minimum operatingtemperature.

5

The product must not be used inthis region.

An example of a finished diagram:

1

3

1. The product must not be used in this region.

2. A high temperature spacer is required for use in this region.

3. The product should not be used in this region or beyond its operating rangeas damage to the internals may occur.

4. A - C Flanged end connections EN 1092 PN16.

5. A - B Flanged end connections EN 1092 PN25 and ANSI B 16.5 Class 300.

4

Page 8: Steam Tables 1993

� � �� �� �� ��

�����������������

���

The product must not be used in this region.

The product should not be used in this region or beyond itsoperating range as damage to the internals may occur.

A - B Flanged PN25.A - C Flanged ANSI 150.

Note: For hygienic /sanitary clamp ends the maximum pressure /temperature may be restricted by the gasket or sanitaryclamp used. Please consult Spirax Sarco.

Body design conditions PN25PMA Maximum allowable pressure 25 bar g @ 50°CTMA Maximum allowable temperature 300°C @ 17 bar g

Minimum allowable temperature -196°C

PMO Maximum operating pressure PN25 19 bar gfor saturated steam service ANSI 150 13.5 bar g

TMO Maximum operating temperature 222°C @ 19 bar gMinimum operating temperature -10°CNote: For lower operating temperatures consult Spirax Sarco.

Maximum differentialXYZ14-14.5 4.5 bar

�PMX XYZ14-10 10 barpressureXYZ14-14 14 bar

Designed for a maximum cold hydraulic test pressure of 37.5 bar gNote: With internals fitted, test pressure must not exceed 25 bar g

Typical 'Pressure / temperature limits' diagram:

Pressure / temperature limits

Tem

pera

ture

°C

Pressure bar g

Steamsaturationcurve

A

C B

Pressure / Temperature Limits TI-GCM-02 CM Issue 6

Definition of technical terms

PN Nominal pressure Permissible working pressure which is dependant on materials, design and workingtemperatures /pressures.

PMA Maximum allowable pressure (bar) That the shell of the product can withstand at a given temperature.

PMO Maximum operating pressure (bar) Which is given by the manufacturer.Sometimes restricted by the pressure limitations of internal mechanisms.

PO Operating pressure (bar) Measured at the product inlet.

POB Operating backpressure Measured at the outlet of the product.

PMOB Maximum operating backpressure (bar) Maximum permissible pressure at the trap outlet allowing correct operation.

�PMX Maximum differential pressure (bar) Maximum difference between operating pressure and operating backpressure.

�PMN Minimum differential pressure (bar) Minimum difference between operating pressure and operating backpressure.

TMA Maximum allowable temperature (oC) Maximum temperature to which the shell of the product can be raised permanently, ata given pressure.

TMO Maximum operating temperature (oC) Maximum temperature for which the operation of the product is guaranteed.

TO Operating temperature (oC) Temperature measured at the inlet of the product being tested.

Designed for a maximum cold hydraulic This is a cold hydraulic test applied to the body only, with no internals fitted.

test pressure of __ bar g Note: If, when the internals are fitted, the test pressure should be less, this figure shouldbe clarified to the end user (see Typical pressure/temperature limits diagram below)

Page 9: Steam Tables 1993

Local regulations may restrict the use of this product to below the conditions quoted.In the interests of development and improvement of the product, we reserve the right to change the specification. © Copyright 2005

ISO 9001

Cert. No. LRQ 0963008

���

���

���

���

���

���

� � �� �� �� ���

���

���

���

� � �� �� �� ��

��

���

���

���

� �� �� �� ��

TI-S24-41CH Issue 2

Pressure / Temperature Limitsfor Control Valves

Control valve Technical Information sheets (TI's) for products in pressurised systems contain a 'Pressure / temperature limits' diagram. Thisdiagram indicates the envelope of the product(s) at the full range of pressures and temperatures. The construction of the 'Pressure / temperaturelimits' diagram is shown below. Note: A table 'Definition of technical terms used for control valves' and a typical example (no specific product) isdisplayed overleaf.

��

���

���

���

� �� �� �� ���

���

���

���

� �� �� �� ��

���

��

���

���

���

� �� �� �� ��

Tem

pera

ture

°C

Pressure bar g

Tem

pera

ture

°C

Pressure bar g

Tem

pera

ture

°C

Pressure bar g

Tem

pera

ture

°C

Pressure bar g

Tem

pera

ture

°C

Pressure bar g

Tem

pera

ture

°C

Pressure bar g

d - The steam saturation curve is added(where relevant) to enable users toeasily find the specific operating points,e.g. 10 bar g saturated steam @ 185°C,10 bar g steam with 20°C superheator 10 bar g /250°C steam.

e - Sometimes end connections or internalcomponents may restrict the operatingenvelope of the product below thestandard rating. Care must thereforebe taken in selecting appropriate endconnections. In this case the productshould not be used in area 'e' and willbe worded:

The product should not be usedin this region because...(the actualreason will depend on theproduct being described).

f - If a product should not be used above acertain temperature, or an ancillaryproduct is required to operate above acertain limit then it will be tinted andworded appropriately. e.g.:

High temperature bolting requiredfor use in this region (the actualreason will depend on theproduct being described).

Steamsaturationcurve

Steamsaturationcurve

a

a - Is the maximum design temperaturethe body of the product can beraised to permanently, at a givenpressure.

b c

e

Tem

pera

ture

°C

Pressure bar g

Steamsaturationcurve C B

A

f

2

b - Is the maximum design pressurethat the combined body and endconnections of the product canwithstand at a given temperature. It isa function of the PN rating and bodydesign / material.

c - Is a prohibited area and the productmust not be used in this region andwill be worded:

d

Note: This line will illustratethe minimum operatingtemperature not the minimumdesign temperature.

