Spin-up and Tuning of the Global Carbon Cycle Model Inside the … · 2016-01-12 · Spin-up and...

1
Preliminary results Pre-industrial simulations, prescribed ocean Spin-up and Tuning of the Global Carbon Cycle Model Inside the GISS ModelE2 GCM Igor Aleinov 1,2 , Nancy Y. Kiang 2 , Anastasia Romanou 1,2 1 Columbia University, 2 NASA Goddard Institute for Space Studies, New York, NY, USA http://www.giss.nasa.gov/projects/gcm/ Introduction Planetary carbon cycle involves multiple phenomena, acting at variety of temporal and spacial scales. The typical times range from minutes for leaf stomata physiology to centuries for passive soil carbon pools and deep ocean layers. So, finding a satisfactory equilibrium state becomes a challenging and computationally expensive task. Here we present the spin-up processes for different configurations of the GISS Carbon Cycle model for the model forced with MODIS observed Leaf Area Index (LAI) and prescribed ocean and the model fully coupled to the dynamic ocean and ocean biology. We investigate the time it takes the model to reach the equilibrium and discuss the ways to speed up this process. All simulations were done for preindustrial climate conditions. NASA Goddard Institute for Space Studies General Circulation Model (GISS ModelE2) is currently equipped with all major algorithms necessary for the simulation of the Global Carbon Cycle. The terrestrial part is presented by Ent Terrestrial Biosphere Model (Ent TBM), which includes leaf biophysics, prognostic phenology and soil biogeochemistry module (based on Carnegie-Ames- Stanford model). The ocean part is based on the NASA Ocean Biogeochemistry Model (NOBM). The transport of atmospheric CO2 is performed by the atmospheric part of ModelE2, which employs quadratic upstream algorithm for this purpose. Schmidt, G.A., M. Kelley, L. Nazarenko, R. Ruedy, G.L. Russell, I. Aleinov, M. Bauer, S.E. Bauer, M.K. Bhat, R. Bleck, V. Canuto, Y.-H. Chen, Y. Cheng, T.L. Clune, A. Del Genio, R. de Fainchtein, G. Faluvegi, J.E. Hansen, R.J. Healy, N.Y. Kiang, D. Koch, A.A. Lacis, A.N. LeGrande, J. Lerner, K.K. Lo, E.E. Matthews, S. Menon, R.L. Miller, V. Oinas, A.O. Oloso, J.P. Perlwitz, M.J. Puma, W.M. Putman, D. Rind, A. Romanou, M. Sato, D.T. Shindell, S. Sun, R.A. Syed, N. Tausnev, K. Tsigaridis, N. Unger, A. Voulgarakis, M.-S. Yao, and J. Zhang, 2014: Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J. Adv. Model. Earth Syst., 6, no. 1, 141-184, doi:10.1002/2013MS000265. Romanou, A., W.W. Gregg, J. Romanski, M. Kelley, R. Bleck, R. Healy, L. Nazarenko, G. Russell, G.A. Schmidt, S. Sun, and N. Tausnev, 2013: Natural air-sea flux of CO2 in simulations of the NASA-GISS climate model: Sensitivity to the physical ocean model formulation. Ocean Model., 66, 26-44, doi:10.1016/ j.ocemod.2013.01.008. ocean biogeochemistry soil biogeochemistry carbon storage tracer transport photosynthesis CO2 exchange soil respiration plant respiration litter CO2 transport Annual mean, GPP=106.2 Gt C/year Monthly mean, July CO2 concentartion at the surface (ppm) For presented simulations we use MODIS vegetation cover data set which was converted to 16 plant functional types, MODIS observed seasonal LAI and MODIS vegetation height. Conclusions and future work - GISS ModelE2 GCM is