SPE-1305-PA Chatas a.T. Unsteady Spherical Flow in Petroleum Reservoirs(1)

download SPE-1305-PA Chatas a.T. Unsteady Spherical Flow in Petroleum Reservoirs(1)

of 13

Transcript of SPE-1305-PA Chatas a.T. Unsteady Spherical Flow in Petroleum Reservoirs(1)

  • 7/24/2019 SPE-1305-PA Chatas a.T. Unsteady Spherical Flow in Petroleum Reservoirs(1)

    1/13

    _ .9+.. ~05 . --

    Unsteady

    Spherical Flow in

    Petroleum Reservoirs

    A. T. CHATAS

    MEMBER A ME

    ABSTRACT

    A description of the geometrical characteristics

    of spherical reservoir systems, a discussion of

    unsteady-state flow of such systems and examples

    of erzgirzeering

    applications are presented as

    background materiaL The

    {undameital

    differential

    equation,

    a description of average spherical

    permeability and the introduction of the Laplace

    transformation serve as tbeoret ical foundations,

    Engineering concepts are irwestigated to indicate

    particular solutions of interest, which are analyti-

    tally obtained with tbe aid of the Laplace transform.

    These are numerically evaluated by comput e~ and

    presented in tabular form.

    INTRODUCTION

    A

    tractable mathematical analysis of unsteady

    fluid flow through porous media generally requires

    incorporation

    of

    a

    geometrical symmetry. The

    simplest

    forms include the linear, cylindrical

    (radiaI) and spherical. Most analytical endeavors

    have concentrated on cylindrical symmetry because

    it occurs more often in petroleum reservoirs.

    Nevertheless, some

    r eservoi r

    systems do exist that

    are better approximated by spherical geometry.

    Review of technical literature revealed but a

    single reference to unsteady spherical f~ow in

    petroIeum reservoirs. ~ The motive and purpose of

    the present work was to remove this gap in technical

    information? and to provide the practicing engineer

    with some useftd analytical tools. The mathematical

    details associated with the partictdar solutions of

    interest involved use of thti Laplace transfor-

    mation. Hurst and van Everdingen previously

    demonstrated the efficacy of this operational

    technique; mrd in many respects the present

    treatment was patterned after their earlier work. 2

    PRELIMINARY CONSIDERATIONS

    GEOMETRICAL

    CHARACTERISTICS

    . .

    *

    I

    I

    1

    I

    I

    i

    ,

    ~

    i

    t

    Ge~metricaIIy, a spherical

    reservoir

    system ;is

    Jig&+

    .

    ~TF..()___

    dZfinZii _iiiZ@-i%tGiiF% f-&ii~- ti~~~cgn~e~ki~--- ---

    - .- -.--S-- .-.-.e +,. ,-... ._,_- (-lJ---=---

    .

    Original manuscript received in Saciet y

    of

    Petroleum Engineers

    But to do. this, a reservoir system must contain

    offlCe SetIt.

    27, 1965. Revised manuscript of SPE 130Sreceived

    APrii S, 1966.,

    either art ideal fluid, which impIies a vanishing

    preferences given at end of PaPer,

    viscosity,

    or an @compressible fluid, which

    102

    SOGIETYOF.PETROLEUM

    ENGINEERS JOURNAL

    :; 1-.. -fi.:i:-=:- .-.-.-:---: .-.; -.=. --- : :---: ---T- :. .- -~= :-: :~k-: :-:= ~ - .-,-.=;- ~:---:i :-: i:::::::: ;-:~-- -~. ,,:;:-::~.-~ --:; :::

    -

    -. ..

    .::b-: -:=: .. -- --- -.. : .7 -

    . . . .

    -- .

    ,:.

    .-. -.

    ...--.. .+. ..=; -, . . .. ..-~.

    . --- .,. . . ,.

    ..-, . ... .,-- . ... . . .- ..-. .. -.,- . ..-.

    .- ..... . . . . .. . . . ..--. .> 7..-.... .-; 1..,..

    . -;-.-:, .-, .

    -.

    ..-. .

    ... ..-3%-:

    =4. .: _. . -----

    IRANIAN OIL EXPLORATION & PRODUCltiG CO,

    TEHRAN, IRAN

    hemispheres whose physical properties of interest

    vary

    only with the radial distance. Every physical

    property is thus restricted to be a space function

    of only one variable: the distance along a radius

    vector emanating from the center.

    Such a system is composed of an outer region

    and an inner region, separated by a defined internal

    boundary. The inner region simply extends inward

    from this boundary, whereas the

    outer region

    extends

    outward from it to an external boundary. The

    position of the internal boundary is presumed fixed,

    so that the,

    size

    of the inner region remains constant.

    On the other hand, the position of the external

    boundary at any given instant of time is determined

    by the distance into the system that a sensible

    pressure reaction has occurred. Thus, the external

    boundary may change position with time.

    It jnitially emerges from the inner region and

    advancea outward to its ultimate position. When

    this ultimate position coincides with a geometric

    limit, the reservoir system is said to be Iimited.

    When it coincides with points subject to pressure

    gradients furthest removed from the internal

    boundary, yet short of a geometric limit, the system

    is aaid to be unIimited. In this investigation two .

    different boundary conditions are imposed at the

    ultimate. boundarie a of limited systems. The first

    requires that no fluid fIow occur across this

    boundary; the second that the pressure remain

    fixed at this boundary. s-s

    UNSTEADY-STATE FLOW

    10 a strict sense virtua~ly alI flow phenomena

    associated with a reservoir system are unsteady-

    state. The transient behavior of these phenomena ,

    requires accounting, however, only when time

    maist be introduced as an explicit variabIe. Other-

    wise, steady - state mechanics

    tiay be used.

    AnaIyticaIIy,

    steady-state conditions prevail

    in a reservoir system only over that portion of

    its history when this relation is satisfied: .

  • 7/24/2019 SPE-1305-PA Chatas a.T. Unsteady Spherical Flow in Petroleum Reservoirs(1)

    2/13

    . . . .

    -----

    implies a vanishing compressibility; or it must have

    pressures fixed with time such that the time-

    derivative vanishes. Evidently, strict steady-state

    conditions are virtually impossible to attain, since

    these provisions are abstractions of the mind and

    not properties of physical systems. From a practical

    standpoint, however, this fact does

    not

    exclude

    application of steady-state mechanics, because in

    many situations Eq. 1 is closely approximated. 3-5

    The significant physical properties that determine

    the extent of transient behavior in spherical

    reservoir systems are exhibited by the so-called

    readjustment time which is approximated by:

    ~ _ Crez

    .

    r

    2k/p

    (2)

    These factors are the size of the system, its

    compre ssibi Iity and its mobility. When they combine

    to yield a large readjustment

    .ne, unsteady +tate

    mechanics should be used wless pressures are

    in~ariant-3,5

    ENGINEERING APPLICATIONS

    ~en a water drive field is characterized by

    bottom-water encroachment,

    the hydrocarbon

    accumulation usually fills only a portion of the

    total thickness of the reservoir

    formation

    and is

    entirely underlain by water. Flow of water into the

    pay zone results from a gradual and uniform rise

    of the underlying water.

    Of particular interest to the reservoir engineer

    are methods, fotmally independent of materiaI

    balance principles, for determining the water

    influx into bottom-water drive fields. First, rhese

    methods afford determination of a number of

    reservoir properties

    through an analysis of the

    past reservoir history iYy an adjunctive use with

    other reIatIons. Secondly, by independently yielding

    the water influx they provide means of predicting

    future reservoir performance. Many bottom-water

    drive fields Iend themselves to the imposition of

    spherical geometry; hence, solutions of the funda-

    mental flow equations appropriate ro this symmetry

    can be used to analytically determine the water

    infIux for this class of reservoir.4~ b

    Although many wells are completed after the drill

    has passed entirely through the pay formation, some

    are purposely completed after only partial penetration

    has been effected. Sometimes such wells are

    completed after th~ rop surface of the reservtiir is

    merely tapped by the drill, in which case they are

    termed non-penetrating weIls.

    Non-penetrating wells that occur in a relatively

    thick formation can be treated as spherical systems.

    They can be analytically investigated by using

    damaged sand conditions. Also, although the

    analytical soIutions strictly appfy ordy to the

    single-phase flow of compressible liquids, the results

    can sometimes be used (with proper interpretation)

    the fIow of gases when pressure drops are small,

    and to the simultaneous flow of oil and gas upon

    imposition of drastic assumptions.s q~ ~

    THEORETICAL CONSIDERATIONS

    FUNDAMENTAL DIFFERENT IAL EQUAT ION

    The fundamental differential equation

    governing

    the dynamics of the flow of compressible liquids

    through spherical reservoir systems can be written

    as:

    where the porosity, compressibility and mobility

    are interpreted as fixed averages, and where the

    effects

    of gravity are rreg~ecred.

    Define a

    dimen-

    sionless length ratio, dimensionless time ratio and

    sionless length ratio, time ratio and pressure-drop

    ratio, respectively, as foIlows:

    (4)

    e d = . . . . . . . . . . . . . . . . .

    kt

    td=

    pcr

    (5)

    P~ =

    P~ (~~t @ =

    Pi p(rEI D)

    (6)

    Pi+l,tj) - .

    Introduction of these relations into Eq. 3 permits ir

    to

    be rewritten as:

    which represents

    the fundamental differential

    equation in dimensionless form appropriate to

    reservoir systems

    characterized by spherical

    symmetry .z-%s

    AVERAGE SPHER ICAL PERMEAB ILITY

    Available evidence indicates that the uermeabiIitv

    .

    of porous media constituting rerervoir sys,tems is

    not isotropic in character, As a rule the vertical

    permeability is less than the horizontal, and in

    some inswnces the difference is profound. Since

    spherical symmetry embraces a three-dimensional

    geometric space, it was felt necessary to include

    the effects of this anisttopy here. The radial perme-

    ability in a spherical porous medium characterized

    by uniform vertica and horizontal permeability

    components can be analytically described by:

    appro~iate solutions of the fundamental flow

    -.-._. ___ .. ____ . . . . _____

    .-.

    ---~ _. .._ _______ ..._

    =

    [

    equations corresponding to spherical symmetry. -

    These investigations

    include flow

    calculations,

    1

    =

    k; k:

    sin2a+ cosza. . . . , . . , (8)

    snaly sis of drawdown and bui id-up tests, determin-

    40 . ~

    i

    ation of static bottom-hole pressure, productivity

    indices, effective permeabilities and evaluation of

    The average spherical permeability can then be

    obgained with th,e volume integral:

    JUNE,,1966

    .-

    10,?

    . . . . . . . . . . . . . . . . . ._____ . .. . . . . . . . . . _. ..-

  • 7/24/2019 SPE-1305-PA Chatas a.T. Unsteady Spherical Flow in Petroleum Reservoirs(1)

    3/13

    . -.

    F+=

    (2/3)

    m(r~3 -?:)

    ,..

