Spatial Risk Premium on Weather and Hedging Weather ... · (1) I...

47
Spatial Risk Premium on Weather and Hedging Weather Exposure in Electricity Wolfgang Karl Härdle Maria Osipenko Ladislaus von Bortkiewicz Chair of Statistics C.A.S.E. Centre for Applied Statistics and Economics School of Business and Economics Humboldt-Universität zu Berlin http://lvb.wiwi.hu-berlin.de

Transcript of Spatial Risk Premium on Weather and Hedging Weather ... · (1) I...

Page 1: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Spatial Risk Premium on Weather andHedging Weather Exposure in Electricity

Wolfgang Karl HärdleMaria Osipenko

Ladislaus von BortkiewiczChair of StatisticsC.A.S.E. Centre for Applied Statistics andEconomicsSchool of Business and EconomicsHumboldt-Universität zu Berlinhttp://lvb.wiwi.hu-berlin.de

1

Page 2: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Motivation 1-1

"Everybody talks about the weather but nobody does anythingabout it." Mark Twain

Spatial Risk Premium on WeatherBarcelona

RomeMadrid

ParisEssen

AmsterdamLondon

BerlinStockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 3: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Motivation 1-2

Spatial Risk Premium on WeatherBarcelona

RomeMadrid

ParisEssen

AmsterdamLondon

BerlinStockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 4: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Motivation 1-3

cumulated average temperature in °C

log

elec

tric

ity c

onsu

mpt

ion

in K

wt p

er c

apita

0 200 400 600 800

6.2

6.3

6.4

6.5

Figure 1: Estimated dependency of log electricity consumption in Germanyon cumulative average temperature: 19960101-20100930, effects of pricesand income removed (from Akdeniz Duran et al., 2011).

Spatial Risk Premium on WeatherBarcelona

RomeMadrid

ParisEssen

AmsterdamLondon

BerlinStockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 5: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Motivation 1-4

Future Contracts on Temperature

� transfer weather related risks,� number of agents limited,� weather non-tradable, insurance nature,� geographically separated markets, spatial relationship.

Spatial Risk Premium on WeatherBarcelona

RomeMadrid

ParisEssen

AmsterdamLondon

BerlinStockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 6: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Motivation 1-5

●●

●●

BerlinAmsterdam

Barcelona

EssenLondon

Madrid

Paris

Rome

Stockholm

Prague

Oslo

Figure 2: Contracts on 11 cities in Europe are traded on the CME.

Spatial Risk Premium on WeatherBarcelona

RomeMadrid

ParisEssen

AmsterdamLondon

BerlinStockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 7: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Motivation 1-6

Pricing Model

� Econometrics of temperature (Benth et al., 2007)I seasonal function

Λ(t) = a + bt +k∑

j=1

{c2j−1 sin

(2jπt365

)+ c2j cos

(2jπt365

)},

(1)I p-dimensional Ornstein-Uhlenbeck process X(t):

dX(t) = AX(t)dt + epσ(t)dB(t),

I B(t) is Brownian motion, ep pth column of Ip, σ(t) seasonalvariation.

Spatial Risk Premium on WeatherBarcelona

RomeMadrid

ParisEssen

AmsterdamLondon

BerlinStockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 8: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Motivation 1-7

Pricing Model

Price of a future on Cumulative Average Temperature index (CAT):(Benth et al., 2007)

FCAT (t,τ1,τ2) =

∫ τ2

τ1

Λ(u)du + a(t)X(t) (2)

+

∫ τ1

tθ(u)σ(u)a(u)epdu

+

∫ τ2

τ1

θ(u)σ(u)e>1 A−1 [exp {A(τ2 − u)} − Ip] epdu.

with a(t) = e>1 A−1 [exp {A(τ2 − t)} − exp {A(τ1 − t)}]

� Market price of risk (MPR) θ(t) unknown for specific locations.