5

The product must not be used inthis region.

An example of a finished diagram:

1 1. The product must not be used in this region.

2. High temperature bolting is required for use in this region.

3. The product should not be used in this region or beyond its operating rangeas damage to the internals may occur.

4. A - C Flanged end connections EN 1092 PN16.

5. A - B Flanged end connections EN 1092 PN25 or ANSI B 16.5 Class 300.

43

Page 10: Steam Tables 1993

����

���

������������

� � �� �� �� ��

The product must not be used in this region.

High temperature packing is required for use in this region.

High temperature bolting and packing is required for use inthis region.

A-B-C Flanged PN25.A-D-E Flanged PN16.

Note: As standard the XYZ series two port control valves are suppliedwith PTFE stem seal and metal-to-metal seats.

Body design conditions PN25Maximum design pressure 25 bar g @ 120°CMaximum design temperature 350°C @ 17.5 bar gMinimum design temperature -20°C

As standard 250°C @ 22 bar gWith hightemperature 300°C @ 20 bar g

Maximum packingoperatingWith hightemperaturetemperature 350°C @ 18 bar gbolting andpacking

Minimum operating temperature -10°CNote: For lower operating temperatures consult Spirax Sarco.Maximum differential pressure See relevant actuator TIDesigned for a maximum cold hydraulic test pressure of 37.5 bar gNote: As supplied the test pressure must not exceed 25 bar g

Typical 'Pressure / temperature limits' diagram:

Pressure / temperature limits

Tem

pera

ture

°C

Pressure bar g

Steamsaturationcurve

A

E C

Pressure / Temperature Limits for Control Valves TI-S24-41 CH Issue 2

Definition of technical terms used for control valves

Body This is a combination of the product body and end connections and is the term used to describethe pressure containing envelope of the product.

Nominal pressure (PN)The PN is the nominal working pressure / temperature (which is dependant on materials, designand working temperatures/pressures) that can be tolerated by the body of the product.

Maximum design pressureThis is the maximum allowable pressure that the body of the product can withstand at agiven temperature.

Maximum operating pressureThis is provided by the manufacturer when it is less than the maximum design pressure. Forexample the maximum design pressure may be reduced to the pressure limitation of the lowestrated option chosen.

Maximum differential pressure This is dependant upon the chosen actuator up to the maximum design pressure of the product.

Maximum design temperature This is the maximum allowable temperature to which the body of the product can be raisedpermanently, at a given pressure.

Maximum operating temperature This is the maximum temperature for correct operation of the product. This is determined by thelowest rated option chosen.

Minimum design temperature This is the minimum documented temperature the body of the product can withstand.

Minimum operating temperature This is the minimum temperature for correct operation of the product.

Designed for a maximum This is a cold hydraulic test applied to the body as supplied.cold hydraulic test pressure Note: When Spirax Sarco have tested the product in an alternative form than that supplied,of __ bar g or psi g a lower pressure will be given (see Typical pressure/ temperature limits diagram below).

D B

Page 11: Steam Tables 1993

Local regulations may restrict the use of this product to below the conditions quoted.In the interests of development and improvement of the product, we reserve the right to change the specification. © Copyright 2004

ISO 9001

Cert. No. LRQ 0963008

��

���

���

���

� �� �� �� ��

Tem

pera

ture

°C

d

Pressure bar g

d - The steam saturation curve is addedwhen relevant to enable users toeasily find the specific operatingpoints, e.g. 10 bar g saturated steam@ 185°C, 10 bar g steam with 20°Csuperheat or 10 bar g /250°C steam.

���

���

���

� � �� �� �� ��

Tem

pera

ture

°C

Pressure bar g

c

c - Is a prohibited area and the productmust not be used in this region andwill be worded:

The product must not be used inthis region.

���

���

���

� � �� �� �� ��

Tem

pera

ture

°C

Pressure bar g

b

b - Is the maximum pressure which can betolerated within the safety valve inlettract. It is a function of the PN ratingand and the body design /material.

���

���

���

Tem

pera

ture

°C

Pressure bar g

a

a - Is the maximum allowable temperatureto which the shell of the product canbe permanently raised, at a pressureof 0 bar g.

Note:This line will illustratethe minimum operatingtemperature.

TI-S13-50CH Issue 2

Pressure /Temperature Limitsfor Safety Valves

Safety valve Technical Information sheets (TI's) contain a 'Pressure / temperature limits' diagram. This diagram indicates the envelope of theproduct(s) at the full range of pressures and temperatures. Note: The construction of this diagram and a typical example (no specific product)is displayed below:

� � �� �� �� ��

�����������������

���

The product must not be used in this region.

A - B Flanged PN25.A - C Flanged ANSI 150.

Note: For hygienic /sanitary clamp ends the maximum pressure /temperature may be restricted by the gasket or sanitaryclamp used. Please consult Spirax Sarco.

Body design conditions PN25

MaximumDN15 - DN32 18 bar g

Set pressure range DN40 - DN50 14 bar g

Minimum 0.3 bar g

Metal seatMinimum -90°CMaximum +300°C

Nitrile seatMinimum -30°C

TemperatureMaximum +120°C

EPDM seatMinimum -50°CMaximum +150°C

Viton seatMinimum -20°CMaximum +200°C

OverpressureSteam 5%

Gas, liquid 10%

Performance data Blowdown limits Steam, gas, liquid 10%

Derated coefficient of Steam, gas 0.71discharge values Liquid 0.52

Designed for a maximum inlet cold hydraulic test pressure of 37.5 bar gNote: If a test gag is fitted, test pressure must not exceed 25 bar g

Typical 'Pressure / temperature limits' diagramand table for a safety valve:

Pressure / temperature limitsPlease contact: Spirax Sarco, when so required, for relevant detailsregarding the maximum allowable limits that the shell can withstand.

