START PROGRAM - FINAL REPORT - TU...

35
START PROGRAM - FINAL REPORT Project title Advanced numerical micromagnetics Project leader Prof. Thomas Schrefl Project number Y132-N02 Final Report ADVANCED NUMERICAL MICROMAGNETICS; March 2007 / Page 1 of 35 www.advancedmagnetics.net

Transcript of START PROGRAM - FINAL REPORT - TU...

START PROGRAM - FINAL REPORT Project title Advanced numerical micromagnetics Project leader Prof. Thomas Schrefl Project number Y132-N02

Final Report ADVANCED NUMERICAL MICROMAGNETICS; March 2007 / Page 1 of 35 www.advancedmagnetics.net

1. Summary for public relations work

Magnetic materials are a vital part of daily life. From cars, desktop PCs to small gadgets –

magnets play an essential role. In hybrid cars, permanent magnets are used in motors and

generators. High-performance magnets improve their performance and energy efficiency.

The development of low emission cars goes hand in hand with the optimization of permanent

magnets. The information and communication society requires increasing data storage

capacity. Magnetic media account for 92% of all newly stored information. Electronic data

storage is no longer done on computers only. Consumer electronic devices are expected to

store and replay data in form of music, video, and images. Magnets have a wide range of

application areas. In all fields a detailed understanding of how the magnet works - how its

power can be improved - leads better performance, higher energy efficiency and higher

quality of life for the citizens of modern society.

Computer simulations precisely describe the magnetization processes on a length scale

thousand times smaller than the thickness of a human hair. The atomistic magnetic moments

– like tiny little compass needles – arrange themselves according the chemical / physical

structure of the magnet. The microstructure might be quite complex. At high magnification,

the particles of a hard disk, a hundred of which are used to encode a bit, look like rows of

rocks under the electron microscope. Within each particle, thousands of tiny compass

needles change their direction as imposed by the magnetic field of the write head. Because

the structure of the materials is in no way regular, it can only be described by equations with

computational methods. In this way predictions about the magnetic behavior of a material are

possible and can be compared with the experimentally observed properties.

The development of a software package for the simulation of magnetization dynamics taking

into account the complex microstructure led to major breakthroughs in different fields of

applied magnetism. The use of state-of-the-art numerical methods makes the developed

software to be the fastest and most precise software package that is currently available for

the optimization of magnetic devices. Fast field calculation methods make use of techniques

that are very similar to the compression of images or videos on a computer. Your future hard

disk may have been designed by use of the software developed in this project. Magnetic

storage will reach a storage density of a trillion bits per square centimeters. The current road

map envisions a special recording material: Hard and soft magnetic layers that are coupled

to each other, a structure developed within this project. Computer techniques developed

within this project are also used to optimize permanent magnets for use in low emission,

hybrid cars.

Final Report ADVANCED NUMERICAL MICROMAGNETICS; March 2007 / Page 2 of 35 www.advancedmagnetics.net

Zusammenfassung

Magnetische Werkstoffe sind aus dem heutigen Leben nicht mehr wegzudenken. Von Autos

über Computer bis hin zu technischen Geräten – Magnete spielen eine grundlegende Rolle.

In Hybridautos werden Permanentmagnete in Motoren und Generatoren eingesetzt.

Hochleistungsmagnete verbessern ihre Leistungsfähigkeit und Energieeffizienz. Die

Entwicklung von Niederemissionsautos geht Hand in Hand mit der Optimierung von

Permanentmagneten. Die Informations- und Kommunikationsgesellschaft hat einen ständig

wachsenden Bedarf an Datenspeicher. Auf magnetische Medien entfallen 92% aller neu

gespeicherten Daten. Nicht nur Computer, auch Kleingeräte aus der Unterhaltungselektronik

speichern und geben heute Daten in Form von Musik, Videos und Bildern wieder. Magnete

haben vielfältige Anwendungsgebiete, in denen ein detailliertes Verständnis ihrer

Funktionsweise – die Erhöhung der Leistungsfähigkeit – zu höherer Energieeffizienz führt

und damit die Lebensqualität in einer modernen Gesellschaft steigern kann.

Computersimulationen beschreiben präzise den Magnetisierungsprozess auf einer

Größenskala, die tausend Mal kleiner ist als eine Haaresbreite. Die atomistischen

magnetischen Momente – vergleichbar mit winzigen Kompassnadeln – richten sich nach der

chemisch-physikalischen Struktur des Magnets aus. Die Mikrostruktur kann sehr komplex

sein. Bei hoher Vergrößerung sehen die Körner einer Festplatte, von denen man etwa

hundert benötigt um ein Bit zu schreiben, im Elektronenmikroskop aus wie Reihen von

Kieselsteinen. In jedem Korn ändern tausende winziger Kompassnadeln ihre Richtung nach

dem magnetischen Feld des Schreibkopfes. Da die Struktur des Materials keineswegs

gleichmäßig ist, kann sie nur durch Gleichungen mit numerischen Methoden beschrieben

werden. So können Vorhersagen über das Verhalten eines Materials sowie Vergleiche mit

den experimentell beobachteten Eigenschaften gemacht werden.

Die entwickelte Software zur Simulation der Magnetisierungsdynamik unter Beachtung der

Mikrostruktur führte zu bedeutenden Durchbrüchen in verschiedenen Bereichen von

angewandtem Magnetismus. Modernste numerische Methoden machen das Softwarepaket

zum schnellsten und präzisesten derzeit erhältlichen Werkzeug zur Optimierung von

magnetischen Instrumenten. Schnelle Feldberechnungsmethoden verwenden Techniken, die

denen zur Kompression von Bild- und Videodaten sehr ähnlich sind. Ihre nächste Festplatte

kann eventuell mit der in diesem Projekt entwickelten Software entworfen worden sein. Die

magnetische Speicherdichte wird 1 Tbit/cm² erreichen. Das Datenträgermaterial der Zukunft

besteht aus hart- und weichmagnetischen Schichten, die miteinander gekoppelt sind; eine

Struktur, die in diesem Projekt entwickelt wurde. Rechenmethoden, die in diesem Projekt

ausgearbeitet wurden, werden außerdem dazu benutzt, um Permanentmagnete zur

Verwendung in schadstoffarmen Hybridautos zu optimieren.

Final Report ADVANCED NUMERICAL MICROMAGNETICS; March 2007 / Page 3 of 35 www.advancedmagnetics.net

2. Brief project report

2.1 Report on the scientific work 2.1.1 Information on the development of the research work

The main objective of the project was to provide a software package that uses state-of-the-art numerical techniques for the simulation of the functional behavior of magnetic devices. The simulations should span several length scales, starting from the precise calculation of magnetization processes on the nano-scale that takes into account the local chemical / physical environment to the macroscopic, measurable output of a device that may be composted of several components. At the time when the project proposal was written, the National Institute of Standards and Technology started an effort to validate micromagnetic software, introducing micromagnetic standard problems. The results published on their micromagnetic web-page show that at this time reliable micromagnetic simulations were only possible for small scale (below 500 nm) magnetic nano-structures. The goal of simulating an entire device composed of different magnetic parts, each of which with its own microstructure was quite ambitious at this time and it was by no means clear whether this is possible at all. To accomplish this objective, the work program focused on the investigation of different numerical techniques discussed at this time in the applied mathematic community. Among those were meshless methods, fast boundary element methods, and continuation methods. Whereas the concept of meshless methods is applied in structure mechanics meshless based methods never proved superior in electromagnetic field computation. On the other hand, fast boundary element methods were developed during the course of the project at the University of Kiel and the Max-Planck-Institute of Industrial Mathematic Leipzig. The immediate application of the newly developed hierarchical matrices was a key point for success of the project. At the same time, the transition from longitudinal to perpendicular recording was prepared within major recording companies. Close collaboration with researchers from IBM / Hitatchi GST provided important input on the requirements of micromagnetic software for the simulation of perpendicular recording systems. With respect to the original objectives there was no change of direction during the course of the project. However, the numerical techniques and methods used in the micromagnetic simulations were adjusted to the current state-of-the-art in applied mathematics and in computational physics. Instead of meshless methods for solving partial differential methods a hybrid finite element / fast boundary element scheme [78] is used. Similarly, time quantified Monte Carlo schemes and hybrid Monte Carlo methods were originally proposed in the work program, in order to address long time, thermally activated magnetization processes. Despite the promising reports on time quantified Monte Carlo schemes in magnetism, initial studies carried out in the project showed that this method has severe limitations if applied to realistic, large scale magnetic structures. Instead, we applied the nudged elastic band method, a method popular in chemical physics, in micromagnetic simulations [51]. The micromagnetic calculations of the minimum energy path proved to be extremely successful to address the thermal stability of recording media or to compute the temperature dependence of the coercive field at long time scales. The work carried out was aimed at achieving the objectives of the projects, the simulation of magnetic devices bridging time and length scales over several orders of magnitude. Whenever necessary, alternative numerical techniques were applied to reach the overall objectives.

Final Report ADVANCED NUMERICAL MICROMAGNETICS; March 2007 / Page 4 of 35 www.advancedmagnetics.net

2.1.2 Most important results and brief description of their significance The key results of the project are the following World leading magnetic simulation software Key inventions for future high density storage media Expanding the knowledge in the following fields

o Permanent magnets o Magnetic recording o Magnetic nanostructures

Magnetic simulation software Micromagnetism is a theory to describe magnetization processes at a significant length scale of several nanometers. Standard micromagnetic software (OMMF from NIST, LLG Simulator from Mindspring) allows the efficient simulations of magnetic structures for simple geometries. Advanced software tools are required to take into account the detailed microstructure of a magnet and the interactions between the different magnetic parts of magnetic device. In addition to the calculation of magnetization reversal processes and the simulation of domain images, the software developed during the project enables the fully integrated simulation of entire magnetic devices. For example in magnetic recording simulations, the input for the simulations are the detailed microstructure of the recording media, the geometry of the write head, the layer stack and shield geometry of the read head, the intrinsic magnetic properties and the current wave form of the write current. The simulation output is read back voltage as function of time. Thus macropscopic properties like current wave form and read back voltage are input and output of a multiscale simulation that treats the functional behavior of a recording system while taking into account the microscopic magnetization processes during recording [93] and read back [123]. This multiscale simulation process is illustrated in Figure 1. This software is currently used in research collaboration with several industrial partners, the Information Storage Industry Consortium, and EU FP6 projects. It is and has been used for the design of recording systems, high performance permanent, and magnetic random access memories. The public domain version of the software (MAGPAR) [66] has been downloaded more than 800 times and is used in universities, research labs, and industry. In addition to OMMF from the National Institute of Standard and Technology, MAGPAR has become a standard for micromagnetic simulations.

Figure 1: Left: Magnetic system used in recording simulations, Right: computed read back signal.

Final Report ADVANCED NUMERICAL MICROMAGNETICS; March 2007 / Page 5 of 35 www.advancedmagnetics.net

Traditional micromagnetic simulations are limited in the time scale. Whereas fast events like writing on recording media can be computed using standard dynamic micromagnetics, the simulation of the long time behavior requires different methods. During the project the nudged elastic band method has been integrated in the micromagnetics software environment [51], in order to calculate the time and temperature dependence of the coercive field [111]. This is a novel approach and the resulting capabilities are unique, there is no other software package that can calculate the thermal stability of magnetic materials for arbitrary geometries and microstructures. As an example, Figure 2 shows the calculation of energy barriers in longitudinal AFC recording media [70].

Figure 2: Energy barriers can be calculated in complex granular structures. Here the energy barrier for the reversal of a grain embedded in an AFC media was calculated.

Figure 3: Multiscale micromagnetic simulation of recording on exchange spring media.

Final Report ADVANCED NUMERICAL MICROMAGNETICS; March 2007 / Page 6 of 35 www.advancedmagnetics.net

Key inventions for future high density storage media Future high density storage media require small, thermally stable bits. A possible way to achieve writeable, stable recording media resulted from the research activities during the project [104]. In exchange spring media, magnetically hard and magnetically soft layers are combined, so that the soft magnetic layer reduces the switching field and the hard magnetic layer provides a high energy barrier. Current roadmaps for magnetic recording at densities beyond 2 Tbit/in2 envision exchange spring type media for both granular perpendicular media and bit patterned media.

During the last two year, Dieter Suess was invited to give 13 invited talks and lectures on this topic. Papers of the working group on exchange spring media were cited 32 times since 2005. Recording densities of 1 Tbit/in2 and beyond recording media were demonstrated for in exchange spring based granular media using fully integrated micromagnetic simulations (presentation EB-09, Joint MMM-Intermag conference, January 2007). An example of such simulations is shown in Figure 3 [131].

Permanent magnets

Research in permanent magnets focused on the understanding on the interplay between microstructure and coercivity. Finite element micromagnetics is an excellent means to represent the complex multiphase grain structure of a permanent magnet. The success of this research is reflected by seven invited talks on microstructure property relations in permanent magnets at international conferences. Using a combination of magnetic imaging using Lorentz transmission electron microscopy with micromagnetic simulations we were able to characterize the influence of key microstructural features on coercivity quantitatively.

In particular the role of grain boundaries in NdFeB based sintered magnets [14] and domain wall pinning in Sm2Co17 magnets [41] were investigated. Figure 4 shows TEM images of magnetic domains and computed domain patterns in Nd13.5FebalBB5.95Cu0.03Al0.7 magnets and Sm2Co17 magnets.

Figure 4: Domain processes in high performance permanent magnets. Left: Nucleation of reversed domains in Nd13.5FebalBB5.95Cu0.03Al0.7 magnets. Right: Domain wall pinning in Sm2Co17 magnets. Top: Foucault images, bottom: micromagnetic simulation.

