Statics - Philadelphia University · 2 Equilibrium condition ... Coplanar Forces. 11/7/2015 10...

15
11/7/2015 1 Statics Equilibrium Moves at constant velocity V =C At rest V = 0 Constant Velocity

Transcript of Statics - Philadelphia University · 2 Equilibrium condition ... Coplanar Forces. 11/7/2015 10...

Page 1: Statics - Philadelphia University · 2 Equilibrium condition ... Coplanar Forces. 11/7/2015 10 Coplanar Forces. 11/7/2015 11 Coplanar Forces. 11/7/2015 12 Equilibrium conditions:

11/7/2015

1

Statics

Equilibrium

Moves at

constant

velocity

V =C

At rest

V = 0

Constant Velocity

Page 2: Statics - Philadelphia University · 2 Equilibrium condition ... Coplanar Forces. 11/7/2015 10 Coplanar Forces. 11/7/2015 11 Coplanar Forces. 11/7/2015 12 Equilibrium conditions:

11/7/2015

2

Equilibrium condition

Satisfying Newtown’s 1st Law of Motion: ∑ F = 0

This condition implies that ma = 0. here m could not

equal zero and so a = 0 (i.e. not accelerating or

decelerating)

Free Body Diagram (FBD)

Definition:

Is a diagram for a particle or a body isolated

from its surrounding.

It shows all the forces acting on the particle

Page 3: Statics - Philadelphia University · 2 Equilibrium condition ... Coplanar Forces. 11/7/2015 10 Coplanar Forces. 11/7/2015 11 Coplanar Forces. 11/7/2015 12 Equilibrium conditions:

11/7/2015

3

Procedures to draw FBD

Drawing outlined shapes

Show all the forces

Identify each force

Example[1]

F1

F2

Mg

M

Page 4: Statics - Philadelphia University · 2 Equilibrium condition ... Coplanar Forces. 11/7/2015 10 Coplanar Forces. 11/7/2015 11 Coplanar Forces. 11/7/2015 12 Equilibrium conditions:

11/7/2015

4

Example[2]

AB C

D

T1

M1g

B

T2

C

M2g

T2

T3

M1

M2

Connection types: linear springs

LoLo

L

F

δ

Applying Load

deflection (δ) = L – Lo

F = K δ where K is thespring stiffness

increasing K makesthe spring stiffer.

Stiffer springs needsmore force to deflect it

Page 5: Statics - Philadelphia University · 2 Equilibrium condition ... Coplanar Forces. 11/7/2015 10 Coplanar Forces. 11/7/2015 11 Coplanar Forces. 11/7/2015 12 Equilibrium conditions:

11/7/2015

5

Forces in Linear Springs

As the load affects the spring, an internal resistance load creates.

The relation between the external load and the internal force of thespring is proportional and the proportional factor is the stiffness (K)

Linear springs could be:

tension spring compression springs

Equivalent of Linear Springs (parallel)

K1

K2

K3

Kn

Force Force

Keq = K1 + K2 + …. + Kn

Page 6: Statics - Philadelphia University · 2 Equilibrium condition ... Coplanar Forces. 11/7/2015 10 Coplanar Forces. 11/7/2015 11 Coplanar Forces. 11/7/2015 12 Equilibrium conditions:

11/7/2015

6

Equivalent of Linear Springs (series)

Force

Force

K1 K2 Kn

n21eq K

1...

K

1

K

1

K

1

Connection types: cables and pulleys

it has always tension

force in the direction of

the cable.

In most of engineering

problems, cables are

assumed massless and

unable to stretch.

T

T

Page 7: Statics - Philadelphia University · 2 Equilibrium condition ... Coplanar Forces. 11/7/2015 10 Coplanar Forces. 11/7/2015 11 Coplanar Forces. 11/7/2015 12 Equilibrium conditions:

11/7/2015

7

Example[3]

T

Page 8: Statics - Philadelphia University · 2 Equilibrium condition ... Coplanar Forces. 11/7/2015 10 Coplanar Forces. 11/7/2015 11 Coplanar Forces. 11/7/2015 12 Equilibrium conditions:

11/7/2015

8

Equilibrium conditions:

∑F = 0

∑Fx i + ∑Fy j = 0

∑Fx = 0

∑Fy = 0

Page 9: Statics - Philadelphia University · 2 Equilibrium condition ... Coplanar Forces. 11/7/2015 10 Coplanar Forces. 11/7/2015 11 Coplanar Forces. 11/7/2015 12 Equilibrium conditions:

11/7/2015

9

Procedures for analysis FBD

Coordinate system (x and y axes)

Force Labeling (magnitude and direction)

Assuming the sense of the unknown forces

Equilibrium equations

Positive and negative assigning

Define the direction of the solution

∑ Fx = 0 and ∑ Fy = 0

Coplanar Forces

Page 10: Statics - Philadelphia University · 2 Equilibrium condition ... Coplanar Forces. 11/7/2015 10 Coplanar Forces. 11/7/2015 11 Coplanar Forces. 11/7/2015 12 Equilibrium conditions:

11/7/2015

10

Coplanar Forces

Page 11: Statics - Philadelphia University · 2 Equilibrium condition ... Coplanar Forces. 11/7/2015 10 Coplanar Forces. 11/7/2015 11 Coplanar Forces. 11/7/2015 12 Equilibrium conditions:

11/7/2015

11

Coplanar Forces

Page 12: Statics - Philadelphia University · 2 Equilibrium condition ... Coplanar Forces. 11/7/2015 10 Coplanar Forces. 11/7/2015 11 Coplanar Forces. 11/7/2015 12 Equilibrium conditions:

11/7/2015

12

Equilibrium conditions:

∑F = 0

∑Fx i + ∑Fy j + ∑Fz k= 0

∑Fx = 0

∑Fy = 0

∑Fz = 0

S

t

a

t

i

c

s

.

Page 13: Statics - Philadelphia University · 2 Equilibrium condition ... Coplanar Forces. 11/7/2015 10 Coplanar Forces. 11/7/2015 11 Coplanar Forces. 11/7/2015 12 Equilibrium conditions:

11/7/2015

13

Procedures for analysis FBD

Coordinate system (x, y and z axes)

Force Labeling (magnitude and direction)

Assuming the sense of the unknown forces

Equilibrium equations

Positive and negative assigning

Define the direction of the solution

∑ Fx = 0, ∑ Fy = 0 and ∑ Fz = 0

S

t

a

t

i

c

s

.

Three dimensional Forces

Page 14: Statics - Philadelphia University · 2 Equilibrium condition ... Coplanar Forces. 11/7/2015 10 Coplanar Forces. 11/7/2015 11 Coplanar Forces. 11/7/2015 12 Equilibrium conditions:

11/7/2015

14

Three dimensional Forces

Page 15: Statics - Philadelphia University · 2 Equilibrium condition ... Coplanar Forces. 11/7/2015 10 Coplanar Forces. 11/7/2015 11 Coplanar Forces. 11/7/2015 12 Equilibrium conditions:

11/7/2015

15

Three dimensional Forces