Tem

pera

ture

°C

Pressure bar g

Steamsaturationcurve

A

C B

Page 12: Steam Tables 1993

Local regulations may restrict the use of this product to below the conditions quoted.In the interests of development and improvement of the product, we reserve the right to change the specification. © Copyright 1999

Steam pressure 10 bar g Feedwater temperature 80 °C

Mathematical operation Units

Heat input required (see table 1) 2445 kJ/kg

x 1000 kg

= Total Heat Input 2445000 kJ

÷ Calorific value of fuel (see table 2) 42500

= Net fuel needed 57.53

x Boiler efficiency 1.25

= Actual fuel needed 71.9 COAL OIL GAS

Mathematical S.G Mathematical operation Heavy 9.7 operation Mathematical Medium 9.5 ÷ 1000 kg/tonne operation Light 9.35

= tonne

x £/tonne

£/1000 = kg steam .....................

AI-GAB-03AB Issue 2

The Cost of Steam - metric

GAS OIL 4 35 0.835 45,600

LIGHT 50 210 0.935 43,500

MEDIUM 230 950 0.95 43,000

HEAVY 900 3500 0.97 42,500

Table 1Heat input in Kilojoules (kJ) required to raise one kilogram (kg) of steam.

Feedwater Temperature °C

Table 2Calorific value of various fuels (approximate values)

COAL

GAS 105,500 kJ/Therm

GRADE RED. 1 cSt SECS

OIL

TYPE CALORIFIC VALUE (kJ/kg)

ANTHRACITE 32,500

GOOD BITUMINOUS COAL 30,000

GOOD AVERAGE INDUSTRIAL COAL 28,000

POOR AVERAGE INDUSTRIAL COAL 21,000

VISCOSITY SPECIFICGRAVITY

CALORIFICVALUE (kJ/kg)

.............

85% x 1.1880% x 1.2575% x 1.3470% x 1.43

The cost of steam is usually expressed in terms of the cost to raise 1000kg. The calculation itself is relatively straight forward and this AIS simplifies the task by the use of a forced path calculation sheet. A blank format is available overleaf.Example: Boiler operating pressure - 10 bar g, feedwater temperatures 80°C. Fuel used is heavy oil at £0.14/litre and boiler efficiency is 80%.

10 20 30 40 50 60 70 80 90 100 110

1 2665 2623 2581 2539 2497 2455 2413 2371 2329 2287 2245

5 2715 2673 2631 2589 2548 2506 2464 2421 2381 2338 2295

6 2722 2680 2638 2596 2555 2513 2471 2428 2388 2345 2302

7 2727 2685 2643 2601 2560 2518 2476 2433 2393 2350 2307

10 2740 2697 2655 2613 2573 2531 2489 2445 2406 2363 2319

12 2746 2704 2662 2620 2578 2536 2494 2452 2410 2368 2326

15 2752 2710 2668 2626 2584 2542 2500 2458 2416 2374 2332

17 2755 2713 2671 2629 2587 2545 2503 2461 2419 2377 2335

20 2759 2717 2675 2633 2591 2549 2507 2465 2423 2381 2339

25 2762 2720 2678 2636 2594 2552 2510 2468 2426 2384 2342

......................

...................... .....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

kg coal or oilTherm gas

kJ/kg coal or oilkJ/Therm gas

kg coal or oilTherm gas

÷ 0.97

= 74.1 litre

x £0.14 £/litre

= £10.38 £/1000 kg steam

x £/therm

= £/1000 kg steam

BoilerPressure

bar g

.....................

.....................

.............

Page 13: Steam Tables 1993

The Cost of Steam - metric AI-GAB-03 AB Issue 2

.....................

GAS OIL 4 35 0.835 45,600

LIGHT 50 210 0.935 43,500

MEDIUM 230 950 0.95 43,000

HEAVY 900 3500 0.97 42,500

Table 1Heat input in Kilojoules (kJ) required to raise one kilogram (kg) of steam.

Feedwater Temperature °C

Table 2Calorific value of various fuels (approximate values)

COAL

GAS 105,500 kJ/Therm

GRADE RED. 1 cSt SECS

OIL

TYPE CALORIFIC VALUE (kJ/kg)

ANTHRACITE 32,500

GOOD BITUMINOUS COAL 30,000

GOOD AVERAGE INDUSTRIAL COAL 28,000

POOR AVERAGE INDUSTRIAL COAL 21,000

VISCOSITY SPECIFICGRAVITY

CALORIFICVALUE (kJ/kg)

.............

85% x 1.1880% x 1.2575% x 1.3470% x 1.43

10 20 30 40 50 60 70 80 90 100 110

1 2665 2623 2581 2539 2497 2455 2413 2371 2329 2287 2245

5 2715 2673 2631 2589 2548 2506 2464 2421 2381 2338 2295

6 2722 2680 2638 2596 2555 2513 2471 2428 2388 2345 2302

7 2727 2685 2643 2601 2560 2518 2476 2433 2393 2350 2307

10 2740 2697 2655 2613 2573 2531 2489 2445 2406 2363 2319

12 2746 2704 2662 2620 2578 2536 2494 2452 2410 2368 2326

15 2752 2710 2668 2626 2584 2542 2500 2458 2416 2374 2332

17 2755 2713 2671 2629 2587 2545 2503 2461 2419 2377 2335

20 2759 2717 2675 2633 2591 2549 2507 2465 2423 2381 2339

25 2762 2720 2678 2636 2594 2552 2510 2468 2426 2384 2342

......................