    . (9)

    fffi ~ sin a drda~fl

    Oorw

    which, upon evaluation, gives:

    3kbku

    k= , . ,

    (lo)

    kh+2ku

    the average spherical permeability.

    AP PLICATION OF THE

    LAPLACE TRANSFORMATION

    Th e fundamental differential equation for a

    spherical reservoir system has been expressed in

    dimensionless form by Eq. 7. Define the product:

    h=rDpD . . . . . . . . . . . . . .. (11)

    Then Eq. 7 can be written in the alternative form:

    d2b db

    = .. . . . . . . . . . . .. (12)

    &D2 atD

    The Laplace transform of

    b is

    given by the

    definite integral:

    ~= J_-bexp(-stD)dtD . . . . , . . .

    (13)

    o

    Multiplication by the nucIeus of the transform and

    integration over all time converts Eq. 12 from a

    partial to the ordinary differential equation:

    dz~

    ~F

    =

    {14]

    drD2

    The general solution of this subsidiary equation

    can be written at once:

    z=

    Clexp(-rD@) -t C2 exp(rD@) , . . . (15)

    where Cn k an arbitrary constant.

    2,9-11

    Particular soIutions to the subsidiary equation

    corresponding to specifically imposed boundary

    conditions are obtained upon appropriate evaluation

    of the constants that appear in its general solution.

    These particular solutions would represent the

    Laplace transforms of the required particular

    sohirioris to Eq. K?. The Iattei are determined by

    effecting the inverse transformation of their Laplace

    transforms. This procedure will be used to develop

    the particular solutions of interest.

    S ELECT ION OF PARTICULAR SOLUT IONS

    system. But due to the generality introduced, it

    becomes necessary to relate certain physical

    quantities associated with absolute units of

    measurement to functions of the &lmensionless

    variables in Eq. 7.2*5

    The macroscopic radial velocity at the internal

    boundary of a spherical rdservoir system is given

    by Darcys law: 2-4

    k

    ()

    u=-

    /L Tr; @)

    Introduction of the reIstions defined by Eqs.

    4

    through

    6

    yields:

    k A p

    (r,fl, t)

    ()

    8pD

    .

    ,. . . . . .

    L%D ~

    .

    (17)

    P

    ~w

    which relstes the actual velocity with the dimen-

    sionjess function (@D /&D)l. The rate of fluid

    influx at the internal boundary is given by:s, g

    ()

    = -

    J* Jmr2u

    sin

    adadO=2trr~~ $

    00

    fw

    . . . . . . . . . . . . . . . . . . (18)

    Then, introduction of Eqs. 4 through 6 yields:

    which relates the actuaI fluid influx rate with the

    dimensionless function

    - (13p~/dr~)l.

    The cumulative fluid influx at the internal bound-

    ary Up to any time t is given by: 2

    t [dp

    F . $t edt =2trr~~ f

    o

    ()

    o ~ ,Wzt

    Similarly, introduction of Eqs. 4 through

    .()

    D apD ~t

    F = -2 Prqicr$ ilp(rw, 2){ ~- ~

    D1

    . . .

    (20)

    6

    yields:

    , . .

    (21)

    which relatea the actual cumulative fluid influx

    with the time integral of che dimensionless function

    - (dpD/8@ )l. Upon proper interpretation, Eqs. 17,

    19 and 21 can be used to determine the fluid flow

    and p r e s su r e behavior in a spherical reservoir

    system, and also to indicate the appropriate choice

    of particular soltitions co Eq. 7.

    Ttio

    distinct cakes

    arise: the so-called pressure and rate cases. 2,5

    The Pressure Case

    The pressure case presumes know~edge of the

    ptessure conditions at the internal boundary of a

    -_re*rv~irfiyUadp~dtie4~~i.ga4QL~f__*&_ _.~

    -.

    R&dw~cion--of--E~ =%*e*e -dimensiorrles-s-fcwia-

    depicted by Eq. 7 was effected, because the corn-

    fIuid flow behavior. Consider a spherical reservoir

    plete dimensioolessness of Eq. 7 renders the numer-

    system characterized by. dimert sioriless properties.

    icaI

    va[ues associated with

    its

    particular soIucions

    Ler this system be charged to a unit dimensionless

    entirely independent of the actual magnitudes of

    pressure, and at zero time let the pressure at the

    the physical properties of any given reserv-oir

    internal boundary vanish and remain zero. This

    104

    SOCIETY OS PETROLIiuM ENGINEERS. Jou.WAL .

    ... .. .. . . .. . .. . . .. ------ . .. -. -. .

    . .,.. . . U.

    L-: -.-::: .-

    . - ~ . , ., , ,

    - .,,. -,- --

    ~- ~~ ~ ,-J .-.

    -

    . . - -=. ? ---

  • 7/24/2019 SPE-1305-PA Chatas a.T. Unsteady Spherical Flow in Petroleum Reservoirs(1)

    4/13

    *

    condition represents the distinctive feature of the

    pressure case. The problem then remaitr~ to

    determine the dimensionless rate and cumulative

    fluid influx at the internal boundary as functions

    of dimensionless time. This dimensionless descrip-

    tion of the fluid flow behavior and its uanslation

    into absolute units of ~easurement constitutes the

    pressure case,2, s

    Under the precepts of the pressure case, the

    dimensionless fluid influx rate is defined by:

    ()

    p~ :

    eD=eD(ljtD) =-~ , . . . . . .

    .(22)

    D1

    and the dimensionless cumulative fluid influx by:

    ()

    D &lD

    FD=FD(I, tD)=- J_

    dad . . . . .

    O arD ~

    SymbolicaUy, the actuaI veIocity, rate and cumula-

    tive fluid influx majj now be expressed in terms of

    eD and

    FD

    as follows:

    u = U(rw, t) =

    1 Ap(rw,O)eD(l,tD).

    prw

    e = e (rw, t) = 2rrr

    3 .3p(rw,0)eD(l,tD).

    UP

    F = F(rw, t) = 2rr4Jcrm~Ap(rw,O)FD (l,tD).

    . (24)

    . (25)

    .

    (26)

    Eqs. 24 through 26 express the facets of fluid flow

    behavior in terms of field data and the dimensionless

    functions eD and FD. By application of the super-

    position principle (Duhamels theorem) these

    functions can also be used to treat time-varying

    pressure histories.

    The

    Rate Case

    The rate case presumes knowledge of the fIuid

    flow conditions at the internal boundary and permits

    determination of the pressure behavior. Consider a

    dimensionless spherical reservoir system charged

    to a unit dimensionless pressure, and from zero-time

    onward Iet a unit dimensiotdess fluid influx rate be

    imposed. This condition, which expressed analyti-

    cally is:

    ()

    ?p~ ~

    _.

    .

    (27)

    ~rD 1: ._

    for all time tD, represents the distinctive feature of

    the rate case. The problem here is to determine the

    dimensionless pressure drop distribution in the

    system,

    and the pressure drop at the internal

    boundarv under the conditions txescribed bv Ea.

    . .

    p(r,t) = pi - --&& pD(rD, CD). . . . .

    . (28)

    w

    Similarly, the actual pressure

    at the internal

    boundary is given by:

    P = p(~w, t) = pi _~PD(l>tD) . . . (29)

    w

    These symbolic relations express the pressure

    behavior in terms of field data and the dimensionIesp

    functions PD (tD. tD) and PD (1, tD). Likewise, by

    appli~ation of the superposition principle, these

    functions can be used t o treat time-varying rate

    histories. ,

    DESCRIPTION OF PARTICULAR SOLUTIONS -

    UNLIMITE D SYS TEM

    By definition the external boundary of an unIimited

    system continuously recedes from the internal

    boundary without reaching a geometric limit. Under

    these conditions the product rD

    pD

    vanishes and Eq.

    15 becomes:

    Z= Clexp(-rD@). . . . . . . . . . .(30)

    The precepts of the pressure case require that

    a dimensionless pressure drop of unity be maint-

    ained at the internal boundary, and since the

    Laplace transform of unit is 1/s, it foUows that:

    z.

    +exp[-fi(rD-l)l , . . . . .

    . (31)

    which is the subsidiary equation a ppto priate to

    the pressure case for an unlimited system. The

    dimensionless fluid influx rate e D can be rewritten

    in terms of /7:

    Then the Laplace transform of eD, utilizing Eqs.

    31 and

    32,

    ia:

    1

    ~D -

    -++= . . . .. (33)

    whose inverse transformation can be written at

    once as:

    eDml-l- (~@-1i2,-. . . . . . . .. (34)

    which is the dimensionless fluid influx rate of ,

    an unlimited system. The Laplace transform of

    F ~

    (dimensionless cumulative fluid : .Hux) is

    simply:

    2ZT%k-iiirn-Sin%lonIess descs~pdofi-of->~~wsu-;~ -_ -- - --- ----- -

    .. .. _

    behavior and its translation into- absolute units of

    .~D=:

    1 J-

    (35)

    measurement constitutes the

    rate case. 2; 5

    3 7-2 +- So*** .

    Under the precepts of the rate case, the actual

    pressure distribution in the system is given by:

    whose inverse transformation can likewise be

    J UNE , 1 9 6 6 .

    .-

    1 0 s

  • 7/24/2019 SPE-1305-PA Chatas a.T. Unsteady Spherical Flow in Petroleum Reservoirs(1)

    5/13

    .-

    .-

    . .

    written at once as:

    ()

    D 1 / 2

    FD=t~+2~ , . . . . . . . .. (36)

    which is the dimensionless cumulative fluid

    influx of an unlimited system. g) 11)13,

    14

    The

    precepts of the rate case require that a

    dimensionless rate of unity be maintained at the

    internal boundary, which can be wk= in terns of

    b as:

    -(- )1=-( -6)1= o --()

    Using Eq. 30 it. foHows that:

    ~ =

    eXp [- @

    (;D- 1)]

    . (38)

    S(l+fs)

    which is the subsidiary equation appropriate to

    the rate case for an unlimited system. The inverse

    transformation is available from integral transform

    tables. This result divided by rD yields:

    [()

    -1

    pD(rD*tJ =

    $ erfc

    K -

    exp (tD + rD

    -efi 1

    TD- I

    +fi . .(39)

    26

    which is the dimensionless pressure-drop distribu-

    tion of an urdimited system. Upon placing rD at

    unity, Eq. 39 reduces to:

    pD=l

    exp(tD) erfc (t&), . . . . . . .

