Spin-wave and spin-current dynamics in ultrafast demagnetization ...

56
Markus Münzenberg Georg-August-Universität Göttingen, Germany Spin-wave and spin-current dynamics in ultrafast demagnetization experiments

Transcript of Spin-wave and spin-current dynamics in ultrafast demagnetization ...

Page 1: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

Markus Münzenberg

Georg-August-Universität Göttingen, Germany

Spin-wave and spin-current dynamics in ultrafast

demagnetization experiments

Page 2: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

Magnonics

Review: B. Lenk et al., Phys. Reports 507, 107 (2011)

200 mm

• Spin-waves exited by

femtosecond laser pulses

Page 3: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

Terahertz spintronics

T. Kampfrath al., Nature Nanotech. 9, 256 (2013)

Page 4: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

• Femtosecond spin(-wave) injection

•Localized and delocalized nature of spin dynamics

•Thermal model of ultrafast demagnetization

• Modification of electronic processes

• Half metals

• FePt “noble metal”

• Spin-wave propagation in thermal confinements

•Summary

Outline

Page 5: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

• Femtosecond spin(-wave) injection

•Localized and delocalized nature of spin dynamics

•Thermal model of ultrafast demagnetization

• Modification of electronic processes

• Half metals

• FePt “noble metal”

• Spin-wave propagation in thermal confinements

•Summary

Outline

Page 6: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

DEex

Spin flip on fs time scales

(laser induced)

?

Localized nature of spin dynamics

Page 7: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

Tim

e (

~10 f

s)

Length (~nm)

Localized nature of spin dynamics

Page 8: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

Stoner excitations (localized)

0 20

10

20

[T

Hz]

q/kF

D-EF

Stoner continuum

Spin-waves

Localized nature of spin dynamics

Electronic equivalent

DEex

Page 9: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

E

+ - V

Metal

Electron -

Hole +

)(En

Fermi energy dE

Edf )(

Delocalized nature of spin dynamics

M. Battiato, et al. Phys. Rev. Lett. (2010)

A. Melnikov, et al., Phys. Rev. Lett. (2011)

Page 10: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

- + m - + m

)(En

E

)(En )(En

)(En

Fermi energy

EFerromagnet,

Metal

Ferromagnet,

Half metal

Delocalized nature of spin dynamics

M. Walter, et al., Nature Mater. (2011),

T. Kampfrath al., Nature Nanotech. (2013)

Page 11: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

• Femtosecond spin(-wave) injection

•Localized and delocalized nature of spin dynamics

•Thermal model of ultrafast demagnetization

• Modification of electronic processes

• Half metals

• FePt “noble metal”

• Spin-wave propagation in thermal confinements

•Summary

Outline

Page 12: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

Easy axis z

x y

1600 K

Occupation

Energy

l

Ele

ctr

onic

vie

w

Spin

ensem

ble

Thermal model of ultrafast demagnetization

Page 13: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

Easy axis z

x y

Ele

ctr

onic

vie

w

Spin

ensem

ble

Thermal model of ultrafast demagnetization

1600 K

Occupation

Energy

l

Page 14: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

effHmdt

dm

Magnetization dynamics: Landau-Lifshitz-Gilbert equation (LLG)

No spin-scattering

tHstsi iidtd ,

Single spin (Quantum mechanics QM) “Macroscopic” ensemble

Thermal model of ultrafast demagnetization

Page 15: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

effiieleffii Hmm

mTHm

dt

dm

2),(

l

Include stochastic fluctuations of the spin system by a Fokker-Planck equation

D.A. Garanin, Phys. Rev. B 55, 1997, R. Chantrell, U. Novak, O. Fesenko 2007

Magnetization dynamics with magnetic fluctuations

Thermal model of ultrafast demagnetization

Page 16: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

No spin-scattering

)()(

)()(

)(22

||

eleffel

eleff

el

eleff THmmm

TmTHm

m

TTHm

dt

dm

Magnetization dynamics: Landau-Lifshitz-Bloch equation

m, and Heff, are coupled to electron temperature Tel

)( cTT Gilbert damping

“thermal macrospin” M(Tel)