...................... .....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

kg coal or oilTherm gas

kJ/kg coal or oilkJ/Therm gas

kg coal or oilTherm gas

x £/therm

= £/1000 kg steam

BoilerPressure

bar g

.....................

.....................

.............

Steam pressure bar g Feedwater temperature °C

Mathematical operation Units

Heat input required (see table 1) kJ/kg

x 1000 kg

= Total Heat Input kJ

÷ Calorific value of fuel (see table 2)

= Net fuel needed

x Boiler efficiency

= Actual fuel needed COAL OIL GAS

Mathematical S.G Mathematical operation Heavy 9.7 operation Mathematical Medium 9.5 ÷ 1000 kg/tonne operation Light 9.35

= tonne

x £/tonne

£/1000 = kg steam

÷ = litre

x £/litre

= £/1000 kg steam

Page 14: Steam Tables 1993

Local regulations may restrict the use of this product to below the conditions quoted.In the interests of development and improvement of the product, we reserve the right to change the specification. © Copyright 1999

.....................

AI-GAB-04AB Issue 2

The Cost of Steam - imperial

Feedwater Temperature °F

Table 2Calorific value of various fuels (approximate values)

COAL

GAS 100,000 Btu/Therm

GRADE RED. 1 cSt SECS

OIL

TYPE CALORIFIC VALUE (Btu/lb)

ANTHRACITE 14,000

GOOD BITUMINOUS COAL 13,000

GOOD AVERAGE INDUSTRIAL COAL 12,000

POOR AVERAGE INDUSTRIAL COAL 9,000

VISCOSITY SPECIFICGRAVITY

CALORIFIC VALUE (Btu/kg)

.............

85% x 1.1880% x 1.2575% x 1.3470% x 1.43

The cost of steam is usually expressed in terms of the cost to raise 1000lbs. The calculation itself is relatively straight forward and this AIS simplifies the task by the use of a forced path calculation sheet. A blank format is available overleaf.Example: Boiler operating pressure - 150 psi g, feedwater temperatures 180°F. Fuel used is heavy oil at £0.64/gallon and boiler efficiency is 80%.

50 70 80 100 120 140 160 180 200 212 250

15 1146 1126 1116 1096 1076 1056 1036 1016 996 984 946

80 1169 1149 1139 1119 1099 1079 1059 1039 1019 1007 969

90 1171 1151 1141 1121 1101 1081 1061 1041 1021 1009 971

100 1172 1152 1142 1122 1102 1082 1062 1042 1022 1010 972

150 1179 1159 1149 1129 1109 1089 1069 1049 1029 1017 979

170 1180 1160 1150 1130 1110 1090 1070 1050 1030 1018 980

200 1182 1162 1152 1132 1112 1092 1072 1052 1032 1020 982

250 1185 1165 1155 1135 1115 1095 1075 1055 1035 1023 985

300 1186 1166 1156 1136 1116 1096 1076 1056 1036 1024 986

350 1187 1167 1157 1137 1117 1097 1077 1057 1037 1025 987

......................

...........................................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

BoilerPressure

psi g

.....................

.....................

.............

Steam pressure 150 psi g Feedwater temperature 180 °F

Mathematical operation Units

Heat input required (see table 1) 1049 Btu/lb

x 1000 lb

= Total Heat Input 1049000 Btu

÷ Calorific value of fuel (see table 2) 18300

= Net fuel needed 57.3

x Boiler efficiency 1.25

= Actual fuel needed 71.9 COAL OIL GAS

Mathematical S.G Mathematical operation Heavy 9.7 operation Mathematical Medium 9.5 ÷ 2240 lb/ton operation Light 9.35

= ton

x £/ton

£/1000 = lb steam

Btu/lb coal or oilBtu/Therm gas

lb coal or oilTherm gas

lb coal or oilTherm gas

÷ 9.7

= 7.38 gallon

x £0.64 £/gallon

= £4.72 £/1000 lb steam

x £/therm

= £/1000 lb steam

GAS OIL 4 35 0.835 19,600

LIGHT 50 210 0.935 18,700

MEDIUM 230 950 0.95 18,500

HEAVY 900 3500 0.97 18,300

Table 1Heat input in British Thermal Units (Btu) required to raise one pound (lb) of steam.

Page 15: Steam Tables 1993

The Cost of Steam - imperial AI-GAB-03 AB Issue 2

.....................

Feedwater Temperature °F

Table 2Calorific value of various fuels (approximate values)

COAL

GAS 100,000 Btu/Therm

GRADE RED. 1 cSt SECS

OIL

TYPE CALORIFIC VALUE (Btu/lb)

ANTHRACITE 14,000

GOOD BITUMINOUS COAL 13,000

GOOD AVERAGE INDUSTRIAL COAL 12,000

POOR AVERAGE INDUSTRIAL COAL 9,000

VISCOSITY SPECIFICGRAVITY

CALORIFIC VALUE (Btu/kg)

.............