Final Report ADVANCED NUMERICAL MICROMAGNETICS; March 2007 / Page 7 of 35 www.advancedmagnetics.net

Magnetic recording

Software tools for the simulation of the recording process enable the detailed simulations of the various processes involved in magnetic recording. In particular the following key issues were addressed. The results were presented at invited talks at major international conferences.

Soft underlayer magnetization processes in perpendicular recording (North American Conference on Perpendicular Magnetic Recording, 2002)

Head media interactions in perpendicular magnetic recording (North American Perpendicular Magnetic Recording Conference, 2004)

Properties of FePt nanoparticles (L10 Ordered Intermetallic and Related Phases for Permanent Magnet and Recording Applications, 2004)

Optimization of exchange spring media (DISKON 2005, Intermag 2006, APS March meeting 2006, MINT workshop 2006)

Write head dynamics (International Storage Technology Symposium, 2007; TMRC 2007)

Magnetic nanostructures

Magnetic multi-layers are the basic building blocks of spin-electronic devices. The simulation of the magnetization processes provides a quantitative description of the coercive field and the exchange bias field of antiferromagnetic/ferromagnetic bilayers. Again the detailed description of the nanocrystalline structure and its influence on the magnetization processes is the key success of this model. For the first time, exchange bias is explained for fully compensated interfaces [65]. Exchange bias at compensated interfaces occurs in IrMn/FeCo layers which are applied in the read head of magnetic hard discs. Thermally activated magnetization processes determine the properties of magnetic storage and sensor elements with dimensions in the range of a few nanometers. Predictions of the thermal stability of magnetic storage units and the calculation of the thermal noise in magnetic field sensors require a detailed knowledge of the metastable energy minima and of the saddle points of a high dimensional energy landscape. For the first time the energy landscape of high dimensional micromagnetic systems was computed using an elastic band method [82]. An important application is the prediction of the lifetime of bits in magnetic random access memories (Invited talk at the 16th Soft Magnetic Materials Conference, Düsseldorf, 2003).

2.1.3 Information on the running of the project

The duration of the project was seven years. Whereas planned for only six years, additional industrial funding made a prolongation of the project possible. Furthermore during 2005, the original project’s last year, a promising invention was made. Therefore it seemed appropriate to extend the project for one year for more detailed studies on the potential of exchange spring media for perpendicular recording. The high international recognition gained for our research in this field clearly justified this prolongation of the project. Total project costs were split amongst various categories as follows: Personnel 56%Equipment 13%Consumables 1%Travel 8%Other 22%

Final Report ADVANCED NUMERICAL MICROMAGNETICS; March 2007 / Page 8 of 35 www.advancedmagnetics.net

The two major items of equipment purchased were a local cluster of workstations and an addition to a TEM for Lorentz magnetic imaging. There were no significant deviations from the original proposed use of the available funding. All levels of personnel – master students, PhD students, and post-doc researchers – were used depending on the skills and availability of the individual researchers.

2.2 Personnel development

A key point for success was the possibility to use the available funding for high risk research. At the beginning of the project it was not obvious whether the fully functional simulation of magnetic devices is at all possible. The possibility to spend enough money on certain research topics and the possibility to establish international collaborations to advance a research area were key mechanisms for achieving the project’s objectives. The project provided the funding to establish a working group on micromagnetics at the Vienna University of Technology. The project funded six diploma students, eight PhD students, and four post-docs. The ideas, developments, and achievements of the group members created enough momentum for a clear international recognition of the working group. The international reputation of the project co-workers is high. However, the Vienna University of Technology missed the opportunity to secure the future existence of this newly created high potential working group. As a result of the project The project leader was appointed Professor of Functional Materials

at the University of Sheffield, UK One co-worker is director of a research institute in Greece Three co-workers hold key industrial positions (USA, France) Two co-workers doing their PhD in USA and Ireland (University of Illinois at Urbana-

Champaign, Trinity College Dublin) One co-worker is post-doctoral research assistant in the UK One co-worker is expecting his Habilitation at the Vienna University of Technology

2.3 Effects of the project outside the scientific field

Project results are used in teaching at the Vienna University of Technology (in general lectures on solid state physics, in lectures on thin film technology, in lectures on magnetic materials), at the University of Sheffield, and at international summer schools.

Project results were presented in workshops and lectures at the Vienna Science week.

Project results are presented to the general public and the fellow scientific community at http://www.advancedmagnetics.netFinite element and time integrations schemes developed for micromagnetics were applied for modeling of transport in the root-near soil in a transdisciplinary collaboration which the Agricultural University of Vienna, Austria.

Final Report ADVANCED NUMERICAL MICROMAGNETICS; March 2007 / Page 9 of 35 www.advancedmagnetics.net

3. Information on project participants not funded by the FWF

funded by the FWF (project)

co-workers number man-months

co-workers number man-months

Non-scientific

co-workers

non-scientific

co-workers

diploma students 3 16 diploma students 6 36

PhD students 4 123 PhD students 8 155

Post-doctoral

co-workers

1 12 post-doctoral

co-workers

4 67

co-workers with

“Habilitation”

(professorial

qualifications)

co-workers with

“Habilitation”

(professorial

qualifications)

Professors professors

Final Report ADVANCED NUMERICAL MICROMAGNETICS; March 2007 / Page 10 of 35 www.advancedmagnetics.net

4. Attachments List 1 1.a. scientific publications1

1.a.1. Peer-reviewed publications (journals, contribution to anthologies, working papers, proceedings etc.) 1. T. Schrefl, J. Fidler, D. Suess and W. Scholz, “Hysteresis and switching

dynamics of patterned magnetic elements”, Journal Physica B-Condensed Matter 275, 55-58 (2000).

2. J. Fidler and T. Schrefl, “Micromagnetic modelling - the current state of the art,” Journal of Physics D: Applied Physics 33, R135-R156 (2000).

3. T. Schrefl and J. Fidler, "Reversal modes and revesal times in submicron-sized elements for MRAM applications", Computational Materials Science 17 (2000) 490-495.

4. B. Streibl, J. Fidler and T. Schrefl , “Domain wall pinning in high temperature Sm(Co,Fe,Cu,Zr)7-9 magnets,”J. Appl. Phys. 87 (2000) 4765-4767.

5. T. Schrefl, J. Fidler and M. Zehetmayer, “Micromagnetic simulation of 360 degree domain walls in thin Co-films,” J. Appl. Phys. 87 (2000) 5517-5519.

6. D. Suess, M. Dahlgren, T. Schrefl, R. Grössinger and J. Fidler, “Micromagnetic analysis of remanence and coercivity of nanocrystalline Pr-Fe-B magnets,” J. Appl. Phys. 87 (2000) 6573-6575.

7. W. Scholz, D. Suess, T. Schrefl and J. Fidler, “Micromagnetic simulation of structure-property relations in hard and soft magnets,” Computational Materials Science 18 (2000) 1-6.

8. W. Scholz, T. Schrefl, and J. Fidler, “Micromagnetic simulation of thermally activated switching in fine particles,” J. Magn. Magn. Mater. 233, 296-304 (2001).

9. J. Fidler, T. Schrefl and D. Suess, “Grain boundaries in high performance magnets, reasons for poor or excellent properties,” Proc. of Workshop on Grain Boundaries, Institute of Materials, University of Birmingham, I.R. Harris and I.P. Jones (eds), The University Press, Cambridge, 2001, pp. 147-163.

10. J. Bernardi, T.Schrefl, J. Fidler, T. Rijks, K.de Kort, V. Archambault, D. Pere, S. David, D. Givord, J.F. Sullivan, P. Smith, J.M.D. Coey, U. Czernik and M. Grönefeld, "Preparation, magnetic properties and microstructure of lean rare-earth permanent magnetic materials", J. Magn. Magn. Mater. 219 (2000) 186-198.

11. T. Schrefl, D. Süss and J. Fidler, "Wavelet based matrix compression in numerical micromagnetics", Technical Proceedings of the Third International Concerence on Modeling and Simulation of Microsystems, March 27-29, 2000, San Diego, USA, Computational Publications, Boston, 429-431 (2000).

12. T. Schrefl, J.Fidler and W. Scholz , "Modeling and limits of advanced HT-magnets", IEEE Trans. Magn. 36, 3394-3398 (2000).

13. W. Scholz, T. Schrefl and J. Fidler, "Langevin micromagnetics of recording media using subgrain discretization" IEEE Trans. Magn. 36, 3189-3191 (2000).

14. D. Suess, T. Schrefl and J. Fidler, "Micromagnetic simulation of high energy density permanent magnets", IEEE Trans. Magn. 36, 3282-3284 (2000).

1 The publication list must mention for each work: all authors; full title; series/journal title; year; volume; and page numbers.

Final Report ADVANCED NUMERICAL MICROMAGNETICS; March 2007 / Page 11 of 35 www.advancedmagnetics.net

15. T. Schrefl, D. Suess, W. Scholz, J. Fidler, "Finite element simulation of hard magnetic properties", Proc. 19th Annual Conference on Properties and Applications of Magnetic Materials, Chicago, May 2000.

16. J. Fidler, T. Schrefl and T. Matthias, "TEM study of novel Sm-Co based high temperature magnets" , Proc. European Electron Microscopy Conference EUREM 12, Brno, July 2000, Volume II, (2000) P154-P155.

17. T. Schrefl, W. Scholz, D. Suess and J. Fidler, "Computational micromagnetics: Prediction of time dependent and thermal properties", J. Magn. Magn. Mater. 226-230, 1213-1219 (2001).

18. W. Scholz, J. Fidler, D. Suess and T. Schrefl, ’’Langevin dynamics of small ferromagnetic particles and wires’’, Proc. 16th IMACS World Congress, Lausanne, August 2000, M. Deville, R. Owens (ed)., p. 161-9.

19. J. Fidler, T.Schrefl, S. Sasaki and D. Süss "The role of intergranular regions in sintered Nd-Fe-B magnets with (B.H)max>420kJ/m3 (52.5 MGOe)", Proc. XI. Int. Symp. on Magnetic Anisotropy and Coercivity in Rare Earth Transition Metal Alloys, H. Kaneko, M. Homma, M. Okada (ed.), The Japan Institute of Metals, Sendai, Japan, 2000, pp. S45-S54.

20. T. Schrefl, J. Fidler and D. Süss, "Micromagnetic modelling of nanocomposite magnets", Proc. XI. Int. Symp. on Magnetic Anisotropy and Coercivity in Rare Earth Transition Metal Alloys, H. Kaneko, M. Homma, M. Okada (ed.), The Japan Institute of Metals, Sendai, Japan, 2000, pp. S57-S71.

21. Schnepf, T. Schrefl, C. Riedler, W.W.Wenzel, "A Novel Tool in Rhizosphere Modeling", Proceedings of the Sixth International Conference on the Biogeochemistry of Trace Elements, Guelph, Ontario, Canada, 2001, p. 582.

22. J. Fidler, T. Schrefl, D. Suess and W. Scholz, "Dynamic micromagnetic simulation of the configurational anisotropy of nanoelements", IEEE Trans. Magn. 37, 2058-2060 (2001).

23. D. Suess, T. Schrefl, J. Fidler and V. Tsiantos, "Reversal dynamics of interacting circular nanomagnets", IEEE Trans Magn. 37, 1960-1962 (2001).

24. T. Schrefl, J. Fidler, J.N. Chapman and K. J. Kirk, "Micromagnetic simulation of domain structures in patterned magnetic tunnel junctions", J. Appl. Phys. 89, 7000 (2001).

25. D. Suess, T. Schrefl and J. Fidler, "Reversal modes, thermal stability, and exchange length in perpendicular recording media", IEEE Trans Magn. 37, 1664-1666 (2001).

26. V. Tsiantos, D. Suess, T. Schrefl and J. Fidler, "Stiffness analysis for the muMAG standard problem #4", J. Appl. Phys. 89, 7600 (2001).

27. J. Fidler, T. Schrefl, W. Scholz and D. Suess, "Rotational Magnetization Processes in Meso- and Nanoscopic Magnets" in Proceedings 6th Int. Workshop on 1&2-dimensional Magnetic Measurement and Testing, Bad Gastein, Sept. 2000, published 2001, ed. H. Pfützner, pp. 163-171.

28. V. D. Tsiantos, T. Schrefl and J. Fidler, "Cost-effective way to speed-up micromagnetic simulations in granular media", Applied Numerical Mathematics 39, 191-204 (2001).

29. J. Fidler, T. Schrefl, W. Scholz and D. Suess, "Micromagnetic modelling and properties of nanocomposite magnets", Proc. of 22nd RISO Int. Symposium on Material Science, Science of metastable and nanocrystalline alloys, Roskilde, Denmark, 2001, pp 1-14.

30. J. Fidler, T. Schrefl, W. Scholz, D. Suess and V.D. Tsiantos, "Micromagnetic simulation of magnetisation reversal in rotational magnetic fields", Journal Physica B-Condensed Matter 306, 112-116 (2001).

31. V. D. Tsiantos, T. Schrefl, D. Suess, W. Scholz, J. Fidler and J.M. Gonzales, "Micromagnetic simulation of magnetization reversal in Co/Ni multilayers", Journal Physica B-Condensed Matter 306, 38-43 (2001).

Final Report ADVANCED NUMERICAL MICROMAGNETICS; March 2007 / Page 12 of 35 www.advancedmagnetics.net

32. J. Fidler, T. Schrefl, D. Suess, W. Scholz and V.D. Tsiantos, "Micromagnetic simulation of the magnetic switching behaviour of mesoscopic and nanoscopic structures", Computational Material Science 24 (2002) 163-174 .