    (40)

    which. is the dimensionless pressure drop at the

    internaI boundary of an unlimited system.2 g, 11,1% 14

    At this juncture some significant observations

    can be made. First, the least upper bound of the

    dimensionless pressure drop is unity. Consequently,

    under the conditions of constant rate the pressure

    drop at the internal boundary of an unlimited

    .

    apherlcd system can never exceed s fixe-d finite

    value. Secondly, the greateat lower bound of the

    dimensionless rate is also unit~. Hence, the rate

    engendered by a single pressure drop impes ed at

    ?eio time ,at the internal boundary of an unlimited

    spheric-i- system ciin never b& less thafi a fixed

    non-vanishing value. h either situation, it appears

    that an unlimited spherical tesetwoir syatern

    approaches steady-state conditions as dimensionless

    time assumes excessively Iarge values. This

    limit. At this limit, a system with a closed external

    boundary can sustain no fluid flow across it. Hence,

    the normal pressure derivative there must vanish.

    Introduction of this condition into Eq. 15 gives:

    ,[

    D

    (-)ex +(b-;j

    =C exp(-r @ +

    . . . . . . . . . . . . . . . . . .

    Under the precepts of the pressure case and by

    subsequent conversion to hyperbolic functions, Eq.

    41 becomes:

    ;.

    sinh[@r~~r D)] {S rDCOSh[{S(rD- rD)]

    s{sinh[{s (7D-1)]-@ rD cosh[{s (rD -l)]]

    . . . . . . . . . . . . . . . . . . .

    (42)

    which is the subsidiary equation appropriate to the

    pressure case for a closed limited system. The

    LapIace transform of eD, using Eqs. 32 and

    42,

    ia:

    fs(rD-l)cosh[@(rD~l)] +(srD~l)sinh[fs (rD~I)]

    s ffs rDcosh

    [fs (rD-l)] - sinh[(s (rD-l)] I

    . . . . . . . . . . . . . . . . . . .

    (43)

    The inverse transformation of the relation may be

    obtained with the aid of Mellins inversion theorem,

    and -is given by the foIlowing in tegttd in the

    compIex pfane:

    which for the function at hand may be evaluated by

    converting it to a closed contour integral and then

    applying the calculus of residues. ThuB, by virtue

    of Cauchy s integral formula:

    where

    R. is

    the residue corresponding to the

    singularity at the origin and Rn the residues

    corresponding to the orher singular points. Evalua -

    tion of Eq. 45 yields the dimensionless fluid influx

    rate for a closed limited spherical system, aa

    follows:

    w wn2rD2+ (rD~l)2

    [ 1

    n%o

    D=+

    tizl rD2 -

    (~~~1) Xp

    (,;2.1)

    . . . . . . . . . . . . . . . . . . . (46)

    roperty, strangely enough, is not enj eyed by

    unlimited. linear or cylindrical (radial) sy~ms. 2,5.

    . -where -wn-are-th-roots.of. the equation ~.---- .___

    LIMITED SYSTEM WITH

    R

    CLOSED

    EXTlitRhJAL BOUNDARY

    tan w

    . . ...+ ., ...

    (r; 1)

    . .

    (47)

    In a limited reservoir system the externaI

    w

    boundary evenruaIIy coincides with a geometric .

    The Laplace transform of

    FD is:

  • 7/24/2019 SPE-1305-PA Chatas a.T. Unsteady Spherical Flow in Petroleum Reservoirs(1)

    6/13

    . . .

    .

    ..-

    .. .

    J

    F&$

    @(rD~l)cosh@(rD~l) +(srDX)sinh@~Ll)

    = ~2[@rDcosh W (rD-l) - sinh @ (~D-I)l

    . . . . . . . . . . . . . ...*.

    . (48)

    By virtue of previous arguments, the inverse

    transformation of Eq. 4S yields the dimensionless

    cumulative fluid influx for a C1OSed limited system:

    where Wfl a re also the roots of Eq. 47. z, 10 llsls-lfJ

    Under the precepts o: the rate case, Eq. 41

    becomes, upon conversion to hyperbolic functions:

    b=

    ~rDcosh\tJG (r~-rD) -sinh fi(rD-rD )

    .S[@YO-l )cosh@D-l) + ( srD-lh+inh@rD-l )]

    . . . . . . . . . . . . . . . . . .

    . . (50)

    which is the subsidiary equation appropriate to the

    rate case for a closed limited system. As before,

    the

    inverse. transformation

    of Eq. 50 is given by the

    sum of the residues, and since b is r~PD, there J

    foHows :

    . . . .

    . . . . . . . . . . . . . . ..?

    (49)

    TABLE 1 - UNLIMITED SYSTEM

    Dimensionless Dimensionless Dimensionless Dimensionless

    Tim.

    Rate Influx Pressure- Drop

    (t~) (GD)

    (fD)

    (PD)

    0.001

    0.002

    0,003

    0.004

    0.005

    0.006

    0.007

    0.008

    0.009

    0.01

    0.02

    0.03

    0.04

    0.05

    0,06

    0.07

    0.08

    0.09

    0.10

    0.20

    oo3r

    0.40

    0.50

    0.60

    0.70

    0.80

    O*9O

    1.0.

    2,0

    300,

    4,0

    500

    6,0

    7.0

    8,0

    18.84124

    13.61566

    11.30065

    9.92062

    8.97885

    8.28366

    7.74336

    7.30783

    6,94708

    6,64J90

    4.98942

    4.25735

    3.82095

    3,52313

    3,30329

    3.13244

    2.99471

    2,88063

    2.78412

    2.26157

    2.03006

    1.89206 ..

    1.79788

    1.72837

    1.67434

    1.63078

    1059471

    .1.56419

    1.39894

    1.32574 .,

    1.28209

    1.25231

    1.23033

    1.21324

    1.19947

    0.03668

    0.05246

    0,06430

    0.07536

    0,08479

    0.09340

    0,10141

    0.10893

    0,11605

    0.12204

    0.17958

    0.22S44

    0.26568

    0.30231

    0.33640

    0.36854

    0.39915

    0,42851

    0.45682

    0,70463

    0.91804

    1,11365

    1.29788

    1.47404

    1.64407

    1.80925

    1.97047

    2.12830

    %59577

    4W95441

    6.25676

    7.$2313

    8?76395

    9.98541

    11.19154

    0.03471

    0,04853

    0.05892

    0.06755

    0.07504

    0.08174

    0,08782

    0.09343

    0.09865

    0.10354

    0,14152

    0.16894

    0.19098

    0.20962

    0.22588

    0,24036

    0.2534S

    0,26540

    0,27642

    0,35621

    0.40798

    0,44639

    0.47684

    0,50198

    0,52330

    0.54175

    0.55798

    0.57242

    t16638Q

    0.71266

    0.74460

    0.7676$

    0,78534

    0.79946

    0.81109

    Dimenshrless

    Time

    (tD)

    60.0

    70.0

    80.0

    90,0

    100.0

    200.0

    300.0

    400.0

    500.0

    600,0

    700.0

    BOO*O

    900.G

    1,000.0

    2,000.0

    3,000.0

    4,000.0

    S,ooooo

    6,000.0

    7,000.0

    8,000,0

    9,000.0

    10,000.0

    20,000.0

    30,000,0

    40,000.0

    50,000.0

    ;60,000.0

    70,000.0

    80,000.0

    90,000.0

    100,000.0

    200,000.0

    300.000.0

    Dimensionless Dimensionless Dimensionless

    Rote

    Influx

    (6D)

    (FD )

    Pressure.DrOp

    J,07284

    1.06743

    1,06308

    1.0s947

    1.05642

    1.03989

    1.03257

    1,02821

    . 1.02523

    1,02303

    1,02132

    i .01995

    1,01881

    1.01784

    1.01262

    1.01030

    }.00892

    1,00798

    1.00728

    1.00674

    1,00631

    1.00595

    1,00564

    1000399

    1.00326

    1.00282

    1.00252

    1}00230

    1,00213

    1,00199

    1.00188

    1,00178

    1.00126

    LOO1O3

    1,00089

    68 ,7

    79 .4

    90.1

    100.7

    111.0

    216.0

    320.0,

    423.0

    525,0

    628oO

    730.0

    832,0

    934,0

    1,036,0

    2,050.0

    3,062.0

    4,071.0

    5,080.0

    6,087,0

    7,094;0

    8,101,0

    9,107.0

    10,113.0

    20,160.0

    30,195.0

    40,226.0

    50,252.0

    60,276,0-

    70,299.0

    80,319.0

    90,339.0

    100,357.0

    200,505.0

    300,618,0

    400,714.0

    0.92595

    0.93103

    0.93512

    0.93851

    0.94139

    0.95703

    0.96408

    0.96835

    0.97131

    0.97352

    0.97526

    0.97668

    0.97787

    0.97888

    0.98453 ~

    0.98714

    0,98874

    0.98984

    0.99067

    0,99132

    0.991 8S

    0.99229

    0.99267

    0.99473

    0,99566

    0.99623

    ,.

    0.99662

    -0.99690

    0.99713

    0.99731 .

    0.99746

    0.99759

    0,99829

    0.99860

    0.99878

    ..

    loLIoom

    1000 1.17841

    13.56825 0,82927

    500~8i0 0.99891-?

    600;000.0

    1.00073

    600,874.0

    20,0

    0.99900

    1.12616

    25.04626

    0.87624 700,000,0

    1:00067 7oo,944bo

    0,99908

    30.0

    1. 0301 36,18039 0,89770

    800,000,0

    1.00063

    801,009,0

    0,99914

    40.0

    L08921 47,13650

    0.91060

    900,000,0

    50.0

    1.00059

    901,070.0

    1.07979

    %999 19

    57.97885 0.91943

    1,000,000,0

    1,00056

    1,001, 128*G

    0.99923

    -107

    ,. . . . .. . . . . . . . . . .

    . . . ... . . . . . . . . . . . _. -.-

    .

    . ..- .:-r . . .. . . .-.-.--.+ . . . . . . .. . . . ...

    . .

    ,=. ,.. . . . . . . . . . .. .. . . . . . .. . . -

    ..

    JUNE. 1966

  • 7/24/2019 SPE-1305-PA Chatas a.T. Unsteady Spherical Flow in Petroleum Reservoirs(1)

    7/13

    .

    1

    rD-l) ~ (rD-l)4+ 27D(r~~l)%3 rD2 r~

    [2cos(wain(.% le--

    .

    Wnx[wnDcos Wu+ (rD% 1) sin wn ) -

    . . . . . . . . . . . . . . . . . . . .

    (51)

    where Wn are here the roots oh

    Ctn w

    1

    TD

    - =

    w

    W2

    (r~-l)* - . . . . . . . (52)

    The expression embodied by Eq. 51 represents

    the dimensionless pressure-drop distribution for a

    CIOSed limited sphtiical system. Upon placing rjy

    at unity and simplifying, there follows at once the

    dimensionless pressure-dropat me internal boundary:

    PD=

    [(

    1

    (r; l)2+3rD ~ rD-@ (2rD+1) +t~

    -

    +(rD

    [

    1)2 *(rD

    1

    -l)2+7D

    [

    1

    ?D-* TD-4+2r~-1 2~+3r~2

    [w?

    ~%(rD-l) 2]

    -2 (rD-

    1)3 2 2 ,2

    *=I

    w ~[w ~ TD +( FD2+~D+l)(~D~ 1)2]

    ~ =(r~=- 1)2

    ?

