Stanford - SSRL : J. Lüning W. Schlotter H. C. Siegmann Y. Acremann ...students

27
Stanford - SSRL: J. Lüning W. Schlotter H. C. Siegmann Y. Acremann ...students Berlin - BESSY: S. Eisebitt M. Lörgen O. Hellwig W. Eberhardt Probing Magnetization Dynamics with Soft X-Rays Joachim Stöhr Stanford Synchrotron Radiation Laboratory Collaborators: Berkeley - ALS: A. Scholl magnetization dynamics

description

Probing Magnetization Dynamics with Soft X-Rays Joachim Stöhr Stanford Synchrotron Radiation Laboratory. Collaborators:. Stanford - SSRL : J. Lüning W. Schlotter H. C. Siegmann Y. Acremann ...students. Berlin - BESSY : S. Eisebitt M. Lörgen O. Hellwig W. Eberhardt. - PowerPoint PPT Presentation

Transcript of Stanford - SSRL : J. Lüning W. Schlotter H. C. Siegmann Y. Acremann ...students

Page 1: Stanford -  SSRL : J. Lüning W. Schlotter H. C. Siegmann Y. Acremann ...students

Stanford - SSRL:

J. LüningW. Schlotter

H. C. SiegmannY. Acremann...students

Berlin - BESSY:

S. EisebittM. LörgenO. HellwigW. Eberhardt

Probing Magnetization Dynamics with Soft X-Rays

Joachim Stöhr

Stanford Synchrotron Radiation Laboratory

Collaborators:

Berkeley - ALS:

A. Scholl

magnetization dynamics

Page 2: Stanford -  SSRL : J. Lüning W. Schlotter H. C. Siegmann Y. Acremann ...students

Ultrafast

Today Lasers X-rays

Page 3: Stanford -  SSRL : J. Lüning W. Schlotter H. C. Siegmann Y. Acremann ...students

Present: Pump/Probe Experiments

Can produce various pump pulses:• heat electrons (photon pulse)• kick magnetization (field pulse)• heat lattice (pressure pulse)

Process has to be reversible:

Not enough intensity forsingle shot experiments

x-ray probepulse after

laser pumppulse

sample

…over and over…

Page 4: Stanford -  SSRL : J. Lüning W. Schlotter H. C. Siegmann Y. Acremann ...students

Non-Equilibrium Magnetization Dynamics

transfer of energy and angular momentum

Optical excitation

Magnetic field (Oersted switching)Spin injection (Spin-torque switching)

Pressure

Science: Mechanisms of energy and angular momentum transferTechnology: How fast can we switch reliably?

Electrons Lattice

Spin

s

el = 1 ps

es

sl =

100

ps

e < 0.1ps l = 1 ps

Page 5: Stanford -  SSRL : J. Lüning W. Schlotter H. C. Siegmann Y. Acremann ...students

Optical excitation: Ni metal

E. Baurepaire, J. C. Merle, A. Daunois, and J. Y. BigotPRL 76,4250 (1996)

MOKE: pump-probe

Page 6: Stanford -  SSRL : J. Lüning W. Schlotter H. C. Siegmann Y. Acremann ...students

• spin moments,• orbital moments• nanoscale resolution

But – need sub- 50-ps time resolution: streak camera, slicing, XFELs

Optical excitation studies benefit from x-ray probe

Page 7: Stanford -  SSRL : J. Lüning W. Schlotter H. C. Siegmann Y. Acremann ...students

Magnetic Excitation - Today:Imaging of Nanoscale Magnetization Dynamics

Pump / probe requires reversibility of excitation process - not enough intensity to obtain single shot images

Cannot presently study irreversible processes: this would require single shot pictures

Page 8: Stanford -  SSRL : J. Lüning W. Schlotter H. C. Siegmann Y. Acremann ...students

Magnetic Patterns in 20 nm Co90Fe10 films on waveguide

3m M

x-ray"spin"

Fieldpulse

S.-B. Choe, Y. Acremann, A. Scholl, A. Bauer, A. Doran, J. Stöhr, H.A. Padmore, Science 304, 430 (2004)

Page 9: Stanford -  SSRL : J. Lüning W. Schlotter H. C. Siegmann Y. Acremann ...students

Nanaoscale Magnetization Dynamics - Smaller and Faster

Page 10: Stanford -  SSRL : J. Lüning W. Schlotter H. C. Siegmann Y. Acremann ...students

STXM image of device

STXM image of spin injection structure

1. Cu lead delivers current to device

2. Pt lead guides current to bottom of spin injection pillar

3. Current flows through pillar, switching second ferromagnet

4. Current extracted through second Cu lead

Challenge is nanoscale sample production – pillar diameter is < 100 nm

Page 11: Stanford -  SSRL : J. Lüning W. Schlotter H. C. Siegmann Y. Acremann ...students

Why are irreversible or random processes important?