33. H. Forster, T. Schrefl, D. Suess, W. Scholz, V.D. Tsiantos and J. Fidler, "Micromagnetic simulation of domain wall motion in magnetic nano-wires", J. Magn. Magn. Mater. 249 (2002) 181-186.

34. D. Suess, W. Scholz, T. Schrefl, and J. Fidler, "Fast switching of small magnetic particles", J. Magn. Magn. Mater.242 - 245 part 1, (2002) 426.

35. V. D. Tsiantos, D. Suess, W. Scholz, T. Schrefl and J. Fidler, "Effect of cell size in Langevin micromagnetic simulations", J. Magn. Magn. Mater. 242-245 (2002) 999-1001.

36. T. Matthias, G. Zehetner, J. Fidler, W. Scholz, T. Schrefl, D. Schobinger and G. Martinek, "TEM-analysis of Sm(Co,Fe,Cu,Zr)z magnets for high temperature applications", J. Magn. Magn. Mater. 242-245, (2002) 1353-1355.

37. W. Scholz, J. Fidler, T. Schrefl and D. Suess, "Micromagnetic simulation of domain wall pinning in Sm(Co,Fe,Cu,Zr)z magnets", J. Magn. Magn. Mater. 242-245 (2002) 1356-1358.

38. T. Matthias, G. Zehetner, W. Scholz, J. Fidler, T. Schrefl, D. Schobinger and G. Martinek,"TEM-Analysis of Sm(Co,Fe,Cu,Zr)z magnets for high temperature applications", Proc. Joint Austrian-German-Swiss Electron microscopy Conf., Sept. 2001, Innsbruck, (2001) in press.

39. V. D. Tsiantos, T. Schrefl, D. Suess, W. Scholz, H. Forster and J. Fidler, "Time Integration Methods in Micromagnetic Simulations: Stiffness on Granular Media-Patterned Media and µMAG standard problem #4 - Speed up of Simulations", Proc. 5th Hellenic European Conference on Computer Mathematics & its Applications (HERMCA), Sept. 2001, Athens, Greece, (2001) vol 1, pp. 163-166.

40. W. Scholz, D. Suess, T. Schrefl and J. Fidler, "Domain structures and domain wall pinning in arrays of elliptical NiFe nanoelements", J. Appl. Phys. 91, (2002) 7047.

41. W. Scholz, J. Fidler, T. Schrefl, D. Suess, T. Matthias, "Micromagnetic 3D simulation of the pinning field in high temperature Sm(Co,Fe,Cu,Zr)z magnets", J. Appl. Phys. 91 (2002) pp. 8492-8494.

42. H. Forster, T. Schrefl, D. Suess, W. Scholz, J. Fidler, and V. Tsiantos, "Domain wall motion in nano-wires using moving grids", J. Appl. Phys. 91 (2002) pp. 6914-6919.

43. J. Fidler, T. Schrefl, V. Tsiantos and W. Scholz, "Ultrafast Switching of Magnetic Elements using a Rotating Field", J. Appl. Phys. 91 (2002) 7974-7976.

44. D. Suess, V. Tsiantos, T. Schrefl, W. Scholz, and J. Fidler, "Nucleation in polycrystalline nano elements using a preconditioned finite element method", J. Appl. Phys. 91 (2002) 7977-7979.

45. T. Schrefl, M. Schabes, B. Lengsfield, "Fast reversal dynamics in perpendicular magnetic recording media with soft underlayer", J. Appl. Phys. 91 (2002) 8662-8665.

46. M. Schabes, B. Lengsfield, T. Schrefl, "Micromagnetic modelling of soft underlayer magnetization processes and fields in perpendicular magnetic recording", IEEE Trans. Magn. 38 (2002) 1670 -1675.

47. J. Fidler, T. Schrefl, V.D. Tsiantos, W. Scholz and D. Suess, "Fast switching behaviour of nanoscopic NiFe- and Co-elements", Computational Materials Science 25 (2002) 554-561.

48. W. Scholz, H. Forster, J. Fidler, T. Schrefl, "Micromagnetic simulation of domain wall pinning and domain wall motion", Computational Material Science 25 (2002) 540-546.

Final Report ADVANCED NUMERICAL MICROMAGNETICS; March 2007 / Page 13 of 35 www.advancedmagnetics.net

49. D. M. Newns, W. E. Donath, G. J. Martyna, M. E. Schabes, B. E. Lengsfield, T. Schrefl, “Performance of a Novel Algorithm for Perpendicular Magnetic Recording Simulation,” Proceedings of The 3rd Workshop on Parallel and Distributed Scientific and Engineering Computing with Applications (PDSECA-02), 232 -238.

50. D. Suess, V. Tsiantos, T. Schrefl, J. Fidler, W. Scholz, H. Forster, R. Dittrich, J. Miles, “Time resolved micromagnetics using a preconditioned finite element,” J. Magn. Magn. Mater. 248, (2002) 298-311.

51. R. Dittrich, T. Schrefl, D. Suess, W. Scholz, H. Forster, and J. Fidler, “A path method for finding energy barriers and minimum energy paths in complex micromagnetic systems (Letter to the editor),” J. Magn. Magn. Mater. 250 (2002) 12-19.

52. D. Suess, W. Scholz, T. Schrefl, J. Fidler, R. Stamps, “Micromagnetic simulation of antiferromagnetic/ferromagnetic structures”, IEEE Trans. Magn. 38 (2002) 2397-2399.

53. R. Dittrich, W. Scholz, D. Suess, H. Forster, V. Tsiantos, T. Schrefl, J. Fidler, “Finite element simulation of discrete media with granular structure,” IEEE Trans. Magn. 38 (2002) 1967-1969.

54. H. Forster, T. Schrefl, J. Fidler, “Magnetization reversal in granular nanowires,” IEEE Trans. Magn. 38 (2002) 2580-2582.

55. T. Matthias, W. Scholz, J. Fidler, T. Schrefl, T. S. Rong, I. P. Jones, R. Harris, “Sm(Co,Fe,Cu,Zr)z magnets for high temperature applications: microstructural and micromagnetic analysis,” IEEE Trans. Magn. 38 (2002) 2943-2945.

56. J. Fidler, T. Schrefl, V. Tsiantos, H.Forster, D. Suess, W. Scholz, R. Dittrich, “FE simulation of fast switching behavior of granular nanoelements,” IEEE Trans. Magn. 38 (2002) 2520-2522.

57. J. Fidler, T. Schrefl, H. Forster, D. Suess, R. Dittrich, “FE-Simulation of fast switching behavior of magnetic nanoelements”, Proceedings of 5th Conference on Modelling and Simulation of Microsystems, Puerto Rico,M. Laudon and B. Romanowic (eds), pp. 348-351.

58. T. Matthias, J. Fidler, T. Schrefl, T.S, Rong, I.P. Jones, "Nanoanalytical study of sintered Sm-Co 2:17 permanent magnets for high temperature applications", Proc. of 15th Int. Congress on Electron Microscopy, Durban, South-Africa, 2002, Vol. 1, pp. 289-290.

59. J. Fidler, T. Matthias, W. Scholz, T. Schrefl, T.S, Rong, I. Jones, I. R. Harris, "The role of the precipitation structure on the coercivity of Sm(Co,Fe,Cu,Zr)z magnets for HT applications", Proc. of XVII Rare Earth Magnets Workshop, University of Delaware, ed: G. Hadjipanayis and M.J. Bonder, 2002, pp. 853-860.

60. T. Schrefl, H. Forster, J. Fidler, R. Dittrich, D. Suess and W. Scholz, "Magnetic hardening of exchange spring multilayers", Proc. of XVII Rare Earth Magnets Workshop, University of Delaware, ed: G. Hadjipanayis and M.J. Bonder, 2002, pp. 1006-1026

61. V. Tsiantos, T. Schrefl, W. Scholz, H. Forster, D. Suess, R. Dittrich, J. Fidler, “Thermal Fluctuations in Magnetic Sensor Elements,” Sensor and Accutors A 106, 134-136 (2003).

62. T. Schrefl, J. Fidler, R. Dittrich, D. Suess, W. Scholz, V. Tsiantos, and H. Forster, “Fast switching of mesoscopic magnets,” Spin dynamics in confined magnetic structures, B. Hillebrands, K. Ounadjela (eds), Springer, 2003, pp. 1 – 26.

63. Schnepf, T. Schrefl, W. W. Wenzel, “The suitability of pde-solvers in rhizosphere modeling, exemplified by three mechanistic rhizosphere models,” Journal of Plant Nutrition and Soil Science 165 (2002) 713-718

64. D. C. Crew, Er. Girt, D. Suess,T. Schrefl, K. M. Krishnan,G.Thomas, and M.Guilot, “The effect of magnetic interactions between grains on reversal behavior in diluted Nd2Fe14B,” Phys. Rev. B 66 (2002) 184418-1–184418-13.

Final Report ADVANCED NUMERICAL MICROMAGNETICS; March 2007 / Page 14 of 35 www.advancedmagnetics.net

65. D. Suess, M Kirschner, T. Schrefl, J. Fidler, R.L. Stamps, T. Schrefl, J.V. Kim, "Exchange bias of polycrystalline antiferromagnets with perfectly compensated interface", Phys. Rev. B 67, 54419-1-8 (2003).

66. W. Scholz, J. Fidler, T. Schrefl, D. Suess, R. Dittrich, H. Forster, V. Tsiantos, "Scalable parallel micromagnetic solvers for magnetic nanostructures", Computational Materials Science, vol 28, pp. 366-383, 2003.

67. W. Scholz, K. Yu Guslienko, V. Novosad, D. Suess, T. Schrefl, R.W. Chantrell, J. Fidler, "Transition from single-domain to vortex state in soft magnetic cylindrical nanodots", J. Magn. Magn. Mater. 266, 155-163 (2003).

68. T. Schrefl, H. Forster, R. Dittrich, D. Suess, "Reversible magnetization processes and energy density product in Sm-Co/Fe bilayers", J. Appl. Phys. 93, 6489-6491 (2003).

69. D. Suess, T. Schrefl, W. Scholz, J. Fidler, "Micromagnetic calculation of coercivity and remanence of self assembled FePt nanoparticle arrays", J. Appl. Phys. 93, 7041- 7043 (2003).

70. R. Dittrich, T. Schrefl, D. Suess, W. Scholz, H. Forster, J. Fidler, "Thermally induced magnetization reversal in AFC media", J. Appl. Phys. 93, 7405-7407 (2003).

71. V. Tsiantos, T. Schrefl, W. Scholz, J. Fidler, "Thermal magnetization noise in submicron spin valve sensors", J. Appl. Phys. 93, 8576-8678 (2003).

72. D. Suess, M. Kirschner, T. Schrefl, W. Scholz, R. Dittrich, H. Forster, J. Fidler, "Micromagnetic calculations of bias field and coercivity of compensated ferromagnetic/antiferromagnetic bilayers", J. Appl. Phys. 93, 8618-86120 (2003).

73. R. Dittrich, A. Thiaville, J. Miltat, T. Schrefl, "A rigorous micromagnetic computation of configurational anisotropy energies in nanoelements", J. Appl. Phys. 93, 7891-7893 (2003).

74. Thiaville, J.M. Garcia, R. Dittrich, J. Miltat, T. Schrefl, "Micromagnetic study of Bloch points nucleated vortex core reversal", Phys. Rev. B. 67, 94410-1-12 (2003) .

75. R. Dittrich, V. Tsiantos, T. Schrefl, D. Suess, W. Scholz, H. Forster, J. Fidler, "Micromagnetic simulations of thermal effects in magnetic nanostructures," in Magnetoelectronics and Magnetic Materials--Novel Phenomena and Advanced Characterization, S. Zhang, G. Guntherodt, A. Kent, I. Schuller, T. Shinjo (eds), MRS Proceedings Volume 746 (2003) 183-188.

76. M. Kirschner, D. Suess, T. Schrefl, J. Fidler, R.L. Stamps, J.V. Kim, "Exchange bias and training effect in polycrystalline antiferromagnetic/ferromagnetic bilayers," in Magnetoelectronics and Magnetic Materials--Novel Phenomena and Advanced Characterization, S. Zhang, G. Guntherodt, A. Kent, I. Schuller, T. Shinjo (eds), MRS Proceedings Volume 746 (2003) 25-30.

77. H. Forster, N. Bertram, X. Wang, R. Dittrich, T. Schrefl, "Energy barrier and effective thermal reversal volume in columnar grains," J. Magn. Magn. Mater 267, 69-79 (2003).

78. H. Forster, T. Schrefl, R. Dittrich, W. Scholz, J. Fidler, "Fast boundary methods for magnetostatic interactions in micromagnetics", IEEE Trans. Magn. 39 2513-2515 (2003).

79. M. Stehno, T. Schrefl, R. Dittrich, H. Forster, J. Fidler, Y. Uesaka, "Numerical switching experiments for perpendicular media," IEEE Trans. Magn. 39, 2297-2299 (2003).

80. V. Tsiantos, T. Schrefl, W. Scholz, H. Forster, D. Suess, R. Dittrich, J. Fidler, "Thermal magnetization rotation of small nanoparticles," IEEE Trans. Magn. 39, 2507-2509 (2003).

81. W. Scholz, T. Schrefl, J. Fidler, T. Matthias, D. Suess, "Micromagnetic simulation of pinning and depinning processes in permanent magnets," IEEE Trans. Magn. 39, 2920-2922 (2003).