D.A. Garanin, Phys. Rev. B 55, 1997, R. Chantrell, U. Novak, O. Fesenko 2007

Thermal model of ultrafast demagnetization

Page 17: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

No spin-scattering

eff

eleeleff

el

eleff Hmmm

TmmTHm

m

TTHm

dt

dm

22

|| )(),(

)()(

“thermal macrospin” M(Tel)

Magnetization dynamics: Landau-Lifshitz-Bloch equation

m, and Heff, are coupled to electron temperature Tel

c

ele

therm TTmTm

mH

2

2

|| )(1~

1

D.A. Garanin, Phys. Rev. B 55, 1997, R. Chantrell, U. Novak, O. Fesenko 2007

m: actual magnetization

me: equilibrium magnetization m(T)

Thermal model of ultrafast demagnetization

Page 18: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

eff

eleeleff

el

eleff Hmmm

TmmTHm

m

TTHm

dt

dm

22

|| )(),(

)()(

Magnetization dynamics: Landau-Lifshitz-Bloch equation

m, and Heff, are coupled to electron temperature Tel

c

ele

therm TTmTm

mH

2

2

|| )(1~

1

D.A. Garanin, Phys. Rev. B 55, 1997, R. Chantrell, U. Novak, O. Fesenko 2007

Thermal model of ultrafast demagnetization

Page 19: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

• Femtosecond spin(-wave) injection

•Localized and delocalized nature of spin dynamics

•Thermal model of ultrafast demagnetization

• Modification of electronic processes

• Half metals

• FePt “noble metal”

• Spin-wave propagation in thermal confinements

•Summary

Outline

Page 20: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

Elliott-Yafet process

Modification of electronic processes: half metals

Spin-orbit coupling :

•Mixes spin-up and spin-down states U. Atxitia, Phys. Rev. B 81, 174401 (2010).

M. Münzenberg, New’s View’s (2010)

l

Page 21: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

Spin-orbit coupling :

•Mixes spin-up and spin-down states

Intraband scattering with a phonon q, DE:

nk ,

nk ',

SLl~

• No spin conservation

nk ',

nk ,

nk ',

qph, DE

k

E

E. Yafet PR 96 (1954), Monod, Beneu, PRB 18 (1978), Das Sarma PRL 81 (1998)

Elliott- process and Gilbert damping

Modification of electronic processes: half metals

Page 22: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

R. J. Elliott, Phys. Rev. 96 (1954).

G. M. Müller et al., Nature Mater. 8, 56 (2009) Fs pump-probe:

n

el

spelPc

1

12

0,

0,el

Spin polarization P dependent

relaxation

Momentum

scattering

Supression factor

,1P

W

)(En )(En

E

m

)()(~ 2

FhFe EncEnW

exchSO Ec D~ Spin-orbit interaction

Spin mixing:

11~

nP

0~1

spelrate

Modification of electronic processes: half metals

Elliott process: Ultrafast time scales

Page 23: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

0 5 10 15

Ni

Co2MnSi

D

Kerr[a

rb.

un

its]

CrO2

LSMO

D[ps]

Fe3O

4

• Spin-flip processes are prohibited

• Electron and spin system are

isolated

Three temperature model: half metal

spins (Ts)

latsp

spel

lattice (Tl)

latel

electrons (Te)

e-

G. M. Müller et al., Nature Mater. 8, 56 (2009)

Modification of electronic processes: half metals

Page 24: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

6.0log m

Half metal

8.0P

0.2 0.4 0.6 0.8 1.00.1

1

10

100

1000

0.01

0.1

1

10

E [m

eV

]

m [p

s]

|P|

Additional materials:

• Chalcospinels

• Manganites

• Ruthenates,

Double perovskites

M. Cinchetti Phys. Rev. Lett 97 (2006), A. Melnikov Phys. Rev. Lett. 100, (2008), T. Ogasawara Phys. Rev. Lett. 94 (2005), A. I.

Rev. B 63 (2001), Y. H. Ren J. Appl. Phys. 91 (2002), T. Kise Phys. Rev. Lett. 85 (2000), R. D. Averitt Phys. Rev. Lett. 87 (2001).