Spatial Risk Premium on WeatherBarcelona

RomeMadrid

ParisEssen

AmsterdamLondon

BerlinStockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 9: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Motivation 1-8

Pricing Temperature around the Globe

� θ(t) varies across locations.� Connect θ(t) to a known risk factor!� Spatial model to interpolate for other locations.

How can FPCA help pricing an arbitrary location?

Spatial Risk Premium on WeatherBarcelona

RomeMadrid

ParisEssen

AmsterdamLondon

BerlinStockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 10: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Motivation 1-9

Outline

1. Motivation X2. Spatial Model for Risk PremiumI Functional Principal Components (FPCA)I Geographically Weighted Regression (GWR)

3. Empirical Risk Premia and Hedging Weather Exposure4. Outlook

Spatial Risk Premium on WeatherBarcelona

RomeMadrid

ParisEssen

AmsterdamLondon

BerlinStockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 11: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Spatial Model for Risk Premium 2-1

Risk Premium

Given (2) the RP at t = τ1 for ith location and jth contract (RPij):

RP ij(t = τ1, τ2) = FCAT ,ij(θi , t = τ1, τ2)− F̂CAT ,ij(0, t = τ1, τ2) + εij ,

=

∫ τ2

τ1

θi (u)σij(u)e>1 A−1i

× [exp {Ai (τ2 − u)} − Ip] epdu + εij .

F̂CAT ,ij(0, t = τ1, τ2) estimated price for jth contract in ithlocation, zero MPR, Ai is the matrix of O-U-Process coefficients forthe ith location and εij noise.

Spatial Risk Premium on WeatherBarcelona

RomeMadrid

ParisEssen

AmsterdamLondon

BerlinStockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 12: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Spatial Model for Risk Premium 2-2

� a functional regression set up with scalar response:w i (t)

def= e>1 A

−1 [exp {A(τ2 − t)} − Ip] ep andθiw (t) = θ(t)w i (t):

RPij(τ1, τ2) =

∫ τ2

τ1

θiw (u)σij(u)du + εij .

� Regress RP on PC scores of σ(t) for dimension reduction.� Note θi

w (t) contains location dependent parameters, needspatial setting.

Spatial Risk Premium on WeatherBarcelona

RomeMadrid

ParisEssen

AmsterdamLondon

BerlinStockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 13: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Spatial Model for Risk Premium 2-3

Functional Principal Components

1. Decompose

σij(t) = {σij(t)− σ̄i (t)}+ σ̄i (t),

σij(t) variation curve for ith location and jth month,σ̄i (t) average curve for ith location.

RPij =

∫ τ2

τ1

θiw (u)σ̄i (u)du

+

∫ τ2

τ1

θiw (u) {σij(u)− σ̄i (u)}︸ ︷︷ ︸

FPCA for σij

du.

2. Perform FPCA: derive scores for temperature variationSpatial Risk Premium on Weather

BarcelonaRome

MadridParis

EssenAmsterdam

LondonBerlin

Stockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 14: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Spatial Model for Risk Premium 2-4

PC Scores

� PC scores for functions σij(t) i = 1, . . . , 9 (9 cities),j = 1, . . . , 7 (7 traded months):

cijk =

∫ τ2

τ1

ξik(t) {σij(t)− σ̄i (t)} dt,

cijk scores for K largest eigenvalues, ξik(t) orthonormaleigenfunctions of Cov{σ(·)} operator.

� Collect scores capturing the variance in the data in matrix C .� Parametrize the relationship to RP by geographically weighted

regression.

Spatial Risk Premium on WeatherBarcelona

RomeMadrid

ParisEssen

AmsterdamLondon

BerlinStockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 15: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Spatial Model for Risk Premium 2-5

3. Regress the response RPij at t = τ1 on the PC scores (Ramsay& Silverman, 2008):

RPij = βi0 +K∑

k=1

βik

∫ τ2

τ1

ξik(t){σij(t)− σ̄i (t)}dt + ε̃ij

for ith location and jth month, with ε̃ij containing εij and thetruncation error resulting from taking first K PC scores.