85% x 1.1880% x 1.2575% x 1.3470% x 1.43

50 70 80 100 120 140 160 180 200 212 250

15 1146 1126 1116 1096 1076 1056 1036 1016 996 984 946

80 1169 1149 1139 1119 1099 1079 1059 1039 1019 1007 969

90 1171 1151 1141 1121 1101 1081 1061 1041 1021 1009 971

100 1172 1152 1142 1122 1102 1082 1062 1042 1022 1010 972

150 1179 1159 1149 1129 1109 1089 1069 1049 1029 1017 979

170 1180 1160 1150 1130 1110 1090 1070 1050 1030 1018 980

200 1182 1162 1152 1132 1112 1092 1072 1052 1032 1020 982

250 1185 1165 1155 1135 1115 1095 1075 1055 1035 1023 985

300 1186 1166 1156 1136 1116 1096 1076 1056 1036 1024 986

350 1187 1167 1157 1137 1117 1097 1077 1057 1037 1025 987

......................

...........................................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

.....................

BoilerPressure

psi g

.....................

.....................

.............

Steam pressure psi g Feedwater temperature °F

Mathematical operation Units

Heat input required (see table 1) Btu/lb

x 1000 lb

= Total Heat Input Btu

÷ Calorific value of fuel (see table 2)

= Net fuel needed

x Boiler efficiency

= Actual fuel needed COAL OIL GAS

Mathematical S.G Mathematical operation Heavy 9.7 operation Mathematical Medium 9.5 ÷ 2240 lb/ton operation Light 9.35

= ton

x £/ton

£/1000 = lb steam

Btu/lb coal or oilBtu/Therm gas

lb coal or oilTherm gas

lb coal or oilTherm gas

x £/therm

= £/1000 lb steam

GAS OIL 4 35 0.835 19,600

LIGHT 50 210 0.935 18,700

MEDIUM 230 950 0.95 18,500

HEAVY 900 3500 0.97 18,300

÷ = gallon

x £/gallon

= £/1000 lb steam

Table 1Heat input in British Thermal Units (Btu) required to raise one pound (lb) of steam.

Page 16: Steam Tables 1993

ISO 9001

Cert. No. LRQ 0963008

Let: = Mass flow in kg/h P1 = Upstream pressure in bar a P2 = Downstream pressure in bar a Kv = Valve flow coefficient. = Pressure drop ratio =

P1 - P2

P1

Note: To convert gauge pressure to absolute pressure, add 1, i.e. 10 bar g = 11 bar a.

The chart overleaf shows that with a given upstream pressure P1 and with a pressure drop across the valve more than is needed to give critical flow conditions, or > 0.42, the steam flowrate is directly proportional to the Kv of the valve. Conversely, with a given Kv, the flowrate is directly proportional to the upstream pressure P1. So for critical flow, we have:-

= C x Kv P1 and in the units shown, C = 12 (Constant).

Thus: = 12 Kv P1

With a smaller pressure drop, the flow is reduced until it becomes zero, at zero pressure drop. Many formulas are in current use to predict the relationship between flowrate and the pressure drop ratio under these conditions. One empirical formula which gives results very close indeed to the British Standard method, but simplifies the calculation, is:-

= 12 Kv P1 √ 1 - 5.67 (0.42 - )²

If this formula is used when P2 is below the value which gives critical flow, then the term within the bracket (0.42 - ) becomes less than zero. It is then taken as zero, and the function within the square root sign becomes 1.

How to use the chartExample 1: How to find Kv value for a critical flow application.Steam demand of heat exchanger = 800 kg/hSteam pressure upstream of valve = 8 bar g = 9 bar aSteam pressure required in exchanger = 3 bar g = 4 bar aUsing the selection chart opposite:Draw a horizontal line from 800 kg/hDraw a horizontal line from 9 bar a to the critical pressure drop line, which is reached before a pressure drop line for (9 - 4 = 5 bar) and drop a vertical line from the intersection to meet the 800 kg/h horizontal.Read the Kv at this crossing point, i.e. Kv = 7.5Refer to the Kv values given on the appropriate Technical Information Sheet for each valve type.SA (self-acting), EL (electric /electronic) and PN (pneumatic) valves may be selected using their maximum Kv values.

Example 2: How to find the Kv value for a non-critical flow application.Steam demand of heat exchanger = 230 kg/h.Steam pressure upstream of valve = 5 bar g = 6 bar aSteam pressure required in exchanger = 4 bar g = 5 bar aUsing the selection chart opposite:Draw horizontal lines from 230 kg/h, and from 6 bar a to pressure drop of (6 - 5 = 1 bar). Drop a vertical line from the intersection to meet the 230 kg/h horizontal, and read the Kv at this crossing point, i.e. Kv = 4.

Example 3: How to find the pressure drop across a valve with a known Kv.Steam demand of heat exchanger = 3 000 kg/hSteam pressure upstream of valve = 10 bar g = 11 bar aKv of valve to be used = 40Using the selection chart opposite:Draw horizontal lines from 11 bar a, and from 3 000 kg/h to meet Kv = 40 line. Draw a vertical line upwards from the intersection to meet the 11 bar a horizontal. Read the pressure drop at this crossing point, i.e. ∆P = 1 bar (approximately).