capable of producing reasonable carbon cycle for preindustrial conditions - Typical spinup time for terrestrial ecosystem model is 300 years, ocean biophysics requires longer spinup - 20 th century simulations are needed for validation of the model with observations Monthly mean, January Land CO2 fluxes of Gross Primary Productivity (GPP), plant respiration, soil respiration and Net Ecosystem Exchange (NEE) 40-60N average 20-40N average. months Atmospheric column average CO2 (ppm) JAN 2015 387 389 391 392 394 396 398 400 401 403 405 397 Atmospheric column average CO2 (ppm) JUL 2015 387 389 391 392 394 396 398 400 401 403 405 398 Atmospheric column average CO2 (ppm) JAN E001ia_lai_obio 281 282 282 283 284 284 285 286 287 287 288 285 Atmospheric column average CO2 (ppm) JUL E001ia_lai_obio 281 282 282 283 284 284 285 286 287 287 288 285 Number of measurements per grid cell 1 37.4 73.8 110 147 183 219 256 292 329 365 2.27e+03 380 385 390 395 400 405 410 2009 2010 2011 2012 2013 2014 2015 (2015):Multi-laboratory compilation of atmospheric carbon dioxide data for the period 1968-2014; obspack_co2_1_GLOBALVIEWplus_v1.0_2015-07-30;NOAA Earth System Research Laboratory, Global Monitoring Division. http://dx.doi.org/10.15138/G3RP42f Acknowledgements This research was supported by NASA Modeling, Analysis and Prediction (MAP) program Computing resources were provided by the NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center Observational data were provided by: - ISRIC World Soil Information - NASA Orbiting Carbon Observatory-2 (OCO-2) - NOAA Cooperative Global Data Integration Project months months months latitude latitude Modern observations (GLOBALVIEWplus) Observation points Preindustrial simulations – land fluxes only Preindustrial simulations – land+ocean Atmospheric column average CO2 (ppm) Modern observations (OCO-2) Preindustrial simulations GROSS PRIMARY PRODUCTIVITY g[C]/m2/day ANN E020ia_lai_a 0 1 2 3 4 5 6 7 8 9 10 2.19 AUTOTROPHIC RESPIRATION g[C]/m2/day ANN E020ia_lai_a 0 1 2 3 4 5 6 7 8 9 10 1.46 SOIL RESPIRATION g[C]/m2/day ANN E020ia_lai_a 0 1 2 3 4 5 6 7 8 9 10 0.729 NET ECOSYSTEM EXCHANGE g[C]/m2/day ANN E020ia_lai_a -1.1 -0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9 1.1 -0.00223 GROSS PRIMARY PRODUCTIVITY g[C]/m2/day JAN E020ia_lai_a 0 1 2 3 4 5 6 7 8 9 10 1.71 AUTOTROPHIC RESPIRATION g[C]/m2/day JAN E020ia_lai_a 0 1 2 3 4 5 6 7 8 9 10 1.18 SOIL RESPIRATION g[C]/m2/day JAN E020ia_lai_a 0 1 2 3 4 5 6 7 8 9 10 0.558 NET ECOSYSTEM EXCHANGE JAN E020ia_lai_a -2.2 -1.8 -1.4 -1 -0.6 -0.2 0.2 0.6 1 1.4 1.8 2.2 -0.0321 GROSS PRIMARY PRODUCTIVITY g[C]/m2/day JUL E020ia_lai_a 0 1 2 3 4 5 6 7 8 9 10 2.99 AUTOTROPHIC RESPIRATION g[C]/m2/day JUL E020ia_lai_a 0 1 2 3 4 5 6 7 8 9 10 1.81 SOIL RESPIRATION g[C]/m2/day JUL E020ia_lai_a 0 1 2 3 4 5 6 7 8 9 10 1.06 NET ECOSYSTEM EXCHANGE g[C]/m2/day JUL E020ia_lai_a -2.2 -1.8 -1.4 -1 -0.6 -0.2 0.2 0.6 1 1.4 1.8 2.2 0.113 ISRIC-WISE global soil carbon kg[C]/m2 0 4 8 12 16 20 24 28 32 36 40 1.88 SOIL ORGANIC CARBON POOL kg[C]/m2 ANN E020ia_lai_a 0 4 8 12 16 20 24 28 32 36 40 8.11 Soil organic carbon spinup (~300 years) Initial state (ISRIC-WISE) Equilibrium state after spinup General layout of the model https://ntrs.nasa.gov/search.jsp?R=20160000381 2020-03-21T12:42:28+00:00Z