2. Science:

Equilibrium magnetization dynamics at Curie temperature

Critical magnetizattion fluctuations are random

• Reversible processes are required for technology but • Irreversible processes determine technological limit !

Two examples:

1. Technology:

Such studies require single snapshot images !

Page 12: Stanford -  SSRL : J. Lüning W. Schlotter H. C. Siegmann Y. Acremann ...students

Technology: Exploring the ultimate speed of magnetic recording

Relativity allows packing 1010 electrons into “bunch” → Ultra-short and high field pulses (up to 5 T)

Tudosa et al. Nature 428, 831 (2004)

100 fs – 10 ps

In R&D labs we can only produce 100 ps pulses – things still work fine

Unique method for faster switching

Page 13: Stanford -  SSRL : J. Lüning W. Schlotter H. C. Siegmann Y. Acremann ...students
Page 14: Stanford -  SSRL : J. Lüning W. Schlotter H. C. Siegmann Y. Acremann ...students

The Ultimate Speed of Magnetic Switching

tpulse= 3 ps tpulse= 100 fs

Deterministic switching Chaotic switching

Under ultrafast excitation the magnetization fractures !

90 m90 m

Tudosa et al. Nature 428, 831 (2004) and unpublished

Page 15: Stanford -  SSRL : J. Lüning W. Schlotter H. C. Siegmann Y. Acremann ...students

Science: Equilibrium Magnetization Dynamics

critical fluctuations

Mag

netiz

atio

n

Temperature

Tc

Size of spin blocks?

Fluctuation time??

Page 16: Stanford -  SSRL : J. Lüning W. Schlotter H. C. Siegmann Y. Acremann ...students

Toward femtosecond magnetic motion pictures …..

Page 17: Stanford -  SSRL : J. Lüning W. Schlotter H. C. Siegmann Y. Acremann ...students

not enough intensity –

need to repeat over and over

Page 18: Stanford -  SSRL : J. Lüning W. Schlotter H. C. Siegmann Y. Acremann ...students
Page 19: Stanford -  SSRL : J. Lüning W. Schlotter H. C. Siegmann Y. Acremann ...students

Lensless Imaging by Coherent X-Ray Scattering or “Speckle“

Challenge: Inversion from reciprocal to real space image

Eisebitt et al. (BESSY)

coherent x-rays

5 m

With present sources it takes minutes to take an image

Page 20: Stanford -  SSRL : J. Lüning W. Schlotter H. C. Siegmann Y. Acremann ...students

TransmissionX-ray

Microscopy

Reconstructionfrom

Speckle Intensities

5 m(different areas)

Loss of x-ray phase complicates image reconstruction

In principle: phase problem can be solved by “oversampling” speckle image

Page 21: Stanford -  SSRL : J. Lüning W. Schlotter H. C. Siegmann Y. Acremann ...students

Toward single-shot imaging: soft x-ray spectro-holography

S. Eisebitt, J. Lüning, W. F. Schlotter, M. Lörgen, O. Hellwig, W. Eberhardt, J. Stöhr, Nature (in press)

coherent x-ray beam

Page 22: Stanford -  SSRL : J. Lüning W. Schlotter H. C. Siegmann Y. Acremann ...students

Digital Image Reconstruction

Difference (RCP – LCP) FFT (Difference)

Convolution theorem applied to diffraction: FT(diffraction) = Autocorrelation (Object)

saturated lin. scale

Page 23: Stanford -  SSRL : J. Lüning W. Schlotter H. C. Siegmann Y. Acremann ...students

FT Hologram STXM

W. F. SchlotterY. AcremannReference hole

100 nm

*

W

B

*

*

Is it real?

Resolution30 - 40 nm

Page 24: Stanford -  SSRL : J. Lüning W. Schlotter H. C. Siegmann Y. Acremann ...students

Motion pictures with multiple pulses

beam splitter

Pulse 1

Pulse 2

XFEL

delay - change of optical path length

mirror

CCD 1

CCD 2

sample

Present detectors not fast enough for multiple images

beam splitter

Pulse 1

Pulse 2

XFEL

mirror

CCD 1

CCD 2

sample

Page 25: Stanford -  SSRL : J. Lüning W. Schlotter H. C. Siegmann Y. Acremann ...students

For more, see: http://www-ssrl.slac.stanford.edu/stohr/index.htm

and

J. Stöhr and H. C. Siegmann Magnetism: From Fundamentals to Nanoscale Dynamics Springer 2005 (to be published)

Page 26: Stanford -  SSRL : J. Lüning W. Schlotter H. C. Siegmann Y. Acremann ...students

Lake Tahoe, April 2004

Page 27: Stanford -  SSRL : J. Lüning W. Schlotter H. C. Siegmann Y. Acremann ...students

The end