Final Report ADVANCED NUMERICAL MICROMAGNETICS; March 2007 / Page 15 of 35 www.advancedmagnetics.net

82. R. Dittrich, T. Schrefl, H. Forster, D. Suess, W. Scholz, "Energy barriers in magnetic random access memories," IEEE Trans. Magn. 39, 2839-2841 (2003).

83. M. Kirschner, D. Suess, T. Schrefl, J. Fidler, J. N. Chapman, "Micromagnetic calculation of bias field and coercivity of polycrystaline ferromagnetic/antiferromagnetic layers, IEEE Trans. Magn. 39, 2735-2737 (2003).

84. T. Schrefl, H. Forster, M. E. Schabes, B. Lengsfield, "Finite Element Simulation of Head / Media Interactions in Perpendicular Recording," Proceedings of the 14th Compumag Conference on the Computation of Electromagnetic Fields, Saratoga Springs, NY, July 2003, volume I, pp. 4-5.

85. Schnepf, T. Schrefl, M. Himmelbauer, W. Loiskandl, R. Unterbrunner, M. Puschenreiter, W. J. Fitz, I. Molina, W. W. Wenzel, "Modeling the Bioavailability of Ni to the Hyperaccumulator Thlaspi goesingense - a chemical Non-equilibrium Approch." in SLU Service/Repro, G.Gobran and Lepp N. (Eds.): 7th ICOBTE, 15.-19.06.2003, Uppsala/Schweden, Vol.2, 144-145, (2003).

86. Schnepf, T. Schrefl, W. W. Wenzel, "The suitability of pde-solvers in rhizosphere modeling, exemplified by three mechanistic rhizosphere models," Journal of Plant Nutrition and Soil Science 165, 713-718 (2003).

87. J. Fidler, T. Schrefl, W. Scholz, D. Suess, V. D. Tsiantos, R. Dittrich and M. Kirschner, "Magnetostatic spin waves in nanoelements", Physica B: Condensed Matter 343, issue 1-4, 200-205, (2004).

88. J. Fidler, T. Schrefl, W. Scholz, D. Suess, R. Dittrich and M. Kirschner, "Micromagnetic modelling and magnetization processes", J. Magn. Magn. Mater. 272- 276, 641-646, (2004).

89. W. Scholz, D. Suess, R. Dittrich, T. Schrefl, V. Tsiantos, H. Forster and J. Fidler, "Implementation of a high performance parallel finite element micromagnetics package", J. Magn. Magn. Mater. 272-276, 693-694, (2004).

90. W. Scholz, J. Fidler, T. Schrefl, D. Suess, H. Forster, R. Dittrich and V. Tsiantos, "Numerical micromagnetic simulation of Fe-Pt nanoparticles with multiple easy axes", J. Magn. Magn. Mater. 272-276, 1524-1525, (2004).

91. R. Dittrich, T. Schrefl, A. Thiaville, J. Miltat, V. Tsiantos, J. Fidler, "Comparison of Langevin dynamics and direct energy barrier computation", J. Magn. Magn. Mater. 272-276, 747-749 (2004).

92. H. Forster, R. Dittrich, T. Schrefl, J. Fidler, "Anisotropic magneto resistivity effect in a Co nanowire", Physica B 343, 211-215 (2004).

93. T. Schrefl, M. E. Schabes, D. Suess, M. Stehno, "Dynamic micromagnetic write head fields during magnetic recording in granular media", IEEE Trans. Magn. 40, No. 4, 2341-2343, (2004).

94. W. Scholz, D. Suess, T. Schrefl, J. Fidler, "Micromagnetic simulation of magnetization reversal in small particles with surface anisotropy", J. Appl. Phys. 95, 6807- 6809 (2004).

95. M. d'Aquino, W. Scholz, T. Schrefl, C. Serpico, J. Fidler, "Numerical and analytical study of fast precessional switching", J. Appl. Phys. 95, 7055-7057 (2004).

96. J. Fidler, T. Schrefl, S. Hoefinger, M. Hajduga, "Recent developments in hard magnetic bulk materials", Journal of Physics-Condensed Mater 16, S455-S470 (2004).

97. M. d'Aquino, W. Scholz, T. Schrefl, C. Serpico, C. Miano, "Analysis of fast precessional switching in magnetic thin films", PIERS 2004, Progress in electromagnetic research symposia, 257-260 (2004).

98. R. Dittrich, T. Schrefl, D. Suess, W. Scholz and J. Fidler "Nonuniform thermal reversal in single-domain patterned media ", IEEE Trans. Magn. 40 2507-2509, (2004).

Final Report ADVANCED NUMERICAL MICROMAGNETICS; March 2007 / Page 16 of 35 www.advancedmagnetics.net

99. F. Dorfbauer, D. Suess, J. McCord, M. Kirschner, T. Schrefl, and J. Fidler, "Micromagnetic simulation of asymmetric magnetization reversal in exchange biased bilayers," Journal of Magnetism and Magnetic Materials, vol. 290, pp. 754-757, 2005.

100. D. Suess, T. Schrefl, R. Dittrich, M. Kirschner, F. Dorfbauer, G. Hrkac, and J. Fidler, "Exchange spring recording media for areal densities up to 10 Tbit/in(2)," Journal of Magnetism and Magnetic Materials, vol. 290, pp. 551-554, 2005.

101. O. Ertl, T. Schrefl, D. Suess, and M. E. Schabes, "Influence of the Gilbert damping constant on the flux rise time of write head fields," Journal of Magnetism and Magnetic Materials, vol. 290, pp. 518-521, 2005.

102. M. d'Aquino, W. Scholz, T. Schrefl, C. Serpico, and J. Fidler, "Micromagnetic analysis of fast precessional switching," Journal of Magnetism and Magnetic Materials, vol. 290, pp. 510-513, 2005.

103. M. d'Aquino, D. Suess, T. Schrefl, C. Serpico, and J. Fidler, "Analysis of fast switching in tilted media," Journal of Magnetism and Magnetic Materials, vol. 290, pp. 506-509, 2005.

104. D. Suess, T. Schrefl, S. Fahler, M. Kirschner, G. Hrkac, F. Dorfbauer, and J. Fidler, "Exchange spring media for perpendicular recording," Applied Physics Letters, vol. 87, Art. No. 012504, 2005.

105. R. Dittrich, G. H. Hu, T. Schrefl, T. Thomson, D. Suess, B. D. Terris, and J. Fidler, "Angular dependence of the switching field in patterned magnetic elements," Journal of Applied Physics, vol. 97, Art. No. 10J705, 2005.

106. J. Fidler, P. Speckmayer, T. Schrefl, and D. Suess, "Numerical micromagnetics of an assembly of (Fe,Co)Pt nanoparticles," Journal of Applied Physics, vol. 97, Art. No. 10E508, 2005.

107. G. Hrkac, M. Kirschner, F. Dorfbauer, D. Suess, O. Ertl, J. Fidler, and T. Schrefl, "Three-dimensional micromagnetic finite element simulations including eddy currents," Journal of Applied Physics, vol. 97, Art. No. 10E311, 2005.

108. M. Kirschner, T. Schrefl, F. Dorfbauer, G. Hrkac, S. Suess, and J. Fidler, "Cell size corrections for nonzero-temperature micromagnetics," Journal of Applied Physics, vol. 97, Art. No. 10E301, 2005.

109. M. Puschenreiter, A. Schnepf, I. M. Millan, W. J. Fitz, O. Horak, J. Klepp, T. Schrefl, E. Lombi, and W. W. Wenzel, "Changes of Ni biogeochemistry in the rhizosphere of the hyperaccumulator Thlaspi goesingense," Plant and Soil, vol. 271, pp. 205-218, 2005.

110. F. Dorfbauer, T. Schrefl, D. Suess, M. Kirschner, G. Hrkac, and J. Fidler, "Pulsed inductive microwave magnetometer response calculated for IrMn/FeNi bilayers," European Physical Journal B, vol. 45, pp. 267-271, 2005.

111. R. Dittrich, T. Schrefl, M. Kirschner, D. Suess, G. Hrkac, F. Dorfbauer, O. Ertl, and J. Fidler, "Thermally induced vortex nucleation in permalloy elements," Ieee Transactions on Magnetics, vol. 41, pp. 3592-3594, 2005.

112. D. Suess, T. Schrefl, M. Kirschner, G. Hrkac, F. Dorfbauer, O. Ertl, and J. Fidler, "Optimization of exchange spring perpendicular recording media," Ieee Transactions on Magnetics, vol. 41, pp. 3166-3168, 2005.

113. G. Hrkac, T. Schrefl, O. Ertl, D. Suess, M. Kirschner, F. Dorfbauer, and J. Fidler, "Influence of eddy current on magnetization processes in submicrometer permalloy structures," Ieee Transactions on Magnetics, vol. 41, pp. 3097-3099, 2005.

114. M. E. Schabes, T. Schrefl, D. Suess, and O. Ertl, "Dynamic micromagnetic studies of anisotropy effects in perpendicular write heads," Ieee Transactions on Magnetics, vol. 41, pp. 3073-3075, 2005.

115. T. Schrefl, M. E. Schabes, D. Suess, O. Ertl, M. Kirschner, F. Dorfbauer, G. Hrkac, and J. Fidler, "Partitioning of the perpendicular write field into head and

Final Report ADVANCED NUMERICAL MICROMAGNETICS; March 2007 / Page 17 of 35 www.advancedmagnetics.net

SUL contributions," Ieee Transactions on Magnetics, vol. 41, pp. 3064-3066, 2005.

116. J. Fidler, T. Schrefl, D. Suess, O. Ertl, M. Kirschner, G. Hrkac, "Full micromagnetics of recording on patterned media", Physics B: condensed Matter 372, pp. 312-315, 2006.

117. M. Kirschner, T. Schrefl, G. Hrkac, F. Dorfbauer, D. Suess, J. Fidler, "Relaxation times and cell size in nonzero-temperature micromagnetics", Physics B: condensed Matter 372, pp. 277-281, 2006.

118. J. Dean, M. R. J. Gibbs, T. Schrefl, " Finite-Element Analysis on Cantilever Beams Coated With Magnetostrictive Material", IEEE Trans. Magn. 42, pp. 283 - 288, 2006.

119. S. Bance, T. Schrefl, G. Hrkac, D. Suess, C. Brownlie, S. McVitie, J.N. Chapman, D.A. Allwood, "Transitions between vortex and transverse walls in NiFe nano-structures", IEEE Trans. Magn. 42 (2006) 2966-2968.

120. D. Suess, K. Porath, J. Fidler, T. Schrefl, "Lateral exchange spring media", IEEE Trans. Magn., 42, pp. 2357-2359, 2006.

121. J. Lee, D. Suess, T. Schrefl, K. Oh, J. Fidler, "Contribution of local incoherency on Gilbert-damping", IEEE Trans. Magn., 42, pp. 3210-3212, 2006.

122. F. Dorfbauer, T. Schrefl, M. Kirschner, G. Hrkac, D. Suess, O. Ertl, J. Fidler, "Nano-structure calculation of CoAg core-shell clusters", J. Appl. Phys. 99, 08g706 2006.

123. O. Ertl, G. Hrkac, D. Suess, M. Kirschner, F. Dorfbauer, J. Fidler, T. Schrefl, "Multiscale micromagnetic simulation of GMR read heads", J. Appl. Phys. 99, 08s303, 2006.

124. D. Suess, J. Fidler, K. Porath, T. Schrefl and D. Weller, "Micromagnetic study of pinning behavior in percolated media", J. Appl. Phys. 99 (2006) 08g905.

125. G. Hrkac, M. Kirschner, F. Dorfbauer, D. Suess, O. Ertl, and J. Fidler, "Influence of eddy currents on the effective damping parameter", J. Appl. Phys. 99, 08b902, 2006.

126. G. Hrkac, T. Schrefl and M. Schabes, A combined vector and scalar potential method for 3D Magnetic fields and transient eddy current effects in recording head coils, Physica B 384, 253-255, 2006.

127. T. C. Ulbrich, D. Makarov, G. Hu, I. L. Guhr, D. Suess, T. Schrefl, and M. Albrecht, Magnetization Reversal in a Novel Gradient Nanomaterial, Phys. Rev. Lett. 96, 077202, 2006.

128. D.A. Allwood, T. Schrefl, G. Hrkac, I.G. Hughes, C.S. Adams, "Mobile atom traps using magnetic nanowires", Applied Physics Letters 89, 014102, 2006.

129. T. Schrefl, D. Suess, G. Hrkac, M. Kirschner, O. Ertl, R. Dittrich, and J. Fidler, "Nanomagnetic Simulations" in Advanced Magnetic Nanostructures, D Sellmyer, R Skomski (Eds), Springer, pp. 92-118, 2006.

130. D. Suess, Micromagnetics of exchange spring media: Optimization and limits, J. Magn. Magn. Mat., 308 (2007) 183-197.

131. Thomas Schrefl, Gino Hrkac, Simon Bance, Dieter Suess, Otmar Ertl, Josef Fidler, Numerical Methods in Micromagnetics (FEM), Handbook of Magnetism and Advanced Magnetic Materials, Volume 2, H. Kronmüller, S. Parkin (Eds), Wiley, 2007, in press.

132. Josef Fidler, Dieter Suess, Thomas Schrefl, Rare earth intermetallics for permanent magnet applications, Handbook of Magnetism and Advanced Magnetic Materials, Volume 4, H. Kronmüller, S. Parkin (Eds), Wiley, 2007, in press.

133. D. Suess, "Multilayer exchange spring media for magnetic recording", Appl. Phys. Lett., 89 (2006) 113105, 1-3.

1.a.2. Non peer-reviewed publications (journals, contribution to anthologies research reports, working papers, proceedings, etc.)