    ... ,.. , . . . . . .

    (53)

    where Wu are still the roots of Eq. 52.

    ----- -----

    LXMITED SYSTEM

    WITH OPEN EXTERNAL BOUNDARY

    It w iIl be recalled that a limited reservoir

    system is characterized by the arrestment of

    growth of the extema~ boundary when the latter

    .-

    Under the precepts of the pressure case and

    conversion to hyperbolic functions, Eq. 54 becomes:

    sinh @ (?D - fD)

    j=

    . . . (55)

    s[sinhfi(~D- l)] .

    which is the subsidiary equation appropriate to the

    pressure case for an open limited system. The

    Laplace transform of e D using Eq. 55, is:

    1 cosh @ (r~ - 1)

    7D =;.+

    @ [sinh ~ (tD- I)] . . . . 56)

    The inverse transformation is available from integral

    tables in the form:

    and upon expanding the Theta function this becomes:

    Dp

    x Xp[ - - o

    W

    D=

    +

    D

    -l rD-l fz=l

    which is &e dimensionless rate for an open limited

    system. As before, the Laplace transforms of FD is:

    D

    1

    cosh @(rD- I)

    D=~=~+

    , - (59)

    ssfl [sinh @ (rD- I )]

    ,whose inverse transformation was obtained with. the

    aid of the Faltung convolution theorem as:

    the dimensionless cumulative fluid infIux for an

    open limited system. ~-n, 1320

    Under the precepts of the rate case, Eq. 54

    becomes:

    .=

    coincides with the geometric limit of tb? system.

    of Eq. 61 was again obtained by Mellin Js inversion

    For the case- open boundary it is presumed

    th@orem~a9-@WhXxs lyex~ldtreiiti~us~~-

    that at this hit (r ~f) the ~ system suffera no

    pressure-drop- distribution is given by:

    pressure drip. - ~ . .

    --~~ction of this condition into

    Eq.. 15 gives:

    laa.. .

    SOCIETY OF PETROL1

    F=

    ainh @ (rD- rD)

    ,.. (61)-

    s[~cosh @(rDLl )+ sinh @(rD-l)]

    which is the subsidiary equation appropriate to the

    rate case for a Iimited system with a fixed pressure

    at the external boundrw. The inverse transformation

    .. .. .. . .. . .. .-. , . .

    -.. . . . . . . . .. .

    J.- ..... . . . ... . . .

    RUM ENGINEERS

    J OURNAL

    . . .. . . ... . .... . . ..

    ...-.-

  • 7/24/2019 SPE-1305-PA Chatas a.T. Unsteady Spherical Flow in Petroleum Reservoirs(1)

    8/13

    .

    .-

    TABLE 2

    LIMITED SYSTEMS

    Clased External Boundary

    Dlmenslonless Functions

    lmmnsianlass Functions

    Time Rate Influx

    Pressure Drop

    Time

    (tD)

    1.0

    2*O

    3.0

    4.0

    5,0

    6.0

    700

    8,0

    9,0

    10,0

    20,0

    30.0

    40.0

    SO*O

    60.0

    70.0

    80.0

    90.0

    100.0

    200,0

    2.0

    3.0

    4.0

    5.0

    6.0

    7.0

    8.0

    9.0

    10.0

    20,0

    30,0

    40.0

    50.0

    60.0

    70.0

    80.0

    90.0

    100.0

    200.0

    300.0

    400.0

    500.0

    600.0

    700.0

    800.0

    Rate

    Influx

    Pressure Drc.p

    (e~) _

    (FD)

    6%)

    Dimsnsfmdess External Radius r; = 5

    1.5642 2.128 0,5724

    1.3986

    3,596

    0.6638

    1.3216 4.953

    0.7133

    L2673

    6.246

    0.7479

    1,2203

    7.490

    0,7764

    1,1766

    8*688

    0.8024

    1.1348

    9.843 0,8273

    1.0946

    10.958

    0,8518

    1.0558 12.033 0.8761

    1.0184

    13.070 0,9004

    0,7103 21.621 1,1424

    0.4954

    27.585

    1.3843

    00345s 31.744

    Lgjz;

    0.2410 34.646

    0.1680 36.669

    2.1101

    0,1172 38.080

    2.3520

    0.0s18 39.064

    2.5940

    0.0570 39.751

    2.8359

    (eD) _

    (FD)

    PD)

    Dimensionless External Radius r~ = 2

    0.07

    0.08

    0.09

    0.10

    0.20

    0030

    0.40

    0.50

    0,60

    3.7(J

    0,80

    0.90

    1.0

    3.1324

    2.9947

    2.8806

    2,7839

    2.2411

    1.9342

    0.3685

    i7.3992

    0.4285

    0,4568

    0.7040

    0.9120

    1.0927

    1.2503

    1,3879

    1.5080

    1.6128

    1.7044

    0.2404

    0.2534

    0.2654

    0.2764

    0,3567

    0.4120

    0.4591

    0.5033

    0.5467

    0,5897

    0.6326

    0.6755

    1 . 685S

    1 . 4713

    1 , 2844

    1 . 1212

    0 . 9788

    0 . 8544

    0 . 7459 1.7843

    2.1921

    2,2970

    2,3240

    2.3309

    2,3327

    2.3332

    2.3333

    2.3333

    2.3333

    0.7184

    1.1469

    1.5755

    2.0041

    2.4327

    2.8612

    3.2898

    3.7184

    4.1469

    4.5755

    2.0

    3.0

    4,0

    5.0

    6.0

    7.0

    8.0

    9.0

    10.0

    0.19~6

    0,0491

    0,0127

    0.0033

    0.0000

    0,0002

    0.0001

    0.0000

    0.0000

    0:0398

    40.230

    0.0000 41.333

    Dimension less Externu l Radius

    .1.3989 3,596

    1,3255

    4.954

    1,2807

    6.256

    1.2477

    7.520

    1,2201

    8.753

    T.1951

    9.961

    1.1714

    11.144

    1.1487

    12.304

    1.1265 13.441

    0.9283

    23,683

    0.7650

    32,123

    0.6304

    39.078

    0.5195

    44.810

    0.4281

    49,534

    0.3528

    53.426

    0.2907

    56,634

    0.2396

    59.277

    0.1974

    61.455

    0.0285 70.191

    0,0041

    71.453

    0.0006

    71.636

    3.6778

    6.5068

    t;=6

    Dimenskmless External Red l us r;=3

    0,6638

    0.7127

    0.7449

    0.7687

    0.7881

    0.8051

    0.8207

    0,8356

    0,8501

    0.9903

    1.1298

    1.2693

    1.4089

    0.2

    0.3

    0.4

    O*5

    0.6

    0.7

    0.8

    0.9

    2.2616 0.7046

    2.0301 0,9180

    1,8920

    1.1136

    1.7972 1.2978

    1.7261

    1,4739

    1.6688 1.6435

    L6 199 1.R079

    0.3562

    0.4080

    0.4464

    0.4769

    0.5021

    0.5236

    0,5425

    0.5595

    0.5750

    0,7012

    0,8171

    0.9325

    100479

    1.1633

    L2787

    1:5764

    1.9677

    1,5363

    2,1233

    1.2114

    3.4891

    0.9586

    4.5692

    0.7586

    5,4239

    0.6004 6.1004

    0.4751

    :::;;

    0.3760

    0,2975 7*3944

    0,2354

    7.6598

    0.1863 7.8698

    0,0180 8,5899

    0,0017

    8,6593

    0,0002 8.6659

    0.0000

    8,6666

    0.0000 8.6667

    Lo

    2*O

    3.0

    4.0

    5.0

    , 6.0

    7.0

    8.0

    9.0

    1 , 5484

    L6B79

    1 , 8275

    1 . 9670

    2 , 1065

    3 . 5019

    4 8 9 7 2

    6 . 2926

    7 , 6879

    9 , 0833

    1;3941

    1.5095

    1.6249

    2,7787

    3,9325

    5.0864

    6.2402

    7*394 1

    10.0

    20.0

    30.0

    40.0

    50,0

    60.0

    0.0001

    71,662

    0.0000

    71.666

    0,0000

    71.666

    0.0000

    7 1.66?

    10 , 4786

    11 , 8740

    ,

    Dime.tsienless Ewernal Radius rj = 4

    Dlmensionlew

    External Radius

    1,6743

    ;:$;

    0.5233

    1,6308

    0.5418

    1.5946

    1.970

    0.5580

    1.5640

    2.128

    0.5724.

    1.il369

    3,592

    0.6655

    r55

    4,921

    0.7234

    6.147

    0.7734

    ...-.

    1

    7.279

    1.0049 8.325

    1.32,57

    1.2820

    1.2519

    1,2289

    1,2099

    1*1933

    1,1780

    1.1636

    1.0354

    4 , 95

    6 . 26

    7 , 52

    8 . 76

    9 , 98

    11 , 18

    12 , 37

    13 , 54

    24 . 52

    0.7127

    0,7446

    0,7678

    0.7857

    0,8004

    0.8131

    0.8244

    0.7

    ,.

    0.8

    O*9

    1.0

    2.0

    3.0

    3.0

    4.0

    5*O

    6.0

    7.0

    ::

    10.0

    20.0

    0,8216

    0,8693

    0,8348

    0.9255

    ---

    6.0

    30.0

    40.0

    50,0

    60.0

    77;

    90,0

    100.0

    200.0

    0.92i3

    0,8216-

    0.7318

    0.6518

    .0.5806

    0.5172

    0.4607

    0,4104

    0.1290

    34*3O

    43.01

    50.76

    57,68

    63,83

    6.,31

    74.20

    78.55

    102,86

    1.0133

    ;:;;;;

    L2765

    1.3642

    1,4519

    1,S396

    1,6273

    2,5045

    9.0

    0.7922 110008 1.0122

    tn.n n.72m

    11.770

    110599..

    ;;?3::

    1.5361

    290122

    i

    20.144

    Z@:

    7 20.613

    , . .- _ -

    80.6

    ti0028

    2W64-

    -

    --=-----

    4

    90.0

    0,0013

    :

    2- -

    ~@o-

    oioYl7-

    l-12~91

    - -=--------4.2598

    . . . . . .

    . . . .. . ...- 114*OO

    1}000.0

    0.000:

    114.00

    %,6449

    9.522?

  • 7/24/2019 SPE-1305-PA Chatas a.T. Unsteady Spherical Flow in Petroleum Reservoirs(1)

    9/13

    .

    -.