Fast:

Ni, Fe, Py,

Heusler Co2MnSi

Slow:

Manganite LSMO,

Magnetite; CrO2

Heusler Co2MnSi

Modification of electronic processes: half metals

Page 25: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

• HGST, San Jose

• Department of Physics, Bielefeld

University

Isoelectronic Heusler films, spin-

transport (TMR)

A.Thomas, U Bielefeld

S. Maat, HGST

Pseudogap high polarized materials, spin

transport (GMR)

Modification of electronic processes: half metals

Page 26: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

D. Steil, et al Phys. Rev. Lett. 105, 217202 (2010).

Co2MnSi (CMS) Co2FeSi (CFS)

(plus one electron) Demagnetization by hole channels

• Spin-flips are determined by Fermi level and gap width

Modification of electronic processes: half metals

Page 27: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

T. Kubota et al., Appl. Phys. Lett 94, 122504 (2009).

Co2MnSi Co2FeSi

(plus two electrons)

Co2MnAl

• Decreased Gilbert damping in the gap region

Modification of electronic processes: half metals

Page 28: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

Material [ps] Polarization P Method

Ni 0.160 (10) [10] 0.45 [37] Mes. Tedr.

Py 0.175 (5) [47] 0.48 [18] Mes. Tedr.

CoFe 0.172 (5) 0.55 [38] Mes. Tedr.

Co0.25Fe0.55B0.2 0.185 (6) 0.65 (am.) [39] Andreev refl.

Co2MnSi on MgO(001) 0.226 (7) 0.59 [43] TMR (*)

Co2MnGe 0.270 (4) 0.60 [] (~0.70 [42]) Andreev refl., GMR

(*)

Co2MnSi on Si 0.297 (5) 0.66 [40] TMR (*)

(CoFe)0.72Ge0.28 0.310 (4) 0.78 [41] GMR (*)

Co2FeAl 0.383 (5) 0.86 [43] TMR (*)

CrO2 83.6 (5.0) 0.99 [45] Mes. Tedr. (*)

(CoMnSb) (18.4) 1.00 (theor. value[44]) Theory

(*) Measured on the same/ similar set of films. For tunneling magnetoresistance (TMR) measurements P is

measured with CoFe counter electrode of know polarization as reference using the Jullière formula, giant

magnetoresistance (GMR) was analyzed by the Valet-Fert model, more details see section B.

Modification of electronic processes: half metals

Page 29: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

Material [ps] Polarization P Method

Ni 0.160 (10) [10] 0.45 [37] Mes. Tedr.

Py 0.175 (5) [47] 0.48 [18] Mes. Tedr.

CoFe 0.172 (5) 0.55 [38] Mes. Tedr.

Co0.25Fe0.55B0.2 0.185 (6) 0.65 (am.) [39] Andreev refl.

Co2MnSi on MgO(001) 0.226 (7) 0.59 [43] TMR (*)

Co2MnGe 0.270 (4) 0.60 [] (~0.70 [42]) Andreev refl., GMR

(*)

Co2MnSi on Si 0.297 (5) 0.66 [40] TMR (*)

(CoFe)0.72Ge0.28 0.310 (4) 0.78 [41] GMR (*)

Co2FeAl 0.383 (5) 0.86 [43] TMR (*)

CrO2 83.6 (5.0) 0.99 [45] Mes. Tedr. (*)

(CoMnSb) (18.4) 1.00 (theor. value[44]) Theory

(*) Measured on the same/ similar set of films. For tunneling magnetoresistance (TMR) measurements P is

measured with CoFe counter electrode of know polarization as reference using the Jullière formula, giant

magnetoresistance (GMR) was analyzed by the Valet-Fert model, more details see section B.

Isolelectronic Heusler

Co2FeAl, Co2MnSi, Co2MnGe

(same number of electrons: 29)

Modification of electronic processes: half metals

Page 30: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

A. Mann, et al. Phys. Rev. X 2, 041008 (2012).

Growth optimization Co2FeAl/ MgO(100)