� Functional form of MPR: θiw (t) =

∑k βikξik(t) APPENDIX

� Need spatial model for regression on PC scores.

Spatial Risk Premium on WeatherBarcelona

RomeMadrid

ParisEssen

AmsterdamLondon

BerlinStockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 16: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Spatial Model for Risk Premium 2-6

Spatial Specification: GWR

Why GWR (Fotheringham et al., 2002)?� distance based weights,� local nature of spatial dependence,� regression coefficients are functions of the geo locations,→ forecast to non-sampled locations.

Spatial Risk Premium on WeatherBarcelona

RomeMadrid

ParisEssen

AmsterdamLondon

BerlinStockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 17: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Spatial Model for Risk Premium 2-7

GWR: the Model

W12

i RP = W12

i Cβi + ei , ei vector of iid errors,RP = (RP1,1,RP2,1, . . . ,RPn,1,RP1,2, . . . . . . ,RPn,7)>,

C =

c1,1,1 . . . c1,1,Kc2,1,1 . . . c1,1,K. . . . . . . . .cn,7,1 . . . cn,7,K

n − total number of locationsK − number of PC scores

Spatial Risk Premium on WeatherBarcelona

RomeMadrid

ParisEssen

AmsterdamLondon

BerlinStockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 18: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Spatial Model for Risk Premium 2-8

GWR: the Model

Wi = diag(wi ), i = 1, . . . , n

wi = diag

[exp

{−12

(di1

h∗

)2}, . . . , exp

{−12

(din

h∗

)2}]

,

h∗ = arg minh∈H

7n∑m=1

{RPm − R̂P 6=m(h)

}2,

with dil , l = 1, . . . , n euclidean distances to ith city, R̂P 6=m(h)estimated RP without the mth value using h.

Spatial Risk Premium on WeatherBarcelona

RomeMadrid

ParisEssen

AmsterdamLondon

BerlinStockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 19: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Empirical Risk Premia and Hedging Weather Exposure 3-1

Temperature Data

City First Date Last Date First FCAT TradeAmsterdam 19730101 20101231 20030401

Berlin 19480101 20101231 20030401Barcelona 19730101 20101231 20050401Essen 19700101 20101231 20050401London 19730101 20101231 20030401Madrid 19730101 20101231 20050401Paris 19730101 20101231 20030401Rome 19730101 20101231 20050401

Stockholm 19730101 20101231 20030401

Table 1: Average Temperatures without 29th February. Source Bloombergand DWD.

Spatial Risk Premium on WeatherBarcelona

RomeMadrid

ParisEssen

AmsterdamLondon

BerlinStockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 20: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Empirical Risk Premia and Hedging Weather Exposure 3-2

Volatility Functions σi(t)

Fit to data� Seasonality Λ(t),� AR(p) process with seasonally heteroscedastic errors,� impute RPij , i = 1, . . . , 9 and j = 1, . . . , 7,� obtain σi (t), t ∈ [1, 365] using residual standard deviation for

each day of year smoothed by Fourier series.

Spatial Risk Premium on WeatherBarcelona

RomeMadrid

ParisEssen

AmsterdamLondon

BerlinStockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 21: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Empirical Risk Premia and Hedging Weather Exposure 3-3

Seasonality

Amsterdam

2000 2002 2004 2006 2008 2010

−20

−10

010

2030

Barcelona

2000 2002 2004 2006 2008 2010−

20−

100

1020

30

Berlin

2000 2002 2004 2006 2008 2010

−20

−10

010

2030

Essen

2000 2002 2004 2006 2008 2010

−20

−10

010

2030

London

2000 2002 2004 2006 2008 2010

−20

−10

010

2030

Madrid

2000 2002 2004 2006 2008 2010−

20−

100

1020

30

Spatial Risk Premium on WeatherBarcelona

RomeMadrid

ParisEssen

AmsterdamLondon

BerlinStockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 22: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Empirical Risk Premia and Hedging Weather Exposure 3-4

Seasonality

Paris

2000 2002 2004 2006 2008 2010

−20

−10

010

2030

Rome

2000 2002 2004 2006 2008 2010

−20

−10

010

2030

Stockholm

2000 2002 2004 2006 2008 2010

−20

−10

010

2030

Figure 3: Daily average temperatures T (t) (blue) and seasonality Λ(t)

(red).