    .-

    TABLE 2- LIMITED SYSTEMS (ccmthued)

    Dimensionless Functions

    Dimensionless Functions

    Time

    Rote

    Influx

    Pressure Drop

    Time

    R.to

    Infl Ux

    Pressure Drop

    (t)J)

    (t) (e~)

    (FD)

    (pD)

    mD) _

    FD)

    (I%)

    Din

    30.0

    40.0

    50.0

    wnsionloss

    1.1030

    1,0892

    1.0796

    1,0724

    1.0664

    1.0611

    1.0562

    1.0516

    1.0088

    0,9681

    0.9291

    0.0916

    0.8S57

    0,8212

    0.7881

    0.7563

    0.7259

    0.4810

    0.3187

    0.2111

    0.1400

    0.0929

    0.0616

    0.0408

    0.0270

    0.0179

    0.0000

    External Rodlus

    36.2

    47.1

    58.0

    68,7

    79,4

    90, I

    100,7

    111.2

    214,2

    313s0

    407.9

    498,9

    586,2

    670,1

    750s

    827.7

    901,8

    1,496,9

    1,891.2

    2,152.4

    2,325,7

    2,440.5

    2,516,7

    2,567.1

    2,600,6

    2,622.7

    2,666.3

    20

    Dimensionless

    1.2821

    1.2S23

    1.2302

    1.2128

    1.1983

    1.1859

    1.1747

    1.0860

    1.0078

    0.9354

    0.868

    0.8056

    0.7477

    0.6939

    0.6440

    0.S976

    0.2s32

    0.1342

    External Radius

    6.26

    7.52

    8.76

    9.98

    11.19

    12.38

    13.56

    ,

    D .0.8977

    0.9106

    0.9199

    0.9270

    0.9328

    0.9378

    0.9423

    0.9465

    0.9851

    1.0229

    1.0604

    1.0979

    0.7446

    0.7678

    0.7854

    0.7996

    0.8115

    0.8216

    0.8306

    0,8971

    0.9561

    1,0148

    1.073s

    4.0

    5*O

    6.0

    7.0

    8.0

    9*O

    10.0

    20.0

    30.0

    40.0

    50.0

    60.0

    70.0

    80.0

    90.0

    100,0

    2Q0.O

    300.0

    400.0

    p:

    80.0

    90.0

    100.0

    200.0

    300.0

    400.0

    S30.0

    600.0

    700.0

    800.0

    900.0

    1,000.0

    .2,000.0

    3,000.0

    4,000s0

    5,000.0

    6,000.0

    7,000.0

    8,000.0

    9,000.0

    10,000.0

    20,000.0

    24.85

    35.31

    45.02

    54.04

    62.40

    70.17

    77.37

    84.06

    90.26

    132.37

    152.34

    1.13s4

    1.1729

    1.2104

    1.2479

    1.2854

    1.6604

    1.1322

    1.1910

    1,2497

    1.3084

    1.3671

    1.9542

    2,0355

    2,4105

    2.78s6

    3,1606

    3,5357

    3.9107

    4.2858

    4,6608

    8.4113

    2.5412

    0.0637

    161.80

    0.0302 166.29

    0.0143 168*41

    0.0068

    169.42

    0.0032 169.90

    0.0015 170.13

    0.0007 170.24

    0.0000

    170.33

    3,1283

    3.7154

    4.3025

    4,8896

    5.4767

    500.0

    600.0

    700.0

    800.0

    900.0

    1,00000

    2,000.0

    6.0638

    6.6508

    12.5218

    Dimensionless

    80.0

    1.0631

    90.0 1.0595

    100.0 1.0564

    200.0

    1,0381

    300,0

    1,0254

    400.0 1.0133

    500.0

    1.0014

    600.0

    0,9895

    700.0 0.9780

    800.0

    0.9665

    900.0 0,95S2

    1,000.0 0.9439

    2,000.0 0.8388

    3,000.0

    0,7453

    4,000.0

    0,6622

    5,000.0

    0,5884

    6,000.0 0.5228

    mal

    Rod[us r~ = 30

    90.1

    100.7

    111.3

    215.9

    319.1

    421.0

    521.7

    621.3

    719.7

    816.9

    913.0

    1,007.9

    1,898.3

    2,689.4

    3,392.4

    4,017.0

    $,572.0

    5,065.2

    5,503.4

    5,892,7

    6,238.6

    8,153,6

    8,739.1

    8,919.7

    8,975.1

    8,992.1

    8,997.3

    8,998.9

    8,999.4

    8,999.6

    0.9351

    0.9385

    0,9414

    0.9000

    0.9724

    0,9840

    0.9954

    1.0068

    1,0179

    1.0290

    1.0401

    1.0512

    1,1623

    1,2735

    1.3846

    1.4957

    1,cW68

    1.7179

    1.8290

    1.9401

    2.0s13

    3.1624

    4.2736

    5.3847

    6.4959

    7.6070

    8.7182

    9.8293

    10,940s

    12.0516

    DlmensionIess External Radius ?; = 9

    5.0

    6.0

    7.0

    8.0

    1.2523

    1,2303

    1,2132

    1.1993

    7.52

    8.76

    9.99

    0.7676

    0,7853

    0.7995

    0,8112

    0.8211

    0,8296

    0.8848

    0.9271

    11.19

    12.38

    13.57

    24.98

    35.70

    46.04

    55.83

    65.11

    9.0

    10.0

    20.0

    30.0

    40.0

    50.0

    60.0

    70,0

    80.0

    90.0

    100.0

    200.0

    300,0

    400.0

    500.0

    600.0

    700.0

    800.0

    900.0

    1,000.0

    2,000.0

    1.1877

    1.1776

    1,1094

    1.0539

    1.0015

    0.9518

    0.9045

    0;9684

    1.0096

    1.0508

    0,8596 73,92

    0,8169 8230

    ; 0.7763

    90.27

    0.7378 97.84

    0.4433 155,64

    0,2663 190.37

    1.0920

    1,1332

    1.1745

    1.2157

    Zooo,o

    8,000,0

    9,000.0

    10,000.0

    20,000.0

    30,000.0

    40,000.0

    50,000.0

    60,000.0

    70,000.0

    80,000.0

    90,000.0

    100,000.0

    0,4646

    0,4128

    0,3668

    0,3259

    ,6278

    2.0398

    0.1000

    0,0307

    0,0094

    0,0029

    0,0009

    0.0003

    0.0001

    0.0000

    0.0000

    0.1600

    0,0962

    0,0578

    0,0347

    0.0209

    211.24

    223,79

    231.32

    - 235.85

    238.57

    2.4519

    2.8640

    3.2761

    3.6882

    4.1003

    0,0125

    0.0075

    0,0000

    246,21

    241.19

    242.67

    External Radius r;= 10

    8.76

    9*99

    11.19

    12.38

    13.57

    25.02

    36.01

    46.60

    4.5124

    4,9245

    9.0455

    Dime.

    100.0

    200.0

    300.0

    400.0

    500.0

    600.0

    700.0

    800.0

    900.0

    1,000.0

    2,000.0

    3,000,0

    4,000.0

    5,000.0

    6,000.0

    7,000.0

    8,000.0

    9,000.0

    10,OW,O

    20,000.0

    ._30,000,0

    40,000.0

    50,000,0

    60,000.0

    70,000.0

    80,000,0

    90,000.0

    100,000.0

    200,000,0

    Sionless

    1.0564

    1.0398

    1.0320

    1.0262

    1.0210

    LO 160

    1.0110

    1.0060

    1.0011

    0.9962

    0.9485

    0.9031

    0.8S98

    0.8186

    0.7794

    0.7421

    0.7066

    Extwnal RadIUS

    11100

    216,0

    320.0

    422.0

    525.0

    627,0

    728.0

    829.0

    929,0

    1,029.0

    2,001.0

    2,927,0

    3,808.0

    r;= 40

    Dimenslonlmss

    1.2303

    1.2132

    1.1995

    1.1880

    1.1783

    1.1196

    c 1.0783

    1.0398

    1.0027

    0.9669

    0,9325

    0.8992

    0.8672

    0,8362

    0.5816

    0.9414

    0.9570

    0.9653

    0.9715

    0.9769

    0.9820

    0.9871

    0.9925

    0.9972

    1,0019

    .1.0488..

    1.0957

    L 1425

    h 1894

    1.2363

    I . 2832

    1.3301

    L3769

    1.4238

    1.8926

    _2.3613

    2,8301

    3.2988

    * 3.7676

    4.2363

    4.?051

    5.1739

    5s6426

    10,3302

    6.0

    7.0

    8.0

    0.7853

    0.7995

    0.s112

    0,8210

    0.8295

    0.8797

    0.9124

    9.0

    10.0

    20:0

    30.0

    40.0

    50.0

    0.9427

    0.9728

    1.0028

    ,1,0329

    1.0629

    1,0929

    1.1229

    1.4232

    56.81

    60.0

    70.0

    80.0

    90.0

    100.0

    200.0

    300.0

    400.0

    500.0

    ;g~f

    800.0

    66;66

    76.15

    85.31

    94.14

    102.66

    172.78

    4;647.0

    5,446.0

    6,207.0

    L931.O

    0:404s

    0.2813

    0,1954

    C$:;W;

    0:0659

    00458

    0.0319

    0,0008

    0.0000

    0.0000

    %:2

    279.07

    =29549 ----

    306.90

    314,85

    1.7235

    2.0238

    2.3241 -

    Zf6244

    2.9247

    3,2250

    0;6727

    0.6405

    0,3920

    .:;:: 3;.

    0:0901

    0.0552

    0.0338

    0,0207

    0.0127

    0,0078

    0,0000

    ~620.O

    8,277.0

    13,339.0

    s~3&o+

    18,333.0

    19.496.0

    ii

    .-

    900.0

    1,0000

    2,000,0

    3,000.0

    4,000,0

    320.37 3.5253

    3.82S6

    6.8287

    9.8317

    12.8347

  • 7/24/2019 SPE-1305-PA Chatas a.T. Unsteady Spherical Flow in Petroleum Reservoirs(1)

    10/13

    -.

    -.

    TABLE 2-

    DhnmslonlmssFunctlmm

    The Ret,

    Influx

    PressureDrop

    (t~)

    bv]

    eD) Q .