Local regulations may restrict the use of this product to below the conditions quoted.In the interests of development and improvement of the product, we reserve the right to change the specification. © Copyright 2006

TI-GCM-08CM Issue 1

Saturated Steam Sizing Chart

The chart below is for displaying Examples 1, 2 and 3 only, a complete sizing chart is shown overleaf.For Water Sizing Chart see TI-GCM-09

���������

����

��

���

��

��

����

��

��

��

����

�����

���

���

������

���

���

����

�� ���� ���

� ���� ���

� ���

� ���

� ���

�������

����

����

������

����

����

�����

�������

����

����

����

����

�����

���������

���������

���

����

��

���

����

��

���������

���������

���

�����������������

���������

���

��

�� ���

���

���

��

��

�� ����

���

��

���

���

����

��

���������������������������

�� ����

���

Page 17: Steam Tables 1993

����

��

���

��

��

����

��

��

��

����

�����

���

���

������

���

��� ��� � � � �

��

���

������

���

��

��

���

���

��

���

�� ���

��� ����� ���

�� ����� ���

�� ���

�� ���

�� ���� ���

� ���� ���

� ���

� ���

� ���

����

��

�� ����

��

�� �������

���

�����������������

���������������������������

���

�������

����

����

������

����

����

�����

�������

����

����

����

����

�����

Saturated Steam Sizing Chart TI-GCM-08 CM Issue 1

Saturated steam sizing chart This sizing chart is empirical and should not be used for critical applications

Page 18: Steam Tables 1993

Local regulations may restrict the use of this product to below the conditions quoted.In the interests of development and improvement of the product, we reserve the right to change the specification without notice. © Copyright 2006

ISO 9001

Cert. No. LRQ 0963008

Valve authorityThe ratio of pressure drop across the valve when fully open to that across the complete circuit is termed the 'Valve authority' (N) and is expressed as: N =

Where: N = Valve authority P1 = Pressure drop across the fully open valve P2 = Pressure drop across the remainder of the circuit

The diagrams opposite illustrate P1 and P2 more fully.Valve authority is a means of selecting a valve size on a water system with due regard to economic viability and good control. When selecting a valve size, the valve authority should be between 0.2 and 0.5 (and preferably 0.5). This will ensure that each small valve movement will influence some authority over the flow whilst not excessively increasing pumping power costs.Valve authority will always relate to the circuit which has a varying flowrate.

���

���

�������

��� ��

������������������

��

��

��

����

��

����

��

��

��

��

��

� � � � � �� �� �� ���� ���

How to use the chartNote: the chart below is used for the following example only. A complete chart is shown overleaf.

Example:

The heat exchanger has a MTHW demand of = 10 m3 /h

The full-load pressure drop P1 = 50 kPa ** Established from 'Valve authority' (see below).

Go to the selection chart below:

- Draw a horizontal line from 10 m3 /h

- Run a vertical line from 50 kPa until it crosses 10 m3 /h line.

- Kv is given at this crossing point i.e. Kv 14

Refer to the Kv values given on the appropiate Technical Information Sheet for each valve type.

SA (self-acting), EL (electronic) and PN (pneumatic) controls should be sized on maximum Kv value.

TI-GCM-09CM Issue 1

WaterValve Sizing Chart

Note: = Kv √ P1, = Water flow (m3 /h), P1 = Pressure drop across the valve (bar), Kv = Flow coefficient (m3 /h bar).

This chart assumes no cavitation after the control valve.

P1

P1 + P2

Valve authority - Two-port valve

Valve authority - Three-port diverting valve

Valve authority - Three-port mixing valve

P1

P1

P2

P1

P2

Example

Exam

ple

P2

Page 19: Steam Tables 1993

��� ��� ��� ��� � � � � � �� �� �� �� �� ��� ��� ��� ���

���� ���� ���� ���� ��� ��� ��� � � � � � �� �� �� �����

������������������

��� � ����������� � � � �

������� �� ��� ���� ������ ���� �� ��� ���� �� ��� ������ ��� ��� � ���������

� � � ��� � � � � ���� � � � � � � � ��� �� ��� ������ ����� ����� ���� ���� ���� ������

� � ��� �� ���� ���� �� ��� ����� �� ��� ���� ����� �����

� � � � � �� �� �� �� �� ��� ��� ��� ��� ���� ���� ����

�����

����� � � ��� �� � � � �

���

���

���

���

����

��

��

��

���

������

���

���

���

����

����

����

����

����

�������������������

������������������

��

��

����

��

��

����

������

���

���

���

��������

����

����

����������

�����

����������

����

���

���

���

����

����

����

��������

���

���

������

��

��

��

��

����

���

���

���

������

�����

����

�����

��� ��

Water Valve Sizing Chart TI-GCM-09 CM Issue 1

Page 20: Steam Tables 1993

Local regulations may restrict the use of this product to below the conditions quoted.In the interests of development and improvement of the product, we reserve the right to change the specification without notice. © Copyright 2007

ISO 9001

Cert. No. LRQ 0963008

TI-GCM-11CM Issue 1

CondensatePipe Sizing

Condensate pipe sizingCondensate pipes operate in 4 basic ways:

1. Drain lines to traps.2. Discharge lines from traps.3. Common discharge lines.4. Pumped lines.

Types 2 and 3 will usually contain flash steam whilst types 1 and 4 will not.

The condensate pipe sizing chart can be used to size all of the above types, and is suitable for lines up to 100 m long.

Example 1 - Drain lines to traps:Scenario: Drain 500 kg/h from process to trap.How to size: Enter the top chart at 500 kg/h and draw a line horizontally across to the pipe size. Result: If the selection sits between two sizes, choose the smaller size (15 mm).

Example 2 - Discharge lines from traps:Scenario: Discharge 200 kg/h from 15 bar g to 0.5 bar g.How to size: Enter the bottom of the chart at 15 bar g and draw a line to the 0.5 bar condensate pressure line. Draw a line vertically upwards to meet the 200 kg/h line on the upper half of the chart. Result: If the line is rising choose the larger size (32 mm), if the line falls choose the lower size (25 mm).