Transcript of Spin-up and Tuning of the Global Carbon Cycle Model Inside the … · 2016-01-12 · Spin-up and...

Page 1: Spin-up and Tuning of the Global Carbon Cycle Model Inside the … · 2016-01-12 · Spin-up and Tuning of the Global Carbon Cycle Model Inside the GISS ModelE2 GCM Igor Aleinov1,2,

Preliminary results Pre-industrial simulations, prescribed ocean

Spin-up and Tuning of the Global Carbon Cycle Model Inside the GISS ModelE2 GCM

Igor Aleinov1,2, Nancy Y. Kiang2, Anastasia Romanou1,2

1Columbia University, 2NASA Goddard Institute for Space Studies, New York, NY, USA

http://www.giss.nasa.gov/projects/gcm/

Introduction Planetary carbon cycle involves multiple phenomena, acting at variety of temporal and spacial scales. The typical times range from minutes for leaf stomata physiology to centuries for passive soil carbon pools and deep ocean layers. So, finding a satisfactory equilibrium state becomes a challenging and computationally expensive task. Here we present the spin-up processes for different configurations of the GISS Carbon Cycle model for the model forced with MODIS observed Leaf Area Index (LAI) and prescribed ocean and the model fully coupled to the dynamic ocean and ocean biology. We investigate the time it takes the model to reach the equilibrium and discuss the ways to speed up this process. All simulations were done for preindustrial climate conditions. NASA Goddard Institute for Space Studies General Circulation Model (GISS ModelE2) is currently equipped with all major algorithms necessary for the simulation of the Global Carbon Cycle. The terrestrial part is presented by Ent Terrestrial Biosphere Model (Ent TBM), which includes leaf biophysics, prognostic phenology and soil biogeochemistry module (based on Carnegie-Ames-Stanford model). The ocean part is based on the NASA Ocean Biogeochemistry Model (NOBM). The transport of atmospheric CO2 is performed by the atmospheric part of ModelE2, which employs quadratic upstream algorithm for this purpose. Schmidt, G.A., M. Kelley, L. Nazarenko, R. Ruedy, G.L. Russell, I. Aleinov, M. Bauer, S.E. Bauer, M.K. Bhat, R. Bleck, V. Canuto, Y.-H. Chen, Y. Cheng, T.L. Clune, A. Del Genio, R. de Fainchtein, G. Faluvegi, J.E. Hansen, R.J. Healy, N.Y. Kiang, D. Koch, A.A. Lacis, A.N. LeGrande, J. Lerner, K.K. Lo, E.E. Matthews, S. Menon, R.L. Miller, V. Oinas, A.O. Oloso, J.P. Perlwitz, M.J. Puma, W.M. Putman, D. Rind, A. Romanou, M. Sato, D.T. Shindell, S. Sun, R.A. Syed, N. Tausnev, K. Tsigaridis, N. Unger, A. Voulgarakis, M.-S. Yao, and J. Zhang, 2014: Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J. Adv. Model. Earth Syst., 6, no. 1, 141-184, doi:10.1002/2013MS000265. Romanou, A., W.W. Gregg, J. Romanski, M. Kelley, R. Bleck, R. Healy, L. Nazarenko, G. Russell, G.A. Schmidt, S. Sun, and N. Tausnev, 2013: Natural air-sea flux of CO2 in simulations of the NASA-GISS climate model: Sensitivity to the physical ocean model formulation. Ocean Model., 66, 26-44, doi:10.1016/j.ocemod.2013.01.008.

oceanbiogeochemistry

soilbiogeochemistry

carbon storage tracer transport

photosynthesis

CO2 exchange

soil respiration

plant respiration

litter

CO2 transport

Annual mean, GPP=106.2 Gt C/year

Monthly mean, July

CO2 concentartion at the surface (ppm)

For presented simulations we use MODIS vegetation cover data set which was converted to 16 plant functional types, MODIS observed seasonal LAI and MODIS vegetation height.