Final Report ADVANCED NUMERICAL MICROMAGNETICS; March 2007 / Page 18 of 35 www.advancedmagnetics.net

1. J. Fidler, R. W. Chantrell, T. Schrefl, M. Wongsam, and J. Fidler, “Micromagnetics I: Basic principles,” Encyclopedia of Materials: Science and Technology, K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan (eds.), Elsevier, 2001, pp. 5642-5651.

2. R. W. Chantrell, J. Fidler, T. Schrefl, and M. Wongsam, “Micromagnetics II: Finite element approaches,” Encyclopedia of Materials: Science and Technology, K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan (eds.), Elsevier, 2001, pp. 5651-5661.

3. T. Schrefl, H. Forster, D. Suess, W. Scholz, V. D. Tsiantos and J. Fidler, "Micromagnetic simulation of switching events", in Advances in Solid State Physics, Bernhard Kramer (ed.), Springer Verlag, 2001, pp. 623-635.

4. T. Schrefl, V. D. Tsiantos, D. Suess, W. Scholz, H. Forster and J. Fidler, "Micromagnetic simulations and applications", in Scattering and biomedical engineering: Modeling and Applications, edited by D. Fotiadis, C. Massalas (ed.), World Scientific, 2001, pp. 141-158.

5. T. Schrefl, J. Fidler, D. Suess and V. Tsiantos, "Micromagnetic simulation of dynamic and thermal effects", in Advanced magnetic materials, Y. Liu, D.J. Sellmyer and D. Shindo (ed.), (2002), in press.

6. T. Schrefl, D. Suess, W. Scholz, H. Forster, V. Tsiantos, and J. Fidler, "Finite element micromagnetics", in Lecture Notes in Computational Science and Engineering 28, Springer, 2003, pp. 165-181.

7. R. Dittrich, T. Schrefl, J. Fidler, D. Suess,W. Scholz, H.Forster, " Computational Aspects of Micromagnetics" in The Science of Hysteresis Volume II, G. Bertotti and I. Mayergoyz (Eds), Elsevier, Amsterdam, pp. 383-433, 2005.

8. Schnepf A., Himmelbauer M.L., Puschenreiter M., Schrefl T., Lombi E., Fitz W.J., Loiskandl W., Konecny F., Wenzel W.W., "Model development for simulating the bioavailability of Ni to the hyperaccumulator THLASPI GOESINGENSE.," in The Biogeochemistry of Trace Elements in the Rhizosphere - Elsevier. (2005).

9. T Schrefl, J Fidler, R Dittrich, D Suess, W Scholz, V Tsiantos, H Forster, "Micromagnetic Simulation of Dynamic and Thermal Effects" in Handbook of Advanced Magnetic Materials, Vol 1. Nanostructural Effects Springer, Y. Liu, D. Sellmyer, D. Shindo, Daisuke (Eds), Springer, 2006.

10. J. Fidler, T. Schrefl and W. Scholz, "Computational Micromagnetics", in Handbook of Theoretical and Computational Nanotechnology, M. Rieth, W. Schommers (eds), American Scientific Publishers, Volume 1, pp. 1-53, 2006.

11. D. Suess, T. Schrefl, J. Fidler, "Micromagnetic simulations of magnetic materials", in Handbook of Magnetic Materials, K. H. J. Buschow (Ed.), Elsevier, pp 41-125, 2006.

1.a.3. Stand-alone publications (monographies, anthologies)

1.b. publications for the general public and other publications

such as films, exhibitions, preparation of a home page etc. with an indication of the status (published, submitted / in preparation) web pages http://magnet.atp.tuwien.ac.at/ts/midterm http://www.advancedmagnetics.net

CD-rom

Final Report ADVANCED NUMERICAL MICROMAGNETICS; March 2007 / Page 19 of 35 www.advancedmagnetics.net

List 2 project-related participation in international scientific conferences (with an indication of the conference date) – 4 subunits:

2.1. Conference participations - invited lectures 1. J. Fidler, Modeling and future trends of advanced magnets, Intermag 2000,

Toronto, Candada, April 9, 2000. 2. T. Schrefl, Finite element simulation of hard magnetic properties, Properties and

Applications of Magnetic Materials Conference, Chicago, USA, May, 22, 2000. 3. T. Schrefl, Computational micromagnetics: Prediction of time dependent and

thermal properties, Thomas Schrefl, International Conference on Magnetism, Recife, Brasil, August 11, 2000.

4. T. Schrefl, Modeling of nanocomposite magnets, XVI International Worshop on Rare-Earth magnets and their Application, Sendai, Japan, September, 14, 2000.

11. T. Schrefl, Finite element micromagnetics, GAMM Workshop on computational electromagnetics, Kiel, Germany, January 27, 2001.

14. T. Schrefl, Fast and thermal switching of small magnets, Spring meeting of the German Physical Society, Hamburg, March, 27, 2000.

15. H. Forster, Finite element simulation of magnetization reversal in nanowires, Worksop on Magnetization reversal and electron transport in nanonstructures, Gerhard-Mercator University, Duisburg, Germany, April 27, 2001.

17. T. Schrefl, Micromagnetic simulation of domain wall motion in magnetic nano- wires, International Conference on Magnetic Nanowires, San Sebastian, Spain, June 21, 2001.

18. T. Schrefl, Application of time resolved micromagnetism to small structures, Joint Summer workshop on "Mesomagnetism, Spin dynamics and Spin electronics, Santorin, Greece, July 1, 2001.

19. T. Schrefl, Finite element micromagnetics: switching dynamics of magnetic elements and structures, 4th Joint UK Magnetics Worskshop, Cardiff University, July 10, 2001.

20. T. Schrefl, Numerical micromagnetics: Recent advances and current limits, EPSRC Network meeting on theory and modeling in magnetism, Cardiff University, July 11, 2001.

21. D. Suess, Dynamical magnetization switching, International Workshop on "Ferromagnetic-semiconductor nanostructures", University of Regensburg, July, 26, 2001.

23. H. Forster, Adaptive mesh refinement in dynamic micromagnetic problems, Workshop on Magnetic Microstructures, Max Planck Institute for Mathematics in the Sciences, Leipzig, October 11, 2001.

24. T. Schrefl, Micromagnetic simulations and applications, 5th International workshop on Mathematical Methods in Scattering Theory and Biomedical Technology, Greece, October 2001.

26. H. Forster, Domain wall motion in nano-wires using moving grids, 46th Annual MMM Conference Seattle, Washington, November 13, 2001.

27. M. Schabes, Micromagnetic modelling of soft underlayer magnetization processes at bit transitions in perpendicular magnetic recording, 1st North American Conference on Perpendicular Magnetic Recording, Miami, Florida, January 8, 2002.

30. T. Schrefl, Numerical simulations in nanocrystalline magnets, Nanostrucured and advanced materials, Irsee, Germany, June 12, 2002.

33. W. Scholz, Transition from single-domain to vortex state in soft magnetic cylindrical nanodots, ICFPM 2002, 4th International Conference on Fine Particle Magnetism, August 14-16, 2002, Pittsburgh, PA, USA.

34. T. Schrefl, Magnetic Hardening in Nanocomposite Magnets, International Workshop on rare-earth magnets and their applications, Newark, Delaware, USA, August, 20, 2002.

Final Report ADVANCED NUMERICAL MICROMAGNETICS; March 2007 / Page 20 of 35 www.advancedmagnetics.net

36. H. Forster, Multiscale problems in micromagnetics, International workshop on numerical methods for multiscale problems, Max-Planck-Institut, Leipzig, Germany, November, 13, 2002.

37. T. Schrefl, Time and length scales in micromagnetics, Computational Challenges in Partial Differential Equations, Isaac Newton Institute for Mathematical Sciences, Cambridge, UK, February 13, 2003.

42. T. Schrefl, Finite element micromagnetics, 11th conference on the Mathematics of Finite Elements and Applications (MAFELAP), Brunel University, UK, June, 22, 2003.

43. T. Schrefl, Simulation of thermally induced magnetization processes for sensor and storage applications, Finite element micromagnetics, 11th conference on the Mathematics of Finite Elements and Applications (MAFELAP), Brunel University, UK, June, 24, 2003.

45. T. Schrefl, Switching fields and energy barriers of soft magnetic nano-elements, Soft Magnetic Materials Conference, Düsseldorf, Germany, September 2003.

49. T. Schrefl, Numerical methods for magnetic recording simulations, Progress in Electromagnetics Research Symposium, Pisa, Italy March 29, 2004.

50. T. Schrefl, Dynamic micromagnetic simulation of the entire writing process, Progress in Electromagnetics Research Symposium, Pisa, Italy March 29, 2004.

51. T. Schrefl, Multiscale modelling of magneto-electronic devices, National Science Foundation/European Commission Workshop: Methods in Computational Materials Science, San Fransico, April 15, 2004.

54. D. Suess, Magnetic recording simulations: From the write current to the read back signal, Meeting of the UK magnetics society, Manchester, May, 21, 2004.

55. T. Schrefl, Numerical Methods for the Micromagnetic Simulation of the Entire Recording Process, SIAM Conference on Mathematical Aspects of Materials Science (MS04), Los Angeles, CA, May, 23, 2004.

58. T. Schrefl, Simulation tools for magnetic recording systems, AIMS' Fifth International Conference on Dynamical Systems and Differential Equations, Los Angeles CA, June 17, 2004.

60. T. Schrefl, Fully integrated micromagnetic dynamic perpendicular magnetic recording simulations, North American Perpendicular Magnetic Recording Conference, Boulder, Colerado, August, 10, 2004.

61. T. Schrefl, Mircomagnetics of FePt Structures: A tutorial approach, L10 Ordered Intermetallic and Related Phases for Permanent Magnet and Recording Applications, Copper Mountain, Colerado, August, 18, 2004.

68. T. Schrefl, Computational magnetic for storage applications, Wohlfarth Memorial Lecture, Institute of Physiscs, London, April 20, 2005.

69. T. Schrefl, A Hybrid Method for the Simulation of the Write and Read Process in Magnetic Recording, International Conference on Computational Methods for Coupled Problems in Science and Engineering, Santorini, May 27, 2005.

70. T. Schrefl, Hybrid finite element/fast boundary methods for magnetic recording simulations, Third International Conference on Advanced Computational Methods in Engineering, Gent, May 31, 2005.

73. D. Suess, Thermal stability of novel hard disk media, Seagate Nanotechnolgy Workshop, Derry, Northen Ireland, July 1st, 2005.

74. T. Schrefl, Micromagnetic simulation of the read and write process, Seagate Nanotechnolgy Workshop, Derry, Northen Ireland, June 30, 2005.

76. T. Schrefl, Head Optimization for Writing Exchange Spring Media - A Micromagnetics Approach, International Storage Technology Symposium held in Kalamata, September, 14, 2005.

77. D. Suess, Exchange spring media for high density perpendicular recording, DISKON 2005, San Jose, CA, September 20, 2005.

79. D. Suess, Advanced magnetic recording systems, IBM Almaden, San Jose, USA, Nov, 2, 2005

Final Report ADVANCED NUMERICAL MICROMAGNETICS; March 2007 / Page 21 of 35 www.advancedmagnetics.net

80. T. Schrefl, Nanomagnetic simulations of recording media, APS March Meeting, Baltimore, March, 15, 2006

81. D. Suess, Micromagnetic modelling of composite perpendicular media, Intermag 2006 Conference, San Diego, May 11, 2006.

82. T. Schrefl, Innovative self-organization for magnetic storage, FP7 Consultation Workshop on Mass data storage Systems: Future R&D and New Challenges, Grenoble, May, 29, 2006.

83. G. Hrkac and T. Schrefl, Using a Hybrid finite element/boundary element method to combine eddy current effects and micromagnetic simulations, 12th Conference on the Mathematics of Finite Elements and Applications, London, June 13, 2006.

85. T. Schrefl, Micromagnetics for magnetic recording applications, International Workshop on Micromagnetics held in Bonn, Germany, September, 5, 2006.

87. D. Suess, Multiscale Modeling of Advanced Magnetic Recording Devices, Cost Psi-k workshop, Wroclaw, Poland, September 25, 2006.

88. D. Suess, Domain Wall Switched Media, Workshop on patterned media, self-assembled media and domain-wall switched media, MINT Centre, Tuscaloosa, USA, October 25, 2006.

91. T. Schrefl, From hard disk recording to spin torque oscillators, Institute of Physics meeting on Computational Magnetism, London, December 13, 2006.

95. T. Schrefl, Tutorial on micromagnetic modelling, Institute of Physics Worksop on Magnetic Imaging, London, October 23, 2006.

97. T. Schrefl, Dynamics in integrated write-read head, The Magnetic Recording Conference, TMRC, May 21-23, Minneapolis, 2007.

98. T. Schrefl, Simulation of extremly high density magnetic storage systems, Innovative Mass Storage Technologies 2007, Enschede, The Netherlands from June 18-20, 2007.

99. T. Schrefl, Limits of switching speeds in magnetic recording heads, International Storage Technology Symposium, Kalamata, June 10-15, 2007.

2.2. Conference participations - lectures 1. T. Schrefl, D. Suess, J. Fidler, Wavelet Based Matrix Compression in Numerical

Micromagnetics, Third International Conference on Modeling and Simulation of Microsystems, San Diego, California, U.S.A., March 27-29, 2000.

2. T. Schrefl, W. Scholz, D. Suess, J. Fidler, Langevin micromagnetics of recording media using subgrain discretization, Intermag 2000, Toronto, Canada, April, 9, 2000.

3. T. Schrefl, W. Scholz, D. Suess, J. Fidler, Micromagnetic simulation of high energy density permanent magnets, Intermag 2000, Toronto, Canada, April, 11, 2000.