Spatial Risk Premium on WeatherBarcelona

RomeMadrid

ParisEssen

AmsterdamLondon

BerlinStockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 23: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Empirical Risk Premia and Hedging Weather Exposure 3-5

Essen London Madridestimate t.stat estimate t.stat estimate t.stat

a 10.66 171.30 10.81 217.33 13.97 286.51b 0.1 · 10−4 0.66 0.7 · 10−4 11.10 0.9 · 10−4 14.64c1 -2.32 -52.79 -2.48 -70.43 -3.30 -95.68c2 -7.82 -177.64 -6.42 -182.57 -8.93 -259.17c3 0.49 11.21 0.77 21.85 1.67 48.46c4 – – 0.23 6.66 0.25 7.21c5 – – – – -0.19 -5.39c6 – – – – -0.34 -9.87

Table 2: Estimated Parameters of seasonality (1) for Essen, London, Paris

Spatial Risk Premium on WeatherBarcelona

RomeMadrid

ParisEssen

AmsterdamLondon

BerlinStockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 24: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Empirical Risk Premia and Hedging Weather Exposure 3-6

AR(p)

Amsterdam Barcelona Berlinestimate t.stat estimate t.stat estimate t.stat

α1 0.89 105.05 0.70 83.14 0.92 139.69α2 -0.19 -16.76 0.03 3.17 -0.20 -23.14α3 0.09 10.46 0.01 1.29 0.08 11.99α4 – – 0.03 3.64 – –

Table 3: Estimated Parameters of AR(p) for Amsterdam, Barcelona, Berlin

Spatial Risk Premium on WeatherBarcelona

RomeMadrid

ParisEssen

AmsterdamLondon

BerlinStockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 25: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Empirical Risk Premia and Hedging Weather Exposure 3-7

RP

BarcelonaRome

MadridParis

EssenAmsterdam

LondonBerlin

Stockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Figure 4: Average RP for traded locations computed according to (2)

Spatial Risk Premium on WeatherBarcelona

RomeMadrid

ParisEssen

AmsterdamLondon

BerlinStockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 26: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Empirical Risk Premia and Hedging Weather Exposure 3-8

Seasonal Variation

Amsterdam

Jan Mar May Jul Sep Nov Jan

02

46

810

Barcelona

Jan Mar May Jul Sep Nov Jan0

24

68

10

Berlin

Jan Mar May Jul Sep Nov Jan

02

46

810

Essen

Jan Mar May Jul Sep Nov Jan

02

46

810

London

Jan Mar May Jul Sep Nov Jan

02

46

810

Madrid

Jan Mar May Jul Sep Nov Jan0

24

68

10

Spatial Risk Premium on WeatherBarcelona

RomeMadrid

ParisEssen

AmsterdamLondon

BerlinStockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 27: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Empirical Risk Premia and Hedging Weather Exposure 3-9

Seasonal Variation

Paris

Jan Mar May Jul Sep Nov Jan

02

46

810

Rome

Jan Mar May Jul Sep Nov Jan

02

46

810

Stockholm

Jan Mar May Jul Sep Nov Jan

02

46

810

Figure 5: Estimated σ(t) (blue) and smoothed by Fourier series (red).

Spatial Risk Premium on WeatherBarcelona

RomeMadrid

ParisEssen

AmsterdamLondon

BerlinStockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 28: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Empirical Risk Premia and Hedging Weather Exposure 3-10

Eigenfunctions

Amsterdam

0 5 10 15 20 25 30

−0.

6−

0.4

−0.

20.

00.

20.

40.

6

Barcelona

0 5 10 15 20 25 30−

0.6

−0.