• P=86% (RT) from spin transport experiments

B2 order spin dynamics spin transport

Modification of electronic processes: half metals

Page 31: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

A. Mann, et al. Phys. Rev. X 2, 041008 (2012).

Comparison Co2FeAl/ Co2MnSi/ Co-Fe-B pseudogap

• Vanishing magnon peak (IETS) for negative bias shows half metallicity

magnon peak

Modification of electronic processes: half metals

Page 32: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

latelel

latel

spel

EEkEPc

EEEkEncEnE

,,

,,

0,

2

,

,

,

2

,

1

)(1

)()()()(

m

m

mm

mm

mmm

A. Mann, et al. Phys. Rev. X 2, 041008 (2012).

For a one band model Energy dependent polarization

1 eV T=600 K

• Start with generalized

Kambersky multiband

approach

• Transitions in terms of

band polarization P(E)n,m

P(E)

Modification of electronic processes: half metals

Page 33: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

A. Mann, et al. Phys. Rev. X 2, 041008 (2012).

1 eV

Modification of electronic processes: half metals

Page 34: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

Materials with small gap

Pseudo gap

1 eV, 0.67 P

300 meV

Modification of electronic processes: half metals

Page 35: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

0.1

1

10

100

t m,

fit (

ps)

1.00.90.80.70.60.50.4

spin polarization P

Ni [0

.45, 0

.160]

Ni8

1 Fe

19 [0

.48, 0

.175]

Co-F

e [0

.55, 0

.172]

Co

2 MnS

i (MgO

) [0.6

1, 0

.226]

Co

2 MnS

i (Vn/S

i) [0.6

6, 0

.297]

Co

2 MnG

e [0

.7, 0

.270]

(CoF

e)72 G

e28 [0

.78, 0

.310]

Co

2 FeA

l [0.8

6, 0

.383]

CrO2 [0.99, 83.61]

CoMnSb [0.99, 18.35]Co

25 F

e55 B

20 [0

.65, 0

.185]

Material [P, tm (ps)]

•Co-Fe-Ge, Co2FeAl: increase compared to by 3-4 0,el

Modification of electronic processes: half metals

Page 36: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

• Femtosecond spin(-wave) injection

•Localized and delocalized nature of spin dynamics

•Thermal model of ultrafast demagnetization

• Modification of electronic processes

• Half metals

• FePt “noble metal”

• Spin-wave propagation in thermal confinements

•Summary

Outline

Page 37: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

• CSIC, Madrid

Oksana Chubykalo-Fesenko

Thermal macrospin modelling

Pablo Nieves, Oksana Chubykalo-Fesenko

• HGST Western Digital

Simone Pisana, Tiffany Santos

Tiffany Santos

FePt storage media

Modification of electronic processes: FePt

Page 38: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

Fe (bcc) FePt L10 “noble metal“

Pt

Energy

Density of states Density of states

Energy

Occupation

Energy

1600 K

Occupation

Energy

latsp

spel

latel

950 K

Small electron

specific heat

Tc ee

Modification of electronic processes: FePt

Page 39: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

latsp

spel

latel

0 1 2 3

0.5

1.0

0 1 2 3

0.5

1.0

600

1200

1800

600

1200

1800

DM

Delay time (ps)

Te (

K)

e=110 J/ m3K2 e=1700 J/ m3K2

J. Mendil et al., arXiv:1306.3112 (2013)

Modification of electronic processes: FePt

950 K

Occupation

Energy

1600 K

Occupation

Energy

ll

Page 40: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

• Low specific heat for FePt

• Large temperatures

•Increase above TC

Modification of electronic processes: FePt

Page 41: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

• Low specific heat for FePt

• Large temperatures

• Type I - one time scale

• Type II – second slow

time scale appears

Modification of electronic processes: FePt

Page 42: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

J. Mendil et al., arXiv:1306.3112 (2013)

• Type I - one time scale

• Type II – second slow time

scale appears at 25 mJ/cm2

Electron temperature

determines the spin dynamics

This is a new knob to design

new materials for ultrafast spin

dynamics

Modification of electronic processes: FePt

Page 43: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

• Femtosecond spin(-wave) injection

•Localized and delocalized nature of spin dynamics

•Thermal model of ultrafast demagnetization

• Modification of electronic processes

• Half metals

• FePt “noble metal”