4. T. Schrefl, W. Scholz, J. Fidler, D. Süss, Langevin dynamics of small ferromagnetic particles and wires, 16th IMACS World Congress 2000 on Scientific Computing, Applied Mathematics and Simulation, Lausanne, August, 24, 2000.

5. V. D. Tsiantos, J. J. Miles, B.K. Middleton, Stiffness in Micromagnetic Simulations, 16th IMACS World Congress 2000 on Scientific Computation, Applied Mathematics and Simulation, August 21-25, 2000, Lausanne, Switzerland.

6. V. D. Tsiantos, J. J. Miles, and M. Jones, Preconditioned Krylov Subspace methods in Micromagnetic Simulations, 11-14 September 2000, Barcelona, Spain.

7. J. Fidler, T.Schrefl, S. Sasaki and D. Suess, The role of intergranular regions in sintered Nd-Fe-B magnets with (B.H)max>420kJ/m3 (52.5 MGOe), Int. Symp. on Magnetic Anisotropy and Coercivity in Rare Earth Transition Metal Alloys, Sendai, Japan, September, 15, 2000.

Final Report ADVANCED NUMERICAL MICROMAGNETICS; March 2007 / Page 22 of 35 www.advancedmagnetics.net

8. J. Fidler, T. Schrefl, D. Suess and W. Scholz, Dynamic micromagnetic simulation of the configurational anisotropy of nanoelements, Joint MMM-Intermag Conference, San Antonio, TX, January 9, 2001.

9. D. Süss, T. Schrefl, J. Fidler and V. Tsiantos, Reversal dynamics of interacting circular nanomagnets, IEEE Trans Magn. (2001), January, 10, 2001.

10. T. Schrefl, J. Fidler, J.N. Chapman and K. J. Kirk, Micromagnetic simulation of domain structures in patterned magnetic tunnel junctions, Joint MMM-Intermag Conference, San Antonio, TX, January 10, 2001.

11. D. Süss, T. Schrefl and J. Fidler, Reversal modes, thermal stability, and exchange length in perpendicular recording media, Joint MMM-Intermag Conference, San Antonio, TX, January 10, 2001.

12. V. Tsiantos, D. Suess, T. Schrefl and J. Fidler, Stiffness analysis for the muMAG standard problem #4, Joint MMM-Intermag Conference, San Antonio, TX, January 11, 2001.

13. V.D. Tsiantos, W. Scholz, D. Suess, T. Schrefl and J. Fidler, Effect of spatial correlation length in Langevin micromagnetic simulations, JEMS'01 Conf. Grenoble August 2001.

14. T. Matthias, G. Zehetner, W. Scholz, J. Fidler, T. Schrefl, D. Schobinger, G. Martinek, TEM-Analysis of Sm(Co,Fe,Cu,Zr)z magnets for high temperature applications, Dreiländertagung für Elektronenmikroskopie, Innsbruck, Austria, September 11, 2001.

15. A. Schnepf, T. Schrefl, C. Riedler, W. Wenzel, Simulation von Rhizosphärenprozessen mit FlexPDE, Jahrestagung der DBG 2001, Wien, September, 6, 2001.

16. J. Fidler, T. Schrefl, D.Suess and W. Scholz, Fast switching behaviour of nanoscopic NiFe- and Co-elements, Conference of the COST P3 Action "Simulation of Physical Phenomena in Technological Applications”, Madrid, Spain, September 25, 2001.

17. V. D. Tsiantos, T. Schrefl, D. Suess, W. Scholz, H. Forster and J. Fidler, Time Integration Methods in Micromagnetic Simulations: Stiffness on Granular Media-Patterned Media and µMAG standard problem #4 - Speed up of Simulations, 5th Hellenic European Conference on Computer Mathematics & its Applications (HERMCA), Athens, Greece, September 20, 2001.

18. W. Scholz, H. Forster, J. Fidler, T. Schrefl, Micromagnetic simulation of domain wall pinning and domain wall motion, Conference of the COST P3 Action "Simulation of Physical Phenomena in Technological Applications”, Madrid, Spain, September 25, 2001.

19. W. Scholz, D. Suess, T. Schrefl and J. Fidler, Domain structures and domain wall pinning in arrays of elliptical NiFe nanoelements, 46 Annual MMM Conference Seattle, Washington, November 13, 2001.

20. W. Scholz, J. Fidler, T. Schrefl, D. Suess, T. Matthias, Micromagnetic 3D simulation of the pinning field in high temperature Sm(Co,Fe,Cu,Zr)z magnets, 46 Annual MMM Conference Seattle, Washington, November 16, 2001.

21. D. M. Newns, W. E. Donath, G. J. Martyna, M. E. Schabes, B. E. Lengsfield, T. Schrefl, Performance of a Novel Algorithm for Perpendicular Magnetic Recording Simulation, 3rd Workshop on Parallel and Distributed Scientific and Engineering Computing with Applications (PDSECA-02), Fort Lauderdale, Florida, April 15- 19, 2002.

22. D. Suess, W. Scholz, T. Schrefl1, J. Fidler, R. Stamps, Micromagnetic simulation of antiferromagnetic/ferromagnetic structures, Intermag Conference, Amsterdam, Netherland, May 1, 2002.

23. H. Forster, T. Schrefl, J. Fidler, Magnetization reversal in granular nanowires, Intermag Conference, Amsterdam, Netherland, May 2, 2002.

24. T. Matthias, W. Scholz, J. Fidler, T. Schrefl, T. S. Rong, I. P. Jones, R. Harris, Sm(Co,Fe,Cu,Zr)Z magnets for high temperature applications: microstructural

Final Report ADVANCED NUMERICAL MICROMAGNETICS; March 2007 / Page 23 of 35 www.advancedmagnetics.net

and micromagnetic analysis, Intermag Conference, Amsterdam, Netherland, May 2, 2002.

25. J. Fidler, T. Matthias, W. Scholz, T. Schrefl, T.S, Rong, I. Jones, I. R. Harris, The role of the precipitation structure on the coercivity of Sm(Co,Fe,Cu,Zr)z magnets for HT applications, XVII Rare Earth Magnets Workshop, University of Delaware, August, 2002.

26. T. Schrefl, H. Forster, R. Dittrich, D. Suess, W. Scholz, J. Fidler, Reversible magnetization processes and energy density product in Sm-Co/Fe bilayers, 47th Annual Conference on Magnetism and Magnetic Materials, Tampa, FL, November 12, 2002.

27. D. Suess, T. Schrefl, W. Scholz, J. Fidler, Micromagnetic calculation of coercivity and remanence of self-assembled FePt nanoparticle arrays, 47th Annual Conference on Magnetism and Magnetic Materials, Tampa, FL, November 13, 2002

28. R. Dittrich, T. Schrefl, D. Suess, W. Scholz, H. Forster, J. Fidler, Thermally induced magnetization reversal in AFC media, 47th Annual Conference on Magnetism and Magnetic Materials, Tampa, FL, November 13, 2002

29. R. Dittrich, A. Thiaville, J. Miltat, T. Schrefl, A rigorous micromagnetic computation of configurational anisotropy energies in nanoelements, 47th Annual Conference on Magnetism and Magnetic Materials, Tampa, FL, November 14, 2002.

30. V. Tsiantos, T. Schrefl, W. Scholz, J. Fidler, Thermal magnetization noise in submicron spin valve sensors,47th Annual Conference on Magnetism and Magnetic Materials, Tampa, FL, November 15, 2002.

31. D. Suess, M. Kirschner, T. Schrefl, W. Scholz, R. Dittrich, H. Forster, J. Fidler, Micromagnetic calculations of bias field and coercivity of compensated ferromagnetic/antiferromagnetic bilayers, 47th Annual Conference on Magnetism and Magnetic Materials, Tampa, FL, November 15, 2002.

32. H. Forster, T. Schrefl, R. Dittrich, Multiscale problems in micromagnetics, Workshop on numerical methods for multiscale problems, MPI for Mathematics in the Sciences, Leipzig, November 13-15 , 2002

33. R. Dittrich, V. Tsiantos, T. Schrefl, D. Suess, W. Scholz, H. Forster, J. Fidler, Micromagnetic simulations of thermal effects in magnetic nanostructures, MRS Fall Meeting 2002, Boston, MA, December, 3, 2002.

34. D. Suess, T. Schrefl, J. Fidler, R.L. Stamps, J.V. Kim, Exchange bias and training effect in polycrystalline antiferromagnetic/ferromagnetic bilayers, MRS Fall Meeting 2002, Boston, MA, December 5, 2002.

35. R. Dittrich, T. Schrefl, Magnetic domain structures during thermal switching of thin film elements, 2nd GAMM Seminar on Microstructures, Bochum, Germany. January, 13, 2003.

36. M. Stehno, T. Schrefl, R. Dittrich, H. Forster, J. Fidler, Y. Uesaka, Numerical Switching Experiments for Perpendicular Recording, Intermag 2003, Boston, MA, March 31, 2003.

37. V. Tsiantos, T. Schrefl, W. Scholz, H. Forster, D. Suess, R. Dittrich, J. Fidler, Thermal Magnetization Rotation of Small Nanoparticles, Intermag 2003, Boston, MA, April 1, 2003.

38. H. Forster, T.Schrefl, J. Fidler, Fast Boundary Methods for Magnetostatic Interactions in Micromagnetics, Intermag 2003, Boston, MA, April 1, 2003.

39. W. Scholz, T. Schrefl, J. Fidler, T. Matthias, D. Suess, V. Tsiantos, Micromagnetic Simulation of Pinning and Depinning Processes in Permanent Magnets, Intermag 2003, Boston, MA, April 1, 2003.

40. R. Dittrich, T. Schrefl, H. Forster, D. Suess, W. Scholz, J. Fidler, Energy Barriers in Magnetic Random Access Memory Elements, Intermag 2003, Boston, MA, April 2, 2003.

Final Report ADVANCED NUMERICAL MICROMAGNETICS; March 2007 / Page 24 of 35 www.advancedmagnetics.net

41. H. Forster, T. Schrefl, R. Dittrich, W. Scholz, J. Fidler, Anisotropic magnetorisistivity effect in a Co nanowire, 4th International Symposium on Hysteresis and Micromagnetic Modeling, Salamanca, Spain, Mai 28, 2003.

42. J. Fidler, T. Schrefl, W. Scholz, D. Suess, V. Tsiantos, H. Forster, R. Dittrich, Magnetostatic spin-waves in nanoelements, 4th International Symposium on Hysteresis and Micromagnetic Modeling, Salamanca, Spain, Mai 28, 2003.

43. T. Schrefl, H. Forster, M. E. Schabes, B. Lengsfield, Finite Element Simulation of Head / Media Interactions in Perpendicular Recording, 14th Compumag Conference on the Computation of Electromagnetic Fields, Saratoga Springs, NY, July, 15, 2003.

44. J. Fidler, T. Schrefl, W. Scholz, D. Suess, H. Forster, R. Dittrich, Micromagnetic modeling and magnetization processes, International Conference on Magnetism, Rome, August, 1, 2003.

45. M. Kirschner, T. Schrefl, W. Scholz, D. Suess, Scaling relations in non-zero temperature micromagnetics, 9th Joint MMM-Intermag Conference, Anaheim, CA, January, 2004.

46. W. Scholz, J. Fidler, T. Schrefl, Micromagnetic simulation of magnetization reversal in small particles with surface anisotropy, 9th Joint MMM-Intermag Conference, Anaheim, CA, January, 2004.

47. W. Scholz, T. Schrefl, D. Suess, R. Dittrich, H. Forster, V. Tsiantos, J. Fidler, Implementation of a scalable parallel finite element packages for micromagnetic simulations, 9th Joint MMM-Intermag Conference, Anaheim, CA, January, 2004.

48. M. D’Aquino, C. Serpico, T. Schrefl, Numerical and analytical study of fast precessional switching, 9th Joint MMM-Intermag Conference, Anaheim, CA, January, 2004.

49. M. D’Aquino, T. Schrefl, D. Suess, M. Stehno, C. Serpico, J. Fidler, Fast switching of tilted media, 9th Joint MMM-Intermag Conference, Anaheim, CA, January, 2004.

50. R. Dittrich, T. Schrefl, W. Scholz, J. Fidler, Non-uniform thermal reversal in single domain patterned media, 9th Joint MMM-Intermag Conference, Anaheim, CA, January, 2004.

51. M. d’Aquino, C. Serpico, G. Miano, Analysis of fast precessional switching in magnetic thin films, Progress in Electromagnetics Research Symposium, Pisa, Italy March 29, 2004.

52. D. Suess, K. Machata, Globaler Optimierungsalgorithmus für überlappungsfreie Darstellung von Objekten in der neuen Elektronischen Unfallsteckkarte des Kuratoriums für Verkehrsicherheit, AGIT 2004, Salzburg, July 8, 2004.

53. F. Dorfbauer, D. Suess, M. Kirschner, T. Schrefl, J. Fidler, and J. McCord, Micromagnetic simulation of asymmetric magnetization reversal in exchange biased bilayers, JEMS04, Dresden, Germany, September, 2004.

54. O. Ertl, T. Schrefl, M. E. Schabes, Influence of the Gilbert damping constant on the flux rise time of write head fields, JEMS04, Dresden, Germany, September, 2004.

55. F. Dorfbauer, D. Suess, M. Kirschner, T. Schrefl, J. Fidler, Pulsed inductive microwave magnetometer response calculated for IrMn/FeNi bilayers, International workshop on exchange biased magnetic nanostructures, Anglet, France, September, 2004.