4−

0.2

0.0

0.2

0.4

0.6

Berlin

0 5 10 15 20 25 30

−0.

6−

0.4

−0.

20.

00.

20.

40.

6

Essen

0 5 10 15 20 25 30

−0.

6−

0.4

−0.

20.

00.

20.

40.

6

London

0 5 10 15 20 25 30

−0.

6−

0.4

−0.

20.

00.

20.

40.

6

Madrid

0 5 10 15 20 25 30−

0.6

−0.

4−

0.2

0.0

0.2

0.4

0.6

Spatial Risk Premium on WeatherBarcelona

RomeMadrid

ParisEssen

AmsterdamLondon

BerlinStockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 29: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Empirical Risk Premia and Hedging Weather Exposure 3-11

Eigenfunctions

Paris

0 5 10 15 20 25 30

−0.

6−

0.4

−0.

20.

00.

20.

40.

6

Rome

0 5 10 15 20 25 30

−0.

6−

0.4

−0.

20.

00.

20.

40.

6

Stockholm

0 5 10 15 20 25 30

−0.

6−

0.4

−0.

20.

00.

20.

40.

6

Figure 6: FPCA weight functions: eigenfunction ξ1 (solid), ξ2 (dashed), ξ3(dotted).

Spatial Risk Premium on WeatherBarcelona

RomeMadrid

ParisEssen

AmsterdamLondon

BerlinStockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 30: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Empirical Risk Premia and Hedging Weather Exposure 3-12

FPCA Scores

Amsterdam

−1.0 −0.5 0.0 0.5

−1.

0−

0.5

0.0

0.5

●●

Barcelona

−1.0 −0.5 0.0 0.5 1.0−

1.0

−0.

50.

00.

5

Berlin

−1.5 −1.0 −0.5 0.0 0.5 1.0

−1.

0−

0.5

0.0

0.5

Essen

−0.5 0.0 0.5

−1.

0−

0.5

0.0

0.5

● ●

London

−0.6 −0.4 −0.2 0.0 0.2 0.4

−1.

0−

0.5

0.0

0.5

●●

Madrid

−1.0 −0.5 0.0 0.5 1.0−

1.0

−0.

50.

00.

5

Spatial Risk Premium on WeatherBarcelona

RomeMadrid

ParisEssen

AmsterdamLondon

BerlinStockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 31: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Empirical Risk Premia and Hedging Weather Exposure 3-13

FPCA Scores

●●

Paris

−1.0 −0.5 0.0 0.5

−1.

0−

0.5

0.0

0.5 ●

●●

Rome

−1.0 −0.5 0.0 0.5 1.0

−1.

0−

0.5

0.0

0.5

● ●

Stockholm

−1.0 −0.5 0.0 0.5 1.0

−1.

0−

0.5

0.0

0.5

Figure 7: FPCA scores cij1 and cij2

Spatial Risk Premium on WeatherBarcelona

RomeMadrid

ParisEssen

AmsterdamLondon

BerlinStockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 32: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Empirical Risk Premia and Hedging Weather Exposure 3-14

Explained Proportion of Variance

Amsterdam

Pro

port

ion

of V

aria

nce

PC1 PC2 PC3 PC4 PC5

0.5

0.6

0.7

0.8

0.9

1.0

Barcelona

Pro

port

ion

of V

aria

nce

PC1 PC2 PC3 PC4 PC50.

50.

60.

70.

80.

91.

0

Berlin

Pro

port

ion

of V

aria

nce

PC1 PC2 PC3 PC4 PC5

0.5

0.6

0.7

0.8

0.9

1.0

Essen

Pro

port

ion

of V

aria

nce

PC1 PC2 PC3 PC4 PC5

0.5

0.6

0.7

0.8

0.9

1.0

London

Pro

port

ion

of V

aria

nce

PC1 PC2 PC3 PC4 PC5

0.5

0.6

0.7

0.8

0.9

1.0

Madrid

Pro

port

ion

of V

aria

nce

PC1 PC2 PC3 PC4 PC50.