Example 3 - Pumped lines:Scenario: Pump 2 000 kg/h from the pump to the hotwell tank. If it is an electrical pump use the pump discharge rate, not the collection rate. For pressure powered pumps and APTs use 4 x the collection rate. For this example we will use an APT which has the following discharge rate = 4 x 2 000 kg/h = 8 000 kg/h.How to size: Enter the upper half of the chart at 8 000 kg/h and draw a line horizontally to the pipe size. Result: If the line is less than 100 m use the lower size, if it is longer than 100 m, use the larger size.

Example 4 - Discharge lines from thermostatic traps:Scenario : Condensate at 120°C is discharging to atmosphere (300 kg/h at 120°C). How to size: Using the temperature scale, enter the lowest half of the chart at 120°C and draw a line horizontally to the atmospheric condensate pressure line (0 bar g). Proceed by drawing a line vertically upwards to meet the 300 kg/h line on the upper half of the chart. Result: If the line is falling, choose the lower size; if the line is rising, choose the larger size.

Example 1

Example 4Example 2

Example 3

Condensate pipe size mm

100 000

50 000

20 000

10 000

5 000

2 000

1 000

500

200

100

50

20

10

50250

200180

160

140

120

1000.50

12

5

10

203040

6

10

15

20

2532

40

50

65

80

100150

500 400 350 300 250 200

20

1015

5

21

00.5

Condensate pipe size mmCo

nden

sate

flow

rate

kg/

h

Stea

m te

mpe

ratu

re °

C

Stea

m s

yste

m p

ress

ure

bar g

Condensate system pressure bar g

Page 21: Steam Tables 1993

Condensate Pipe Sizing TI-GCM-11 CM Issue 1

Condensate pipe size mm

100 000

50 000

20 000

10 000

5 000

2 000

1 000

500

200

100

50

20

10

50250

200

180

160

140

120

100

0.5

0

1

2

5

10

20

30

40

6

10

15

20

25

32

40

50

65

80

100

150

500 400 350 300 250 200

20

10

5

2

1

0

0.5

Cond

ensate pip

e size mm

Con

den

sate

flow

rate

kg/

h

Ste

am t

emp

erat

ure

°C

Ste

am s

yste

m p

ress

ure

bar

g

Cond

ensate system p

ressure bar g

Page 22: Steam Tables 1993

Local regulations may restrict the use of this product to below the conditions quoted.In the interests of development and improvement of the product, we reserve the right to change the specification without notice. © Copyright 2007

ISO 9001

Cert. No. LRQ 0963008

TI-GCM-10CM Issue 2

Flow of Water in Heavy Steel Pipes

Flowrate kg / hPipe size Ø 15 mm 20 mm 25 mm 32 mm 40 mm 50 mm 65 mm 80 mm 100 mm

Pa / m mbar / m <0.15 m / s 0.15 m / s 0.3 m / s10.0 0.100 50 119 223 490 756 1 447 2 966 4 644 9 43212.5 0.125 58 133 252 554 853 1 634 3 348 5 220 10 65615.0 0.150 65 151 277 616 943 1 807 3 708 5 760 11 73617.5 0.175 68 162 302 670 1 026 1 966 4 032 6 264 12 74420.0 0.200 76 176 328 720 1 105 2 113 4 320 6 732 13 68022.5 0.225 79 187 349 770 1 177 2 254 4 608 7 164 14 58025.0 0.250 83 198 371 814 1 249 2 387 4 860 7 596 15 408 0.5 m / s

27.5 0.275 90 209 389 857 1 314 2 513 5 112 7 992 16 20030.0 0.300 94 220 410 900 1 379 2 632 5 364 8 352 16 95632.5 0.325 97 230 428 940 1 440 2 747 5 616 8 712 17 71235.0 0.350 101 241 446 979 1 498 2 858 5 832 9 072 18 43237.5 0.375 104 248 464 1 015 1 555 2 966 6 048 9 396 19 11640.0 0.400 112 259 479 1 051 1 609 3 071 6 264 9 720 19 76442.5 0.425 115 266 497 1 087 1 663 3 175 6 480 10 044 20 41245.0 0.450 119 277 511 1 123 1 717 3 272 6 660 10 368 21 02447.5 0.475 122 284 526 1 156 1 768 3 370 6 876 10 656 21 63650.0 0.500 126 292 540 1 188 1 814 3 463 7 056 10 944 22 21252.5 0.525 130 299 558 1 220 1 865 3 553 7 236 11 232 22 78855.0 0.550 130 306 572 1 249 1 912 3 636 7 416 11 520 23 36457.5 0.575 133 317 583 1 282 1 958 3 744 7 596 11 808 23 90460.0 0.600 137 324 598 1 310 2 002 3 816 7 776 12 060 24 44462.5 0.625 140 331 612 1 339 2 048 3 888 7 920 12 312 24 98465.0 0.650 144 338 626 1 368 2 092 3 996 8 100 12 600 25 48867.5 0.675 148 346 637 1 397 2 131 4 068 8 280 12 852 25 99270.0 0.700 151 353 652 1 422 2 174 4 140 8 424 13 068 26 49672.5 0.725 151 356 662 1 451 2 218 4 212 8 568 13 320 27 00075.0 0.750 155 364 677 1 476 2 257 4 284 8 748 13 572 27 46877.5 0.775 158 371 688 1 505 2 297 4 356 8 892 13 788 27 97280.0 0.800 162 378 698 1 530 2 336 4 464 9 036 14 040 28 44082.5 0.825 166 385 709 1 555 2 372 4 536 9 180 14 256 28 87285.0 0.850 166 389 724 1 580 2 412 4 608 9 324 14 472 29 34087.5 0.875 169 396 734 1 606 2 448 4 680 9 468 14 724 29 772 1.0 m / s