56. M. Kirschner, Cell size corrections for non-zero temperature micromagnetics, 49th Annual Conference on Magnetism and Magnetic Materials, Jacksonville/Florida, November 7-11, 2004.

57. G. Hrkac, T. Schrefl, M. Kirschner, F. Dorfbauer, D. Suess, 3D Micromagnetic Finite Element Simulations Including Eddy currents, 49th Annual Conference on Magnetism and Magnetic Materials, Jacksonville/Florida, November 7-11, 2004.

58. D. Suess, M. Albrecht, T. Schrefl, R. Dittrich, M. Kirschner, F. Dorfbauer, G. Hrkac, J. Fidler, Exchange Spring Multilayer Media for High Density Recording,

Final Report ADVANCED NUMERICAL MICROMAGNETICS; March 2007 / Page 25 of 35 www.advancedmagnetics.net

49th Annual Conference on Magnetism and Magnetic Materials, Jacksonville/Florida, November 7-11, 2004.

59. J. Fidler, P. Speckmayer, T. Schrefl, D. Suess, Numerical micromagnetics of an assembly of (Fe,Co)Pt nanoparticles, 49th Annual Conference on Magnetism and Magnetic Materials, Jacksonville/Florida, November 7-11, 2004.

60. R. Dittrich, G. Hu, T. Schrefl, T. Thomson, D. Suess, B. Terris, J. Fidler, Angular dependence of the switching field in patterned magnetic elements, 49th Annual Conference on Magnetism and Magnetic Materials, Jacksonville/Florida, November 7-11, 2004.

61. R. Dittrich, T. Schrefl, D. Suess, M. Kirschner, F. Dorfbauer, G. Hrkac, J. Fidler, Optimization of MRAM switching by local variation of the Gilbert damping constant, 49th Annual Conference on Magnetism and Magnetic Materials, Jacksonville/Florida, November 7-11, 2004.

62. T. Schrefl, M. E. Schabes, D. Suess, O. Ertl, M. Kirschner, F. Dorfbauer, G. Hrkac and J. Fidler, Partitioning of the Perpendicular Write Field into Head and SUL Contributions, Intermag Conference 2005, Nagoya, Japan, April 2005.

63. R. Dittrich, T. Schrefl, M. Kirschner, D. Suess, G. Hrkac, F. Dorfbauer, O. Ertl, J. Fidler, Thermally Induced Vortex Nucleation in Permalloy Elements, Intermag Conference 2005, Nagoya, Japan, April 2005.

64. G. Hrkac, T. Schrefl, O. Ertl, D. Suess, M. Kirschner, F. Dorfbauer, J. Fidler, Influence of Eddy Current on Magnetization Processes in Sub-Micron Permalloy Structure, Intermag Conference 2005, Nagoya, Japan, April 2005.

65. M. E. Schabes, T. Schrefl, D. Suess, O. Ertl, Dynamic micromagnetic studies of anistropy effects in perpendicular write heads, Intermag Conference 2005, Nagoya, Japan, April 2005.

66. D. Suess, T. Schrefl, M. Kirschner, G. Hrkac, J. Fidler, Optimization of exchange spring perpendicular recording media, Intermag Conference 2005, Nagoya, Japan, April 2005.

67. M. Kirschner, T. Schrefl, G. Hrkac, F. Dorfbauer, D. Suess, J. Fidler, Relaxation times and cell size in nonzero-temperature micromagnetics, 5th International Symposium on Hysteresis, Budapest, May, 2005.

68. J. Fidler, P. Speckmayer, D. Suess, T. Schrefl and T. Thomson, Simulation of exchange interactions in FePt nanoparticle assemblies, 50th Conference on Magnetism and Magnetic Materials, San Jose, CA, October 30 - November, 3, 2005.

69. G. Hrkac and T. Schrefl, Influence of Eddy currents on the effective damping parameter, 50th Conference on Magnetism and Magnetic Materials, San Jose, CA, October 30 - November, 3, 2005.

70. P. Speckmayer, T. Schrefl, O. Chubykalo-Fesenko, F. Garcia Sanchez, M. Kirschner, D. Suess, J. Fidler, Temperature and interaction effects in arrays of soft magnetic nano-particles, 50th Conference on Magnetism and Magnetic Materials, San Jose, CA, October 30 - November, 3, 2005.

71. F. Dorfbauer, M. Kirschner, T. Schrefl, G. Hrkac, D. Suess and J. Fidler, 50th Conference on Magnetism and Magnetic Materials, Nanostructure Calculation of CoAg core-shell clusters, San Jose, CA, October 30 - November, 3, 2005.

72. J. Fidler, D. Suess, T. Schrefl and D.Weller, Micromagnetic study of pinning behavior in percolated media, 50th Conference on Magnetism and Magnetic Materials, San Jose, CA, October 30 - November, 3, 2005.

73. D. Suess, L. Mueller, F. Dorfbauer, M. Kirschner, T. Schrefl and J. Fidler, Characterisation and genetic optimisation of exchange spring media, 50th Conference on Magnetism and Magnetic Materials, San Jose, CA, October 30 - November, 3, 2005.

74. O. Ertl, T. Schrefl, D. Suess, M. Kirschner, F. Dorfbauer, G. Hrkac and J. Fidler, Multiscale micromagnetic simulation of GMR read heads, 50th Conference on Magnetism and Magnetic Materials, San Jose, CA, October 30 - November, 3, 2005.

Final Report ADVANCED NUMERICAL MICROMAGNETICS; March 2007 / Page 26 of 35 www.advancedmagnetics.net

75. D.A. Allwood, T. Schrefl, I.G. Hughes and C.S. Adams, Atom traps using magnetic nanowire domain walls, 50th Conference on Magnetism and Magnetic Materials, San Jose, CA, October 30 - November, 3, 2005.

76. M. Kirschner, T. Schreft, E. Dorfbauer, D. Suess, G. Hrkac, J. Fidler, Micromagnetic coarse-graining for different crystal structures, Seventh Latin American Workshop on Magnetism, Renaca, Chile, December 11-15, 2005.

77. J. Fidler, D. Suess, M. Kirschner, T. Schrefl, Optimisation of advanced magnetic terabit recording media by micromagnetic simulations, Seventh Latin American Workshop on Magnetism, Renaca, Chile, December 11-15, 2005

78. D. Suess, K. Porath, T. Schrefl, F. Dorfbauer, M. Kirschner, J. Fidler, Lateral Exchange Spring Media, Intermag Conference 2006, San Diego, CA, May, 10, 2006.

79. J. Lee, D. Suess, T. Schrefl, K. Oh and J. Fidler, Contribution of non-uniform magnetic states on Gilbert-damping in perpendicular media, Intermag Conference 2006, San Diego, CA, May, 10, 2006.

80. M.T. Bryan, T. Schrefl, M.R. Gibbs, D.A. Allwood, Trapping Domain Walls in Diode-like Structures, Intermag Conference 2006, San Diego, CA, May, 12, 2006.

81. D. Suess, T. Schrefl, Exchange spring mechanism for writing on percolation media, Joint European Magnetic Symposia, San Sebastian, June 26, 2006.(poster)

82. M. Kirschner, T. Schrefl, Coarse graining in micromagnetic simulations for cubic crystal structures, Joint European Magnetic Symposia, San Sebastian, June 26, 2006.

83. G. Hrkac, T. Schrefl, Thermal Stability of Bubble Domains in Ferromagnetic Discs, Joint European Magnetic Symposia, June 27, 2006.

84. T. Schrefl, M. Schabes, Micromagnetic studies of the coupling of the write-head with the read-head during the perpendicular recording process, Joint European Magnetic Symposia, San Sebastian, June 28, 2006.

85. T. Schrefl, A. Goncharov, Head optimization for composite media, INSIC annual meeting, Monterey, CA, July, 13, 2006.

86. G. Hrkac, T. Schrefl, O. Ertl, S. Bance, A. Goncharov, Simulation of mutual phase-locking in double point contacts, 10th Joint MMM-Intermag conference, Baltimore, January, 9, 2007.

87. T. Schrefl, D. Suess, A. Goncharov, O. Ertl, G. Hrkac, S. Bance, F. Dorfbauer, J. Fidler, Recording simulations on gradient media for densities up to 1 Tbit/in2, 10th Joint MMM-Intermag conference, Baltimore, January, 10, 2007.

88. G. Zimanyi, D. Suess, T. Schrefl, J. Fidler, Optimization of exchange spring media with gradual changing anistropy, 10th Joint MMM-Intermag conference, Baltimore, January, 10, 2007.

89. D. Suess, H. Jung, E. Velu, S. Malhotra, G. Bertero, J. Fidler, T. Schrefl, Simulation of Temperature Dependent Coercivity at Long Time Scales for Magnetic Recording, 10th Joint MMM-Intermag conference, Baltimore, January, 10, 2007.

90. M.T. Bryan, D. Atkinson, T. Schrefl, D.A. Allwood, Influence of transverse magnetic fields and nanowire geometry on domain wall propagation, 10th Joint MMM-Intermag conference, Baltimore, January, 10, 2007.

91. S. Bance, T. Schrefl, D.A. Allwood, G. Hrkac, A. Goncharov, Reducing spin-wave reflections in computational micromagnetics, 10th Joint MMM-Intermag conference, Baltimore, January, 11, 2007.

2.3. Conference participations - posters 1. D. Suess, H. Forster, W. Scholz, R. Dittrich, V. Tsiantos, T. Schrefl and J.

Fidler, Numerical Methods in Micromagnetic Simulations, Joint Summer workshop on "Mesomagnetism, Spin dynamics and Spin electronics, Santorin, Greece, July 1, 2001.

Final Report ADVANCED NUMERICAL MICROMAGNETICS; March 2007 / Page 27 of 35 www.advancedmagnetics.net

2. R. Dittrich, W. Scholz, T. Schrefl, J. Fidler, D. Suess, H. Forster, V. Tsiantos, Thermal Activation in Micromagnetics, Joint Summer workshop on "Mesomagnetism, Spin dynamics and Spin electronics, Santorin, Greece, July 1, 2001.

3. Schnepf A, Schrefl T, Riedler C and Wenzel, “FlexPDE: A novel tool in rhizosphere modeling,” 6th International Conference on the Biogeochemistry of Trace Elements, Guelph, CA, August 2001.

4. D. Suess, W. Scholz, T. Schrefl, and J. Fidler, "Fast switching of small magnetic particles", JEMS'01 Conf. Grenoble August. 2001.

5. T. Matthias, G. Zehetner, J. Fidler, W. Scholz, T. Schrefl, D. Schobinger and G. Martinek, TEM-analysis of Sm(Co,Fe,Cu,Zr)z magnets for high temperature applications, JEMS'01 Conf. Grenoble August 2001.

6. W. Scholz, J. Fidler, T. Schrefl, D. Suess and T. Matthias, Micromagnetic simulation of domain wall pinning in Sm(Co,Fe,Cu,Zr)z magnets, JEMS'01 Conf. Grenoble, August 2001.

7. J. Fidler, T. Schrefl, V. Tsiantos and W. Scholz, Ultrafast Switching of Magnetic Elements using a Rotating Field, 46 Annual MMM Conference Seattle, Washington, November 15, 2001.

8. D. Suess, V. Tsiantos, T. Schrefl, W. Scholz, and J. Fidler, Nucleation in polycrystalline nano elements using a preconditioned finite element method, 46th Annual MMM Conference Seattle, Washington, November 15, 2001.

9. J. Fidler, T. Schrefl, H. Forster, D. Suess, R. Dittrich, FE-Simulation of fast switching behavior of magnetic nanoelements, Proceedings of 5th Conference on Modelling and Simulation of Microsystems, Puerto Rico, April 24, 2002.

10. R. Dittrich, W. Scholz, D. Suess, H. Forster, V. Tsiantos, T. Schrefl, J. Fidler, Finite element simulation of discrete media with granular structure, Intermag Conference, Amsterdam, Netherland, May 2, 2002.

11. J. Fidler, T. Schrefl, V. Tsiantos, H.Forster, D. Suess, W. Scholz, R. Dittrich, FE simulation of fast switching behavior of granular nanoelements, Intermag Conference, Amsterdam, Netherland, May 2, 2002.

12. V. Tsiantos, T. Schrefl, W. Scholz, H. Forster, D. Suess, R. Dittrich, J. Fidler, Thermal Fluctuations in Magnetic, EMSA, Athens, July 3, 2002.

13. T. Matthias, J. Fidler, T. Schrefl, T.S, Rong, I.P. Jones, Nanoanalytical study of sintered Sm-Co 2:17 permanent magnets for high temperature applications, 15th Int. Congress on Electron Microscopy, Durban, South-Africa, September 1-6, 2002.

14. J. Fidler, T. Schrefl, P. Wigen, W. Scholz, D. Suess, Excitation of Spinwaves in Square Nanoelements by Rotating Field, 47th Annual Conference on Magnetism and Magnetic Materials, Tampa, FL, November 13, 2002.

15. M. Kirschner, D. Suess, T. Schrefl1, J. Fidler, J. N. Chapman, Micromagnetic Calculation of Bias Field and Coercivity of Exchange Biased IrMn/NiFe Bilayers, Intermag 2003, Boston, MA, April 3, 2003.

16. W. Scholz, D. Suess, R. Dittrich, T. Schrefl, V. Tsiantos, H. Forster, J. Fidler, Implementation of a high performance parallel finite element micromagnetics package, International Conference on Magnetism, Rome, July, 31, 2003.

17. W. Scholz, J. Fidler, T. Schrefl, D. Suess, H. Forster, R. Dittrich, V. Tsiantos, Numerical micromagnetic simulation of FePt nanoparticles with multiple easy axes, International Conference on Magnetism, Rome, August, 1, 2003.