    Dlmmdwhss E+tarnot Radius r : = SO

    LIMITED SYSTEMS (continued)

    Dimensionless Functirms

    Timo

    Rate Influx

    Pres.wro Drop

    (t,,)

    (p) _

    (Fn)

    @D)

    Dimensionless

    900.0

    1,000.0

    2,000,0

    3,000,0

    4,000,0

    5,000.0

    yw::

    8:000.0

    9,000.0

    10,000,0

    20,000.0

    30,000.0

    40,000,0

    50,000.0

    60,000.0

    70,000.0

    80,000.0

    90,000.0

    100,000.0

    2W,000,0

    300,000.0

    400,000.0

    500,000.0

    . 600,000.0

    700,000.0

    800,000.0

    900,000.0

    1,000,000.0

    2,000,000.0

    External Rndlus r ;= 60

    200,0

    300.0

    400,0

    500,0

    600,0

    700,0

    800.0

    900.0

    1,000.0

    2,000.0

    3AO0.O

    4,CQ0.O

    5,W0.O

    6,00cbo

    7,000.0

    8,000.0

    9,000.0

    10,000.0

    20,000.0

    30,000.0

    40,W0.O

    50,000.0

    60,000.0

    70,000.0

    80,000.0

    90,000.0

    100,000.0

    200,000.0

    3Q0,000,0

    400,000.0

    500,000,0

    1.0399

    1.0325

    1.0280

    1.0246

    1.0217

    1,0190

    1.0164

    . .0139

    1.0113

    0,9865

    0.9622

    0.9385

    0.91$5

    0.8930

    0,8710

    0.0496

    0,8287

    0,8083

    0.6241

    0.4912

    0.2828

    0.2984

    0,2326

    0.1818

    0.1418

    0.1106

    0.0862

    0.0072

    0.0006

    0.0000

    0,0000

    216,0

    320.0

    423.0

    52%0

    628.0

    730.0

    831.0

    933.0

    1,02-4.0

    2,033.0

    3,007.0

    3,958.0

    4,884,0

    5,789.0

    6,671.0

    7,531,0

    8,370,0

    9,188.0

    16,344.0

    21,921.0

    26.269.0

    29,658.0

    32,299.0

    34,357.0

    35,967.0

    37,222.0

    38,201.0

    ,41,37s.0

    41,642,0

    41,664.0

    41,666,0

    0.9570

    0.9641

    0.9693

    0.9732

    0.9765

    0.9795

    0.9823

    0.9856

    0.9880

    1.0120

    1.0360

    1.0600

    1.0840

    1.1080

    1,132+3

    1.1560

    1.1800

    1.2040

    1.4440

    1,6840

    1,9240

    2,1640

    2.4040

    2.4440

    2,8840

    3.1240

    3.2640

    5,7641

    8.1641

    10.5641

    12,9641

    1.0188

    1,0178

    1.0108

    LO047

    0.9987

    0,9927

    0.9868

    0.9809

    0,9750

    0.9692

    0.9634

    0.9073

    0.8545

    0.8048

    0.7579

    0.7138

    0.6723

    0.6331

    0,5963

    0,5616

    0.30s1

    0.1697

    0.0933

    0.0512

    0.0281

    0,0155

    0,0085

    0.0047

    0.0026

    0.0000

    9:. .0 -

    1,036,0

    2,05%0

    3,057.0

    4,059.0

    5,055,0

    6,045.0

    7,028,0

    8,006.0

    8,978,0

    9,945,0

    19,29S,0

    28,102.0

    36,396.0

    44,207,0

    51,S64.0

    58,493.0

    65,018,0

    71,163.0

    76,950,0

    119,176,0

    142,333?0

    155,096.0

    162,112,0

    165,967.0

    168,084.0

    169,248.0

    169,887,0

    170,238.0

    170,666,0

    0.9779

    0,9791

    0.9875

    0.9944

    1.0009

    1.0068

    1,0127

    1.0185

    1.0244

    1.0302

    1.0361

    1,0947

    1.1533

    l,21i9

    1,2705

    1.3291

    1,3877

    1.4463

    1,5049

    1.5634

    2,1494

    2.7353

    3.3213

    3,9072

    4.493 I

    S,0791

    5.6650

    6.2510

    6.8369

    12,6963

    lmmtsi.anlessExtamal Radlusr~=60

    300.0

    400.0

    500.0

    600.0

    700.0

    800.0

    900.0

    l,oco.o

    2,000.0

    3,000,0

    4,000.0

    S,ooo.o

    6,000.0

    7,000.0

    8,000.0

    9,000,0

    10,000,0

    20,000.0

    30,000.0

    40,000,0

    50,000,0

    60,000,0

    70,000.0

    80,000.0

    90,000,0

    100,000.0

    200,000,0

    300,000.0

    400,000.0

    500,000.0

    600,000.0

    700,000.0

    800.000.0

    1.0326

    L0282

    1.0252

    1.0228

    1.0209

    1.0192

    1.0176

    1.0160

    1.0015

    0.9872

    0.9732

    0.9594

    0.9457

    0,9323

    0.9190

    0.9060

    0.8931

    0,7739

    0.:3.::

    0,5036

    0.4363

    0.3780

    0.3275

    0,2838

    0,2458

    0>0690

    0.0141

    0.0034

    0.0008

    0.0002

    0.0000

    0.0000

    320,0 -

    0.9641

    423.0 0.9684

    525.0

    0.9717

    628.0

    0.9743

    730,0

    0.9765

    832,0 0.9784

    934,0

    0,9801

    1,035.0

    0.9818

    2,0440

    0,9969

    3,038,0

    1.0117

    4,019.0

    1,0256

    4,985,0

    1,0395

    5,937,0

    1,0533

    6,8?6.0

    1.0672

    7,802.0

    1.0811

    8,714.0 1.0950

    9,614.0

    1.1089

    17,935.0

    1.2478

    25,145,0

    \:w6;

    31,393.0

    36,808.0

    1:6645

    41,499.0

    1.8034

    45.564.0 1.9422

    49.086,0

    2.0811

    52,137.0 2.2200

    34,78 Lo 2.3589

    67,87%0

    3.7478

    71,014.0

    5.1367

    71,764,0 6,5256

    71,942,0 7,914s

    71,986.0 9,3034

    71,996,0 10.6923

    72,000,0

    12,0812

    Dimensi.anlncsEat.wnal Radiusr~, 90

    1,000.0

    2,000,0

    3,000.0

    4,000.0

    5,000.0

    6,000.0

    7,000.0

    8,000.0

    9,000.0

    Io,ooo.o

    20,000.0

    30,000.0

    40,000.0

    50,000.0

    60,000.0

    70,000.0

    80,000.0

    90,000.0

    100,000.0

    200,000.0

    300,000.0

    400,000.0

    500,000.0

    600,000.0

    700,000.0

    800,000.0

    900,000.0

    1,000,000.0

    2,000,000.0

    1,0178

    1,0119

    I.0075

    1.0033

    0.9991

    0,9949

    0,9907

    0.9866

    0,9824

    0.9783

    0,9381

    0,8995

    0,8625

    0.8270

    0,.7930

    0.7603

    0.7291

    0,6W1

    0,6703

    0,4402

    0.2890

    0.1905

    0,1253

    0.0824

    0.054 I

    0,0356

    0.0234

    0,0154

    0,0000

    1,036,0

    2,050,0

    3,060.0

    4,065.0

    5,066,0

    6,063,0

    7,056.0

    8,045.0

    9,029.0

    10,610.0

    19,590,0

    28,776.0

    37.585.0

    0.9789

    0,9864

    0,9914

    0,9965

    1.0006

    1.0047

    1.0088

    1.0129

    1.0170

    1,0212

    1,0623

    1,1035

    1.1446

    46;031,0

    54.129.0

    61,895,0

    69,341,0

    76,480.0

    83,326,0

    138,050.0

    173,987,0

    197,575,0

    213,137,0

    223,370,0

    230,097.0

    234,519,0

    237,425,0

    239,335,0

    243,000.0

    1,1858

    1.2269

    1,2681

    1,3092

    1.3504

    1.3915

    1.8031

    2.2146

    2,6261

    3.0376

    3,4491

    3,8607

    4.2722

    .

    4.6637

    5,0952

    9,2104

    Dimensionless

    700.0 1.0213

    800.0

    1.0198

    900.0 1.018S

    1,000.0

    1.0174

    2,000,0 1.0079

    3,000.0

    0.;2.;;

    4,000.0

    5,000.0

    0.981 I

    6,000.0

    0.9723

    7,0W.O

    0.9635

    8,000.0 0.9550

    9,000,0. 0.9405.

    10,000.0 %9380

    20,000,0

    0.8575

    30,000.0

    0.7838

    40,000.0

    0,7165

    50,000.0 0,6549

    60,000.0

    0,5987

    70,000,0

    0.5472

    80,000.0

    00WQ2

    90,000.0

    0.4572

    .0,4179

    Q%,&%:_

    f7,1zo.7_

    300,000.0 0.0692

    400,000.0

    0.0280

    500,000.0 0.0113

    600,000.0

    0.0045

    700,000.0 0.0018

    800,000.0 0.0007

    900,000.0

    o,aoo3

    1,000,000.0

    0.0001

    2,000,000.0 0.0000

    ExtarrmlRadius r;= 70

    730,0

    832.0

    924,0

    1,036,0

    2,048,0

    3,052.0

    4,046,0

    5,032.0

    6,008.0

    6,976.0

    7,926.0

    8,88o.O

    9,829.0

    18,800.0

    27,W2.O

    , 34.498,0

    41,351.0

    47,615.0

    53,341.0

    58,37S.0

    63,359.0

    67,732,0

    _9$ 396.o

    106,570.0

    111,168.0

    113,042.0

    113,807.0

    l14,11&o

    114,245.0

    114,297.0

    l14,31&o

    114,333.0

    0.9753

    0,9769

    0.9785

    0.9799

    0.9906

    1,0005

    1.0093

    1,0180

    1.0268

    1.035s

    1.0443

    y::;g.

    1:1492

    1,2367

    1.3241

    Dimemsianles$External Radius r~= 100

    1,000;0

    2,000.0

    3,000.0

    4,000.0

    5,000.0

    6,000.0

    7,000.0

    8,000.0

    9,000.0

    10,000.0

    -20,000.0.

    30,000.0

    40,000.0

    ,60,000.0

    ,60,000.0

    70,000.0

    80,000.0

    90,000.0

    .100,000.0

    200,000.0

    300,000,0

    400;oooio-

    500,000.0

    600,000,0

    700,000.0

    800,W0.O

    900,000,0

    1,000,000,0

    2,000,0000

    1.0178

    1,0123

    1.0090

    1.0058

    1,0028

    0.9997

    0.9967

    1,036.0

    2,050,0

    3,061.0

    4,068.0

    5,073.0

    6,074,0

    7,072.0

    8,067.0

    9,059.0

    10,048.0

    ..19,775.0

    39,208,0

    38,358,0

    47,232.0

    55,839,0

    64,187.0

    72,283.0

    F30,136.0

    87,753,0

    1S2,377.0

    1%9,972.0

    ::;;: ;f:

    279:S49:0

    293,918.0

    304,287.0

    311,938.0

    317,558.0

    333,333.0

    0,9789

    0.98s3

    0.9894

    0,9930

    0.9964

    1,0000

    1.0030

    1.0060

    1.0090

    1.0120

    1.0420

    1.0720

    I.102O

    1.1320

    1.1620

    1.1920

    1.2220

    1.2520

    1.2820

    1.5820

    L8820

    y4:;;

    2:7820

    3.0820

    3,3820

    3.6820

    3.9820

    6.9820

    0,9936

    0.9906

    0.9876

    0,9578

    0,9290

    0.9010

    0,8739

    0.8476

    0.8221

    0.7974

    -

    i.4116

    1.4991

    1.586s

    1,6740

    1.7615

    1,8489

    -_2z7236

    3,59K2-

    4,4728

    s.~7.