90.0 0.900 173 403 745 1 627 2 488 4 716 9 612 14 940 30 24092.5 0.925 176 407 756 1 652 2 524 4 788 9 756 15 156 30 67295.0 0.950 176 414 767 1 678 2 560 4 860 9 900 15 372 31 10497.5 0.975 180 421 778 1 699 2 596 4 932 10 044 15 552 31 500

100.0 1.000 184 425 788 1 724 2 632 5 004 10 152 15 768 31 932120.0 1.200 202 472 871 1 897 2 898 5 508 11 196 17 352 35 100140.0 1.400 220 511 943 2 059 3 143 5 976 12 132 18 792 38 160160.0 1.600 234 547 1 015 2 210 3 373 6 408 12 996 20 160 40 680180.0 1.800 252 583 1 080 2 354 3 589 6 804 13 824 21 420 43 200200.0 2.000 266 619 1 141 2 488 3 780 7 200 14 580 22 644 45 720 1.5 m / s

220.0 2.200 281 652 1 202 2 617 3 996 7 560 15 336 23 760 47 880240.0 2.400 288 680 1 256 2 740 4 176 7 920 16 056 24 876 50 400260.0 2.600 306 713 1 310 2 855 4 356 8 244 16 740 25 920 52 200280.0 2.800 317 742 1 364 2 970 4 536 8 568 17 388 26 928 54 360300.0 3.000 331 767 1 415 3 078 4 680 8 892 18 000 27 900 56 160

Page 23: Steam Tables 1993

Flow of Water in Heavy Steel Pipes TI-GCM-10 CM Issue 2

Flowrate kg / hPipe size Ø 15 mm 20 mm 25 mm 32 mm 40 mm 50 mm 65 mm 80 mm 100 mm

Pa / m mbar / m 0.5 m / s 1.0 m / s 1.5 m / s 2.0 m / s

320 3.2 342 796 1465 3182 4860 9180 18612 28836 58320

340 3.4 353 821 1512 3287 5004 9504 19224 29772 60120

360 3.6 364 846 1559 3388 5148 9756 19800 30636 61920

380 3.8 374 871 1602 3492 5292 10044 20340 31500 63720

400 4.0 385 893 1645 3578 5436 10332 20880 32364 65160

420 4.2 396 918 1688 3672 5580 10584 21420 33192 66960

440 4.4 407 940 1732 3744 5724 10836 21924 33984 68400

460 4.6 414 961 1771 3852 5868 11088 22464 34776 70200

480 4.8 425 983 1811 3924 5976 11340 22932 35532 71640

500 5.0 432 1004 1850 4032 6084 11592 23436 36360 73080

520 5.2 443 1026 1886 4104 6228 11808 23904 37080 74520

540 5.4 450 1048 1926 4176 6372 12060 24372 37800 75960

560 5.6 461 1066 1962 4212 6480 12276 24840 38520 77400

580 5.8 468 1087 1998 4356 6588 12492 25272 39240 78840

600 6.0 479 1105 2034 4428 6732 12708 25740 39960 80280

620 6.2 486 1123 2070 4500 6840 12924 26172 40680 81720

640 6.4 493 1145 2102 4572 6948 13140 26604 41040 83160

660 6.6 500 1163 2138 4644 7056 13356 27000 41760 84240

680 6.8 511 1181 2171 4716 7164 13572 27432 42480 85680

700 7.0 518 1199 2203 4788 7272 13788 27828 43200 86760

720 7.2 526 1217 2236 4860 7380 13968 28260 43920 88200

740 7.4 533 1235 2268 4932 7488 14184 28656 44280 89280 3.0 m / s

760 7.6 540 1249 2300 5004 7560 14364 29052 44640 90360

780 7.8 547 1267 2333 5076 7704 14544 29412 45360 91800

800 8.0 554 1285 2362 5112 7812 14760 29808 46080 92880

820 8.2 562 1303 2394 5184 7884 14940 30204 46440 94320

840 8.4 569 1318 2423 5256 7992 15120 30564 47160 95400

860 8.6 576 1336 2452 5328 8100 15300 30924 47880 96480

880 8.8 583 1350 2480 5400 8172 15480 31284 48600 97560

900 9.0 590 1364 2513 5436 8280 15660 31680 48960 98640

920 9.2 598 1382 2542 5508 8388 15840 32004 49680 99720

940 9.4 605 1397 2567 5580 8460 16020 32364 50040 100800

960 9.6 612 1411 2596 5616 8568 16200 32724 50760 101880

980 9.8 619 1429 2624 5688 8640 16380 33084 51120 102960

1000 10.0 623 1444 2653 5760 8748 16524 33408 51840 104040

1100 11.0 655 1516 2786 6048 9180 17352 35064 54360 109440

1200 12.0 688 1588 2912 6300 9612 18144 36720 56880 114120

1300 13.0 716 1652 3038 6588 10008 18900 38160 59040 118960

1400 14.0 745 1717 3154 6840 10404 19656 39600 61200 123534

1500 15.0 770 1782 3269 7128 10764 20340 41040 63360 127950

1600 16.0 799 1840 3380 7308 11124 21024 42480 65520 132224

1700 17.0 824 1901 3485 7560 11484 21672 43920 67680 136369

1800 18.0 850 1955 3589 7776 11808 22375 45000 69748 140395

1900 19.0 871 2012 3708 7992 12132 23005 46440 71698 144313

2000 20.0 896 2066 3780 8208 12456 23620 47520 73598 148132