18. R. Dittrich, T. Schrefl, H. Forster, V. Tsiantos, D. Suess, J. Fidler, Comparison of Langevin dynamics and direct energy barrier computation, International Conference on Magnetism, Rome, August, 1, 2003.

19. M. Stehno, T. Schrefl, M. Schabes, Dynamic write head fields during magnetic recording in granular media, 9th Joint MMM-Intermag Conference, Anaheim, CA, January, 2004.

Final Report ADVANCED NUMERICAL MICROMAGNETICS; March 2007 / Page 28 of 35 www.advancedmagnetics.net

20. M. Kirschner, F. Dorfbauer, G. Hrkac, O. Ertl, P. Speckmayr, T. Schrefl, D. Suess, Vom Magnetkompass zum Terrabitspeicher - Simulation magnetischer Datenspeicherung, Scienceweek, Wien, 8.-16. Mai 2004.

21. D. Suess, T. Schrefl, R. Dittrich, M. Kirschner, F. Dorfbauer, G. Hrkac, Exchange spring recording media for areal densities up to 10 Tbit/in², JEMS04, Dresden, Germany, September, 2004.

22. F. Dorfbauer, M. Kirschner, D. Suess, T. Schrefl, J. Fidler, J.N. Chapman, Micromagnetic calculations of exchange biased IrMn/NiFe bilayers, Ultrabias Summer School 2004, Anglet/France, September 12-16, 2004.

23. M. Kirschner, T. Schrefl, F. Dorfbauer, G. Hrkac, D. Suess, J. Fidler, Cell size dependencies in non-zero temperature micromagnetics, Ultrabias Summer School 2004, Anglet/France, September 12-16, 2004.

24. G. Hrkac, M. Kirschner, T. Schrefl, F. Dorfbauer, D. Suess, J. Fidler, Micromagnetic Simultions and Eddy-Currents Ultrabias, Summer School 2004, Anglet/France, September 12-16, 2004.

25. T. Schrefl, Multiscale micromagnetics in recording applications, poster presentation at the 1st General Meeting of The UK Data Storage Network, University of Manchester, 15 December 2004.

26. M. Kirschner, T. Schrefl, F. Dorfbauer, G. Hrkac, D. Suess, J. Fidler, Cell Size Dependencies of Relaxation Times in Nonzero-temperature Micromagnetics, Nanomagnetism and Spintronics - Spring School, Cargese, Corsica, June 2005.

27. F. Dorfbauer, M. Kirschner, T. Schrefl, D. Suess, G. Hrkac, O. Ertl, J. Fidler, Analysis of Partially Disordered Nanoparticles, Nanomagnetism and Spintronics - Spring School, Cargese, Corsica, June 2005.

28. G. Hrkac, T. Schrefl, and M. Schabes, A combined vector and scalar potential method for 3D Magnetic fields and transient eddy current effects in recording head coils, Seventh Latin American Workshop on Magnetism, Renaca, Chile, December 11-15, 2005.

29. S. Bance, G. Hrkac, D. Suess, C. Brownlie, S. McVitie, T. Schrefl, Transitions between Vortex and Transverse Walls in NiFe Nano-structures, Intermag Conference 2006, San Diego, May, 12, 2006.

30. J. Lee, D. Suess, T. Schrefl, K. Oh, J. Fidler, Magnetic recording on patterned media prepared by ion beam irradiation, Intermag Conference 2006, San Diego, CA, May, 10, 2006.

31. F. Dorfbauer, T. Schrefl, Effects of surface anisotropy on the energy barrier of 32. core-shell CoAg nano-particles, Joint European Magnetic Symposia, San

Sebastian, June 29, 2006. 33. D. Suess, J. Fidler, K. Porath, F. Dorfbauer, M. Kirschner, T. Schrefl "Exchange

Spring Mechanism for Writing on Percolation Media" Joint European Magnetic Symposia , June 26 – 30, 2006, San Sebastian, Spain.

34. S. Bance, T. Schrefl, D. Allwood, Limiting spin wave reflections in magnetic microstructures, IoP meeting on Current Research in Magnetism Meeting, London, December, 18, 2006.

35. J. Lee, M. Kim, D. Suess, T. Schrefl, K. Oh, J. Fidler, Magnetic Characteristics of Co nano particle, 10th Joint MMM-Intermag conference, Baltimore, January, 9, 2007.

2.4. Conference participations - other

Final Report ADVANCED NUMERICAL MICROMAGNETICS; March 2007 / Page 29 of 35 www.advancedmagnetics.net

List 3 Development of collaborations

Indication of the most important collaborations (maximum 8), that took place (initiated or continued) in collaboration please give the name of the collaboration partner (name, title, institution) and a few words about the scientific content. Please also assign one of the following categories to each collaboration:

N Nature N (national);

E (European); I (other international cooperation)

E Extent E1 low (e.g. no joint publications but mention in acknowledgements or similar);

E2 medium (collaboration e.g. with occasional joint publications, exchange of materials or similar but no longer-term exchange of personnel); E3 high (extensive collaboration with mutual hosting of group members for research stays, regular joint publications etc.)

D Discipline D within the discipline T transdisciplinary

N

E

D

Collaboration partner / content of the collaboration

N E2 T 1) Name: Walter W. Wenzel Title: Prof. Dr

Institution: Agricultural University of Vienna

Content: Modelling of transport in the root-near soil

I E3 D 2) Name: M E Schabes Title: Dr.

Institution: Hitachi Global Storage Technologies, San Jose Research Center, CA

Content: Magnetic recording simulations

E, I E3 D 3) Name: R W Chantrell Title: Prof. Dr.

Institution: University of York, Seagate Research Pittsburgh

Content: Surface anisotropy, core-shell particles, lattice vibrations and magnetism

I E2 D 4) Name: Neal Bertram Title: Prof. Dr.

Institution: Center for Magnetic Recording Research

Content: Thermal effects in particulate recording

I E2 D 5) Name: R L Stamps Title: Prof. Dr.

Institution: University of Western Australia

Content: Exchange bias

E E3 D 6) Name: M Albrecht Title: Dr.

Institution: University of Konstanz

Content: Novel nano-structures for magnetic recording

E E2 D 7) Name: Jaques Miltat Title: Prof. Dr.

Institution: Laboratoire de Physique des Solides Université Paris-Sud

Content: Thermal relaxation and thermally activated switching in magnetic nano-dots

E E3 D 8) Name: Claudio Serpico Title: Prof. Dr.

Institution: Department of Electrical Engineering, University of Naples,

Content: Fast switching of magnetic nano-elements and tilted recording media

Note: general scientific contacts and occasional meetings should not be considered

as collaborations in the above sense.

Final Report ADVANCED NUMERICAL MICROMAGNETICS; March 2007 / Page 30 of 35 www.advancedmagnetics.net

List 4 “Habilitations” (professorial qualifications) / PhD theses / diploma theses with an indication of the status (in progress / completed)

Note: It will not be possible to assign a “Habilitation” to a single project; what is required here is a mention of those “Habilitations” for which the project was important. A similar caveat applies to PhD and diploma theses: the FWF does not support thesis work but rather funds the scientific work that forms the basis for theses.

4.1. Professorial Qualifications Thomas Schrefl Professor of Functional Materials University of Sheffield UK Vassilios Tsiantos Professor of Mathematics Technological Educational Institute of Kavala (TEI-K) Greece Dieter Suess Habilitation, Computational materials science, Vienna University of Technology (in progress) 4.2. PhD Theses 1. Rok Dittrich, Finite element computation of energy barriers in magnetic systems,

2003. 2. Florian Dorfbauer, FePt thin films: Simulation of structure and magnetic

properties, 2006. 3. Hermann Forster, Reversal Modes in Mesoscopic Structures, 2003. 4. Sabine Höfinger, Microstructure and magnetic reversal of advanced recording

media, 2005. 5. Gino Hrkac, Eddy currents in finite element micromagnetic simulations, 2005. 6. Markus Kirschner, Treatment of thermal fluctuations in magnetic recording

simulations, 2006. 7. Thorsten Matthias, Electron microscopy of novel high temperature magnets,

Vienna University of Technology, 2002. 8. Dieter Suess, Micromagnetic simulations of antiferro- and ferromagnetic

structures for magnetic recording, 2002. 9. Werner Scholz, Scalable Parallel Micromagnetic Solvers for Magnetic

Nanostructures, 2003. 4.3. Diploma Theses 1. Martin Stehno, “Intergranular exchange in perpendicular recording media,”

Diplomarbeit, Institute for Solid State Physics, Vienna University of Technology, 2002.

2. Ivan Rungger, “Magnetische Wirbelstrukturen in quadratischen Nanoelementen,” Master Thesis, Institute for Solid State Physics, Vienna University of Technology, 2003.

Final Report ADVANCED NUMERICAL MICROMAGNETICS; March 2007 / Page 31 of 35 www.advancedmagnetics.net

3. Markus Kirschner, “Exchange Bias in Ferro-/Antiferromagnetic Bilayers,” Diplomarbeit, Institute for Solid State Physics, Vienna University of Technology, 2003.

4. Stefan Eder, "Phase Contrast in Lorentz Transmission Electron Microscopy," Diplomarbeit, Institute for Solid State Physics, Vienna University of Technology, 2004.

5. Peter Speckmayr, "Electron microscopy and micromagnetic simulation of FePt and CoPt nanoparticles," Diplomarbeit, Institute for Solid State Physics, Vienna University of Technology, 2005.

6. Otmar Ertl, "Simulation of the read process in magnetic recording," Diplomarbeit, Institute for Solid State Physics, Vienna University of Technology, 2005.

7. Christian Lechner, "Optimization of granular microstructures for microamgenetics", Diplomarbeit, Institute for Solid State Physics, Vienna University of Technology, expected to be finished June 2007.

Final Report ADVANCED NUMERICAL MICROMAGNETICS; March 2007 / Page 32 of 35 www.advancedmagnetics.net

List 5 Effects of the project outside the scientific field (where appropriate)

Sections of the list: 5.1. Organization of scientific events

5.2. Particular honours, prizes etc.

T Schrefl, Wohlfarth Memorial Lecturer 2005

5.3. Information on results relevant to commercial applications

Parallel Finite Element Micromagnetics Package – GNU public license Software package for the simulation of magnetic storage and sensor devices (http://magnet.atp.tuwien.ac.at/scholz/magpar/)

Worldwide more than 800 downloads 5.4. Other effects beyond the scientific field 5.5. Relevance of the project in the organization of the relevant scientific discipline List 6. Applications for follow-up projects with an indication of the status (submitted / approved) and the funding organization.

6.1 Applications for follow-up projects (FWF projects) (with an indication of the project type, e.g. stand-alone project, NFN, SFB, WK, fellowship, contribution to a stand-alone publication) Exchange spring media for advanced magnetic recording, Austrian Science Fund-FWF P19350-N16 (2007-2008). 6.2 Applications for follow-up projects (Other national projects) (e. g. FFG, CD Laboratory, a K-plus Centre, funding from the Austrian National Bank, the Federal Government, the provincial government or similar) 6.3 Applications for follow-up projects (International projects) (eg. ERA project, ESF)

TUNAMOS TUnable NAno-Magnetic OScillators for integrated transceiver applications (European Union FP6, 16939), 7/2005 to 5/2008 (University of Sheffield, IMEC, STMicroelectronics, UPS Université Paris Sud) MAFIN Magnetic Films on Nanospheres: Innovative Concept for Storage Media (European Union FP6, 026513), 7/2006 to 7/2009 (University of Sheffield, University of Konstanz, Paul Scherrer Institute, Swiss Lab for Materials Testing and Research, UNAXIS Balzers AG)

Final Report ADVANCED NUMERICAL MICROMAGNETICS; March 2007 / Page 33 of 35 www.advancedmagnetics.net

5. Zusammenarbeit mit dem FWF Sie werden gebeten folgende Aspekte der Zusammenarbeit

mit dem FWF zu bewerten. Anmerkungen (Ausführungen)

unter Verweis auf den entsprechenden Referenzpunkt bitte auf Beiblatt. Skala -2 sehr unzufriedenstellend, -1 unzufriedenstellend; 0 angemessen; +1 zufriedenstellend; +2 sehr zufriedenstellend. X nicht beansprucht

Regelwerk (Richtlinien für Programm, Antrag, Verwendung, Bericht) Wertung Antragsrichtlinien Umfang 2 Übersichtlichkeit 2 Verständlichkeit 2

Verfahren (Einreichung, Begutachtung, Entscheidung) Beratung 2 Dauer des Verfahrens 2 Transparenz 2

Projektbegleitung Zwischenevaluierung Vorgaben 2 Aufwand 2 Entscheidungsfindung 2

Beratung Verfügbarkeit 2 Ausführlichkeit 2 Verständlichkeit 2

Durchführung Finanzverkehr (Überweisungen, Gerätebeschaffungen, Personalwesen)

2

Berichtswesen/ Prüfung/ Verwertung Aufwand 1 Transparenz 1 Unterstützung bei Öffentlichkeitsarbeit/ Verwertung

x

Anmerkungen zur Zusammenarbeit mit dem FWF:

Final Report ADVANCED NUMERICAL MICROMAGNETICS; March 2007 / Page 34 of 35 www.advancedmagnetics.net

Ausgezeichnete Zusammenarbeit, der FWF war stets bemüht individuelle Lösungen zu finden (Projektverlängerung, längere Auslandsaufenthalte des Projektleiters).

Final Report ADVANCED NUMERICAL MICROMAGNETICS; March 2007 / Page 35 of 35 www.advancedmagnetics.net