    6.Z:

    7A968

    7.9714

    8.8460

    9.7207

    l&4677

    0.7733

    0.7501

    0.s5?5

    0,4068

    -0299s

    0.2210

    0.1633

    0s1203

    0.0887

    0.06S3

    0.0482

    0,0000

    -

    .l-~,

  • 7/24/2019 SPE-1305-PA Chatas a.T. Unsteady Spherical Flow in Petroleum Reservoirs(1)

    11/13

    .

    ABLE 3- LIMITED SYSTEMS

    Open External Boundary

    Dfmensfenless Functlc.ns

    T mm

    Rata Influx

    Pressure Drcm

    Dlmensienloss Functions

    Rate

    Influx

    Prassure Drop

    (@/J)

    (FD)

    fla~)

    Time

    (tL))

    3*O

    4,0

    5,0

    6.0

    7.0

    8.0

    9.0

    10,0

    20.0

    30.0

    40,0

    50,0

    4,0

    5*O

    6,0

    7,0

    8*O

    9*O

    10.0

    20,0

    30.0

    40.0

    50,0

    60.0

    70,0

    5,0

    6.0

    7.0

    800

    9,0

    10*O

    20.0

    30.0

    40.0

    5000

    60.0

    70.0

    80.0

    6,0

    7,0

    8,0

    9.0

    10,0

    20.0

    30.0

    40,0

    50.0

    60.0

    70.0

    80.0

    90.0

    30,0

    40.0

    50.0

    60.0

    70;0

    80.0

    90.0

    100.0

    200.0

    300,0

    t D)

    0,07

    0,08

    0,09

    0,10

    0020

    0.30

    0,40

    O*5O

    0.60

    0.70

    0,80

    0..;

    2.00

    3*OO

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    2.0

    3.0

    4.0

    5.0

    6.0

    7.0

    0.7

    0.8

    0,9

    1

    2,0

    3*O

    4.0

    5.0

    6.0

    7.0

    8,0

    9.0

    10.0

    20,0

    1.0

    2.0

    3.0

    4.0

    5*O

    6.0

    7.0

    8,0

    9.0

    10.0

    20,0-

    30.0

    (e~)

    Dfmenslonless External Radius r:= 2

    3.1324

    0.3685

    0.2404

    2.9947

    0.3992

    0,2534

    2.8007 0.4285 0.2654

    2.7043 0,4568

    0,2764

    2.2786 0.7052

    0,355s

    2.1036

    0.9228

    0.4048

    External Radius rfi= 7

    4*9544

    6,2568

    7,5234

    8,7649

    9,9881

    11.1977

    12.3969

    13.5883

    25,3283

    37.0000

    48,6666

    60.3333

    1,3257

    1,2822

    L2527

    1.2315

    1,2157

    1,2039

    1*1950

    L11?82

    1.1681

    1.1668

    1.1667

    L 1667

    0,7127

    0.7446

    0,7676

    0,7851

    0.7988

    0.8098

    0,8187

    0,8258

    0,8531

    0,8566

    0.8571

    2,0386

    2,0144

    2.0054

    2,0020

    2.0007

    2.0003

    2.0001

    1.1294

    103319

    1.5328

    1.7331

    1,9333

    2.1333

    2,3333

    4.3333

    6.3333

    0.4370

    0.4582

    0,4723

    O*4B17

    0.4878

    0.4919

    0.4947

    0.4999

    0,8571

    2.0000

    2,0000

    Dlmenslanless

    External

    Radius r~=

    8

    0:5000

    L2821

    1.2523

    1.2305

    1.2136

    1.2003

    1.1897

    1.1811

    1.1479

    6,2568 -

    7,5231

    8.7640

    9,9857

    11.1925

    12.3873

    13.5725

    0,7446

    0.7676

    0,7853

    0.7944

    0,8109

    0.8205

    Oimensianless External

    2.2616

    2,0301

    1,8921

    1.7984

    1.7302

    1,6788

    1.6393

    1.6087

    1.5849

    1,5072

    1.5006

    Radius r;= 3

    0.7046

    0,9180

    1.1137

    1,2979

    1.4742

    1.6445

    1.s103

    1.9727

    2.1323

    3.6638

    5.1664

    6.6666

    8.1667

    9.6667

    11,1667

    0,3562

    0.4080

    0.4464

    0.4768

    0,5019

    0,5230

    0,5412

    0.5568

    0s704

    0.6407

    0.6597

    0.6648

    0.6661

    0.6665

    0.6666

    0,8285

    0,8653

    0.B730

    0,B746

    0.8749

    0.8750

    0.8750

    25.1652

    36.6157

    ;::;;:

    70.9048

    82,3333

    1.1435

    1.1429

    1.1429

    L 1429

    1.1429

    External

    Radius r;= 9

    1.5001

    1.5000

    1.5000

    1.5000

    1.2523

    1.2303

    1.2133

    1,1996

    1.1884

    1.1790

    1.1364

    1.1274

    1.1255

    1,1251

    1.1250

    1.1250

    1.1250

    7.5231

    8.7640

    9.9854

    11,1917

    12,3855

    13.5690

    25.0925

    36.4008

    47.6633

    5s.9159

    0.7676

    0.7853

    0,7995

    008111

    0.8209

    0,8292

    0.8717

    0.8838

    0.8874

    D[mens[anIess

    1.6743

    1.6308

    1.5948

    1.5643

    1.4078

    1.3582

    1.3416

    .1.3361

    1,3343

    1.3336

    1,3334

    1.3334

    1.3333

    External Radius r~= 4

    1:6441

    1.8093

    1.9705

    2.1284

    3.5988

    4.9773

    6.3258

    7,6641

    8.9992

    10.3331

    11,6666

    13,0000

    14.3333

    0,5233

    0.5418

    0.5580

    0.5724

    0.662S

    0,7054

    0.7272

    0.7383

    0,7440

    0.7469

    0.7484

    0.7492

    0.7496

    0.7500

    0.8884

    0.8888

    0,8S89

    0.8089

    70,1665

    8104166

    92.6667

    External Radius r~= 10

    0.764

    9.985

    ;;:;;

    13,568

    25,063

    36,286

    47.431

    58,551

    69.665

    80.777

    91,889

    103.000

    1,2303

    1.2132

    1.1995

    1.1881

    1.1785

    1.1306

    0.7853

    0.7994

    0,8111

    0.8209

    0,8293

    0,8747

    0,8906

    0.8965

    0.8987

    0.8995

    0.8998

    0,8999

    0,9000

    1.3333

    Dimensionless

    1.5642

    1.3992

    1.3289

    1,2924

    1.2729

    1.2623

    1,2567

    1.2536

    1.2519

    1.2510

    1.2500

    1.2500

    27,6667

    Radius r~ = 5

    2.1284

    3.S958

    4.9558

    6,2646

    7.5462

    8.8133

    10.0725

    11,3275

    12,5802

    13.8316

    26.3333

    External

    .

    1.1169

    101128

    1.1116

    1.1113

    1,1112

    1.1111

    1,1111

    0.5724

    0.6638

    0.7121

    0.7422

    0.7618

    0.7748

    0.7833

    0,7890

    0.7927

    0,7952

    0,7999

    0.8000

    Dimensionless Externai Radius r~= 20

    101030

    36.180 0.8977

    1.0892

    47. I37

    0,9106

    1.0799 570980

    0.9193 .

    1.0732 68,743 0,9261

    1.0682

    79,449

    0.9312

    1.0645

    90.112

    0.9351

    1,3989

    3.S95B

    0.663B

    1.0616

    100,741

    0.9382

    1.3259 4.9545

    0,7126. 1,0595

    111.346

    0,9406

    1.2832

    6,2573

    067444 1.0531

    216.843

    0,9486

    1,2557

    7,5258 0.7669 1.0527

    322.122

    0,9495

    1.2375

    8,7718

    0.7834

    400.0

    .x._._ Zs::L

    1,0526

    427.386 0.9497

    _._.--.102252_-

    10,0028

    __Q:Z&-

    _@&g ___LQ&

    532,K49

    09499

    1,2170

    11.2236

    637.912

    0.9500

    9*O

    1.2115

    J2.4377

    0.8119

    10.0

    1.2077

    .13.6471 0,8172

    ,..

    20.0

    1)2001

    25.6663

    : 0.8324

    30.0

    1.2000

    37.6667

    0,8333

    40,0

    1.2000

    49,6667

    0.8333

    3B.8333

    Dimenslenloss External Radius rD = 6

    2,0

    3.0

    4.0

    5.0

    6.0

  • 7/24/2019 SPE-1305-PA Chatas a.T. Unsteady Spherical Flow in Petroleum Reservoirs(1)

    12/13

    rD-r~

    2 (q.j-

    1) =

    PD(rD~tD~ = ~ +

    [ 1

    .

    TD ?@

    -

    -

    @;q2

    . [ - 1; 4 1 = 2 TD: 2~rDL:

    h:ch is the concIudmg resuk.9 11,17

    Wn[rD

    (rD- 1) + tun2] cos W* NUME~CAL COMPUTATION OF

    PARTICULAR SOLUTIONS

    . . . . . . . . . . . . .

    ...0. .

    (62)

    Nine

    particular solutions to Eq, 7 obtained with

    where Wn are the roots of the equation:

    the aid of the LapIace transformation were numeri-

    cally computed. Specifically, these included the

    tan w

    1

    (63)

    functions Mined by

    Eqs. 34, 36, 40, 46, 49, 53,

    = -~ ,

    w

    . . . . . . . . . .

    D-l

    58, 60

    and 64.

    The numericaI computations were carried out

    Upon pIacing ?D at unity in Eq.

    62

    a n d s im p l ify in g ,

    wit h t he a id of IBM 1401 and 1620 computer systems.

    the dimensionless pressure drop is obtained:

    Programming was in FORTRAN. The functions for

    Dlmenslonless Functions

    TABLE 3 - LIMITED SYSTEMS (Cwstinued)

    Time

    (tD)

    80,0

    90,0

    100.0

    200.0

    300,0

    400,0

    500.0

    600.0

    700.0

    800.0

    900.0

    1,000.0

    100.0

    200.0

    300.0

    400.0,

    500.0

    600.0

    700,0

    BOW

    900.0

    1,000,0

    2,000,0

    200,0

    300.0

    400.0

    500.0

    600,0

    700.0

    800.0

    900.0

    1,000,0

    2,000,0

    3,000,0

    300.0

    g:~:

    600.0

    JUNE 1966

    Rate

    Influx

    Pressure Drop

    (eD) (FD)

    kD)

    .