Conclusions and future work - GISS ModelE2 GCM is capable of producing reasonable carbon cycle for preindustrial conditions -  Typical spinup time for terrestrial ecosystem model is 300

years, ocean biophysics requires longer spinup - 20th century simulations are needed for validation of the model with observations

Monthly mean, January

Land CO2 fluxes of Gross Primary Productivity (GPP), plant respiration, soil respiration and Net Ecosystem Exchange (NEE)

40-60N average 20-40N average.

months

Atmospheric column average CO2 (ppm) JAN 2015387 389 391 392 394 396 398 400 401 403 405

397

Atmospheric column average CO2 (ppm) JUL 2015387 389 391 392 394 396 398 400 401 403 405

398

Atmospheric column average CO2 (ppm) JAN E001ia_lai_obio281 282 282 283 284 284 285 286 287 287 288

285

Atmospheric column average CO2 (ppm) JUL E001ia_lai_obio281 282 282 283 284 284 285 286 287 287 288

285

Number of measurements per grid cell 1 37.4 73.8 110 147 183 219 256 292 329 365

2.27e+03380

385

390

395

400

405

410

2009 2010 2011 2012 2013 2014 2015

(2015):Multi-laboratory compilation of atmospheric carbon dioxide data for the period 1968-2014; obspack_co2_1_GLOBALVIEWplus_v1.0_2015-07-30;NOAA Earth System Research Laboratory, Global Monitoring Division. http://dx.doi.org/10.15138/G3RP42f

Acknowledgements This research was supported by NASA Modeling, Analysis and Prediction (MAP) program Computing resources were provided by the NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation (NCCS) at Goddard Space Flight Center Observational data were provided by: - ISRIC World Soil Information -  NASA Orbiting Carbon Observatory-2 (OCO-2) - NOAA Cooperative Global Data Integration Project

months

months months

latit

ude

latit

ude

Modern observations (GLOBALVIEWplus) Observation points

Preindustrial simulations – land fluxes only

Preindustrial simulations – land+ocean

Atmospheric column average CO2 (ppm) Modern observations (OCO-2) Preindustrial simulations

GROSS PRIMARY PRODUCTIVITY g[C]/m2/day ANN E020ia_lai_a0 1 2 3 4 5 6 7 8 9 10

2.19

AUTOTROPHIC RESPIRATION g[C]/m2/day ANN E020ia_lai_a0 1 2 3 4 5 6 7 8 9 10

1.46

SOIL RESPIRATION g[C]/m2/day ANN E020ia_lai_a0 1 2 3 4 5 6 7 8 9 10

0.729

NET ECOSYSTEM EXCHANGE g[C]/m2/day ANN E020ia_lai_a-1.1 -0.9 -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9 1.1

-0.00223

GROSS PRIMARY PRODUCTIVITY g[C]/m2/day JAN E020ia_lai_a0 1 2 3 4 5 6 7 8 9 10

1.71

AUTOTROPHIC RESPIRATION g[C]/m2/day JAN E020ia_lai_a0 1 2 3 4 5 6 7 8 9 10

1.18

SOIL RESPIRATION g[C]/m2/day JAN E020ia_lai_a0 1 2 3 4 5 6 7 8 9 10

0.558

NET ECOSYSTEM EXCHANGE JAN E020ia_lai_a-2.2 -1.8 -1.4 -1 -0.6 -0.2 0.2 0.6 1 1.4 1.8 2.2

-0.0321

GROSS PRIMARY PRODUCTIVITY g[C]/m2/day JUL E020ia_lai_a0 1 2 3 4 5 6 7 8 9 10

2.99

AUTOTROPHIC RESPIRATION g[C]/m2/day JUL E020ia_lai_a0 1 2 3 4 5 6 7 8 9 10

1.81

SOIL RESPIRATION g[C]/m2/day JUL E020ia_lai_a0 1 2 3 4 5 6 7 8 9 10

1.06

NET ECOSYSTEM EXCHANGE g[C]/m2/day JUL E020ia_lai_a-2.2 -1.8 -1.4 -1 -0.6 -0.2 0.2 0.6 1 1.4 1.8 2.2

0.113ISRIC-WISE global soil carbon kg[C]/m2 0 4 8 12 16 20 24 28 32 36 40

1.88

SOIL ORGANIC CARBON POOL kg[C]/m2 ANN E020ia_lai_a0 4 8 12 16 20 24 28 32 36 40

8.11

Soil organic carbon spinup (~300 years) Initial state (ISRIC-WISE) Equilibrium state after spinup

General layout of the model

https://ntrs.nasa.gov/search.jsp?R=20160000381 2020-03-21T12:42:28+00:00Z