• Spin-wave propagation in thermal confinements

•Summary

Outline

Page 44: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

• Simulation of the laser pulse excitation – spin-wave on the

picosecond and nanometer time scale

5 nm

M. Djordjevic, Phys. Rev. B 75 (2007)

Spin-wave propagation in thermal confinements

Page 45: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

0.0 0.2 0.4 0.61E-12

1E-7

0.01

1000

1E8

1E13

t=16.7 ps

t=0.7 ps

t=125 ps

t=6.7 ps

Po

we

r F

FT

(Mx,y

,z /

M0)/

Po

we

r F

FT

(25

0p

s)

kz/2 [nm

-1]

t=0 ps

Wave vector (1

m)

106

107

108

109

Freq

uenc

y (G

Hz)

0

10

20

30

k [m-1]

[G

Hz]

50 nm Ni

Dipolar modes

Exchange modes

Kittel mode

LLB U. Atxitia, Phys. Rev. B 81 (2010), M3TM B. Koopmans, Nature Mater. (2010)

• also: microscopic model for ultrafast demagnetization

Spin-wave propagation in thermal confinements

Page 46: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

Schematic dispersion:

• Spin waves from the

GHz to THz range

/THz

Exchange interactions

k║M

k/nm-1

~k2

~(1-cos kr)

ql 2

B. Lenk et al., Phys. Reports 507, 107 (2011)

Spin-wave propagation in thermal confinements

Page 47: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

k

eff, HM

/THz

Exchange interactions Dipolar interactions

k/mm-1

k ┴M

k║M

/10GHz

k/nm-1

~k2

~(1-cos kr)

0H

k

eff, HM

B. Lenk et al., Phys. Reports 507, 107 (2011)

Schematic dispersion:

• Spin waves from the

GHz to THz range

Spin-wave propagation in thermal confinements

Page 48: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

E, Heff

Magnetic film

/THz

k k

Exchange interactions Dipolar interactions

k /10-100nm /mm / 10 mm

~k2

k ┴M

k║M

k ┴M

k║M

/10GHz /10GHz

B. Lenk et al., Phys. Reports 507, 107 (2011)

Spin-wave propagation in thermal confinements

Magnonics

Page 49: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

0 400 800

Kerr

rota

tion (

a.u

.)

T ime delay (ps)0 400 800

Time delay (ps)0 5 10 15 20

0

2

4

6

8

10

Fouri

er

Pow

er

(a.u

.)

Frequency (GHz)

m0H = 150mT

m0H = 0mT

20 nm Ni

B. Lenk et al., Phys. Reports 507, 107 (2011)

Spin-wave propagation in thermal confinements

Page 50: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

5

10

15

20

25

Fre

qu

en

cy (

GH

z)

0 30 60 90 120 1500

5

10

15

20

25

External field (mT)

Fre

qu

en

cy (

GH

z)

H

k

D = 0.7 µm; a = 3.5 µm

5

10

15

20

25

Fre

qu

en

cy (

GH

z)

0 30 60 90 120 1500

5

10

15

20

25

External field (mT)

Fre

qu

en

cy (

GH

z)

a

k

/

μm)5(99.0 -1

DE wave vector

is imprinted

H k45

H. Ulrichs et al., Appl. Phys. Lett. 97, 092506 (2010)

Spin-wave propagation in thermal confinements

Page 51: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

(GHz)

x (mm)

T(K)

x (mm)

400K

Spin-wave propagation in thermal confinements

• Simluation with reduced MS(T):

Page 52: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

Spin-wave propagation in thermal confinements

• Heating results in a frequency shift

H

k

Page 53: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

Spin-wave propagation in thermal confinements

• Heating results in a frequency shift

H

k

Page 54: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

E, Heff

No propagation

X

X

Spin-wave propagation in thermal confinements

x (mm)

• Potential application: Thermal spin-wave traps (~1 GHz/ 50 mm)

Page 55: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

People who do the work

Priority program

SpinCaT

Page 56: Spin-wave and spin-current dynamics in ultrafast demagnetization ...

Thesis 1: Difficulty lies in the complexity, not in the nature of

the process

Thesis 2: Models have to take into account localized and

delocalized character of magnetism

Thesis 3: Electronic structure is modified and interacts with

dynamics (spin-flip rate, electron temperature,

exchange splitting etc.)

Thesis 4: Critical behavior plays a crucial role

Thesis 5: As a consequence of spin-orbit interaction,

momentum conservation does not give insights for

ferromagnets (different for two sublattice spin

systems)

Five bullet points – ultrafast dynamics