    Dimensionless External Radius FL= 30

    1.0631

    1,0595

    ;:::::

    1.0365

    1,0351

    1.0347

    1.0345

    1.0345

    1.0345

    ?-80345

    1,0345

    Dimensionless

    1.0564

    1,0399

    1,0330

    1.0295

    1.0276

    1.0267

    L0262

    1,0259

    1,0258

    1,0257

    1,0256

    Dlmansimslsss

    1,0399

    1.0326

    1,0283

    1.0256

    1.0239

    1.0227

    1.0219

    1.0214

    1,0211

    1,0204

    1.0204

    90,093

    100*705

    111.284

    216,001

    319,838

    423.406

    526,891

    630.351

    733.803

    837,252

    940.701

    1,044.149

    0,9351

    0;9385

    0.9414

    0.9576

    0,9629

    0.9649

    0.9656

    0.9660

    0.9662

    0,9664

    0.9665

    0.9667

    External Rodius r:=

    111*28

    215,96

    319,56

    422.67

    525.51

    628.22

    730,86

    833,47

    936,05

    1,038.63

    2,064.28

    40

    0,9414

    0,9570

    0,9646

    0.9686

    0.9708

    0.972 I

    0.9729

    0.9734

    0.9737

    0.9739

    0.9750

    Externol Rad[us

    215,96

    319s4

    422,5B

    525,27

    627,74

    730.06

    r;= 50

    832o29

    934,46

    1,036,58

    2,057, i5

    3,077.56

    0,9570

    0,9641

    0.9688

    0.9718

    0.9739

    0.9754

    0,9764

    0,9771

    0,9?76

    0.9794

    0.9800

    Dimension es$ Exterqol Redius rj = 60

    1.0326 319*54 o*9~41

    1.0282 422,57

    0.%684

    1.0253

    528.23 r,9716

    ii0232

    627.65

    0.9740

    Dimenslcinless Functions

    Time

    t~)

    700.0

    800.0

    900.0

    1,000.0

    ~ooo.o

    3,000.0

    4,000.0

    5,000,0

    6,000,0

    900,0

    1,000.0

    2,000.0

    3,000.0

    4,000.0

    5,000.0

    6,000,0

    7,000.0

    1,000.0

    2 000 0

    3 000 0

    4 000 0

    5 000 0

    6,000.0

    7,000.0

    8,000,0

    1,000.0

    2,000,0

    3,000.0

    4,000,0

    5,000,0

    6,000iO-

    7,000.0

    8,000.0

    9,000.0

    Rate

    Influx

    Pressure Drop

    (eD) (FD) (PD)

    Dlmen4ior rless Externa l Radius r~=, 70

    1.0213

    730.0 0,9753

    1.0200

    832.0

    0.9767

    ;::;:9

    934.0

    0.978 I

    1,036.0

    0.9795

    1.0150

    2,052.0

    0.9838

    1.0146

    3,066.0

    0.9848

    1.0145 4,081.0

    0.9853

    1,0145

    5,095.0

    0.9857

    1.0145 6,110.0

    0.9857

    Dimensionless Exte/

    1,0188

    1,0179

    100137

    1.0129

    1 . 0127

    L0127

    1 , 012 :

    1 , 0127

    rrral Radius

    934,0

    1,036.0

    2,051.0

    3,064.0

    4,077.0

    S,090.O

    6,102.0

    7,1 15*O

    0.9779

    0.9794

    0,9847

    0.9862

    0.9868

    0.9872

    0.9875

    0.9875

    Dlmenslonles

    1.0178

    100131

    1,0118

    1,0114

    1.0113

    1,0112

    1.0112

    s Extel

    1.0112

    Dimensionless

    1*OT78

    1,0128

    100111

    LO1O5

    1*O1O2

    1.0101

    1,0101

    1*O1O1

    1,0101

    ,no l Rad ius

    1,036.0

    2,051.0

    3,C63.O

    4,074.0

    5,086.0

    6,097.0

    7,108,0

    8,120.0

    0.9789

    0.98S0

    0.9870

    0,9B78

    0.9883

    0.9886

    0.9889

    0.9889

    External Rod I us I

    1,03600

    2,051.0

    3,062.0

    4,073.0

    5,083.0

    6,094.0

    t 7.104.0

    8;1 14.0

    9,124,0

    ,,

    D=

    100

    0.9789

    0.9846

    0.9874

    0.9885

    0,989.1

    0,9894 -

    0.9897

    0.9899

    009900

    t

    .

    -.-.. ...

    ..z

    1 1 3

  • 7/24/2019 SPE-1305-PA Chatas a.T. Unsteady Spherical Flow in Petroleum Reservoirs(1)

    13/13

    .

    .

    .-

    the unlimited system were computed first over the

    dimensionless time range 0.001 to 1,000,000. Then

    tables of the trigonometric relations described by

    Eqs. 47, s,2 and 63 were developed from which the

    roots w (with n =

    6) were

    obtained. Finally,

    numerical vaIues of the functions for limited

    systems were computed over the range of external

    radii (rD) 2 to 100.

    The range of dimensionless

    time (tD) for these functions was chosen to begin

    with the points of divergence from the unlimited

    system envelope and to end with steady-state valwes.

    These numerical results are included in tabular

    form to foster practical application of this work.

    NOMENCLATURE

    Cl, C2 = arbitrary constants

    F = cumulative fluid influx

    FD = dimensionless cumulative fluid influx

    ~D = Laplace transform of FD

    ,RO = residue of singularity at origin

    Rv = residues of singularities at z=

    b = dimensionless product of pressure drop

    and radial distance

    ~ = LapIace transform of b

    c = compressibilir~

    e = rate of fhtid influx or fluid rate

    D

    =

    dimensionless rate of fluid influx

    TD = Laplace transform of eD

    k = permeability

    kb =

    horizontal permeability

    k, =

    radial

    permeability in spherical system

    kv = verticaI permeability

    n = element of domain of positive integers

    p = pressure

    pi = initial pressure

    ~D = dimensionless pressure drop

    r

    .

    radial distance, length of radius vector of

    sphere .

    re =

    radius of external boundary

    rw =

    radius of

    intemal

    boundary

    rD = dimensionless radial distance

    rD = dimensionless Sadius of external boundary

    s =

    Lap lac e t ra n sform param et er , a com plex

    var iable

    t = t im e

    t r = rea d ju s t m en t t im e

    t o = d im en s ion le s s t im e -.

    t = m axim um t im e

    U

    .

    m a crosc op ic ve lo cit y in p oro ,u s m e dia

    w= arbit ra ry r ea l va r iable

    z

    .

    compl ex variable

    a

    =

    c ola t it ud e a ngle , s ph er ic al c oo rd in at es

    p = viscos it y

    + = poros it y

    J = cum ula t ive p re s su re d r op

    ACKNOWLEDGMENTS

    Grateful acknowledgment is made to A. S. Odeh

    of Mobil Oil Co.s Field Research Laboratory es who

    reviewed this work, critically checked the mathe-

    matics and offered some valuable criticisms, The

    author wishes to express his appreciation to Deno

    Ladas of IBM Corp. for his help in programming the

    analytic functions and to William Chichester for

    his help in their computation. Thankfui acknowledg-

    ment is aIso made to H. L. Smith of the U. S. Corps

    of Engineers for his practical suggestions ahd

    encouragement t to publish this paper.

    1 .

    2.

    3,

    4.

    5.

    6.

    7.

    8.

    9.

    10.

    11.

    12 .

    1 3 .

    14.

    1 5 .

    1 6 .

    1 7 .

    1 8 .

    REFERENCES

    Hurst, W,: Water Influx into a Reservoir and Ita

    Application to the Equstion of Volumetric Balancer ~,

    Twwzs., AIME (1943) Vol. 151, 57.

    Hurst, W. and van Everdingen, A. F.: ~l e Application

    of the Laplace Transformation to .F1ow Problems in

    Reservoirs?, Trans., AfME (1949) Vol. 186, 305.

    Musk~t, M.: The Flow o}

    Homogeneous Fluids Through

    Porows Media, J, W. Edwards, Ann Arbor (1946).

    Muakat, M.: Physical Principles of Oil Production,

    McGraw-Hill Book Co.-, New York, N. Y. (1949).

    Chatas, A. T.: ~~APraciical Treatment Of Nonsteady -

    State Flow Problems in Resewoir Systema3~, Pet.

    .En& (May, June and Aug., 1953) 25,

    Muakst, M.: The Performance of Bottom-Water Drive

    Reaervoirs~), Trans., AIME (1947) VO1. 170, 81.

    Hurst, W.: The Skin

    Effect

    and, Ita Impediment to

    Fluid Flow irrto a Wellbore ~, Pet. Erzg. (Oct., 1953)

    Vol .

    25, B-6.

    Eisenhart, L. P.: An Introduction to Di//erential

    Geometry with tbe Use o/ the Tensor Calculus,

    Princeton

    U, Press, Princeton, N. J. (1947).

    Churchill, R. V.:

    Modem Operational Matbernatics in

    Engineering, McGraw-Hill Book Co,, New York, N, Y.

    (1944j, ,

    Widder, D. V.: Tbe LapJace Transform, Princeton U.

    Press, Princaton, N. J. (1946).

    Carslaw, H, S. and -Jaegqw, J, C.: Operational Methods

    in pplie Mathematics,

    Dover, New York (1963). c

    Bush, V:: Operational Circuit Analysis, John Wiley

    & Sons, fnc., New York, N, Y. (1929).

    Abrarnowits, M. end Stegun, I. A.:

    Handbook oj

    Matbernatical

    Functions, U. S. Government Printing

    Office, Washington, D. C, (1964).

    Erdelyi, A. et

    aL: Tables

    of

    Integral Tran s fo rms ,

    McGrew-HiU Book Co,, New York, N,Y. (1954) Vol. 1.

    Hildebranrf,

    F. B,: Advanced Cafcuhs /or Engineers,

    Prentice-Hall, .I I~, Inglewood .Cliffs, N. J. (1948).

    Mumaghan, F. D.:

    introduction to Applied

    Mafbe.

    tnatics, over NewYork (lg63).

    Churchill,

    R.

    V.: lntrodriction to Complex Variabfes

    and Applications, McGraw-Hill Book Co., New York,

    N. Y. (1948).

    Kern, G.

    A.

    and Kern,

    T. M.: Mathematical Handbook

    _,. for S~i@tists and Engineers,.

    McGqiw-Wll

    BocIk CO.,

    .

    y-=ab~eis~ti-o~ ~otivergence---

    Me%Yolii;KY7[i961),

    l

    ~ = arbitiary parameter

    1 9 .

    Erdslyi, A.

    et dt

    Higher Trcinscendetzta~ Functions,

    @ =

    lo n git a din a l a n gle ,

    spherical coordinates

    McGraw-Hill Book Co., New York, N.Y. 1 9 5 3 ) Vol. 11.

    (34 =

    Jacobian theta function, also denoted by

    20. Cs rs la w, H . S. and Jaeger, J . C.: Corzductfon o/ Heat

    ,

    @oord

    in Solids,

    Oxford U.

    Prees, Oxford, E ngla n d 1 95 9).

    +++