50.

60.

70.

80.

91.

0

Spatial Risk Premium on WeatherBarcelona

RomeMadrid

ParisEssen

AmsterdamLondon

BerlinStockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 33: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Empirical Risk Premia and Hedging Weather Exposure 3-15

Explained Proportion of Variance

Paris

Pro

port

ion

of V

aria

nce

PC1 PC2 PC3 PC4 PC5

0.5

0.6

0.7

0.8

0.9

1.0

Rome

Pro

port

ion

of V

aria

nce

PC1 PC2 PC3 PC4 PC5

0.5

0.6

0.7

0.8

0.9

1.0

Stockholm

Pro

port

ion

of V

aria

nce

PC1 PC2 PC3 PC4 PC5

0.5

0.6

0.7

0.8

0.9

1.0

Figure 8: Proportion of Variance explained by the corresponding PC.

Spatial Risk Premium on WeatherBarcelona

RomeMadrid

ParisEssen

AmsterdamLondon

BerlinStockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 34: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Empirical Risk Premia and Hedging Weather Exposure 3-16

GWR Estimation Results

Amsterdam

Apr Jun Aug Oct

−50

050

Barcelona

Apr Jun Aug Oct−

500

50

●●

Berlin

Apr Jun Aug Oct

−50

050

Essen

Apr Jun Aug Oct

−50

050

London

Apr Jun Aug Oct

−50

050

●●

Madrid

Apr Jun Aug Oct−

500

50

● ●

●●

Spatial Risk Premium on WeatherBarcelona

RomeMadrid

ParisEssen

AmsterdamLondon

BerlinStockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 35: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Empirical Risk Premia and Hedging Weather Exposure 3-17

GWR Estimation Results

Paris

Apr Jun Aug Oct

−50

050

● ●

Rome

Apr Jun Aug Oct

−50

050

Stockholm

Apr Jun Aug Oct

−50

050

● ●

Figure 9: RP (red) and fitted values with 95% CI (blue) returned by GWR.

Spatial Risk Premium on WeatherBarcelona

RomeMadrid

ParisEssen

AmsterdamLondon

BerlinStockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 36: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Empirical Risk Premia and Hedging Weather Exposure 3-18

City β0 β1 β2 β3 R2loc

Amsterdam −4.68∗∗ −5.28 15.31∗∗ 15.04∗∗ 0.25Barcelona −7.35 6.17∗∗ −5.53 8.27 0.34

Berlin −3.06 −8.07 17.58∗∗ −9.90∗ 0.61Essen −5.10∗∗ −4.86 14.87∗∗ 10.85∗ 0.30

London −3.27 −5.43 12.89∗∗ 18.14∗∗ 0.22Madrid −10.40 11.17∗∗ −7.98 30.55∗∗ 0.42Paris −3.75∗∗ −2.85 10.98∗ 13.38∗ 0.21Rome −5.54◦ 12.00∗ −23.38∗∗ −77.01∗∗ 0.73

Stockholm 10.82 −16.29 16.91∗∗ −41.96∗∗ 0.72

Leipzig −4.42 −6.64 16.07 −7.60 –

Table 4: Estimated Parameters of GWR (h∗=4.98). ∗∗ indicate signifi-cance on ≤ 1% level, ∗ – on 5% and ◦ – on 10%. Dummy variablesfor north and south sea coast cities omitted here. Weights for Leipzig(0.13, 0, 0.42, 0.24, 0.02, 0, 0.05, 0.07, 0.07)>.Spatial Risk Premium on Weather

BarcelonaRome

MadridParis

EssenAmsterdam

LondonBerlin

Stockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 37: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Empirical Risk Premia and Hedging Weather Exposure 3-19

Example: Hedging weather risk in electricitydemand

� An electricity provider inLeipzig transfers risk viaCAT futures.

� What RP one would payfor FCAT in August 2010?

●●

●●

BerlinAmsterdam

Barcelona

EssenLondon

Madrid

Paris

Rome

Stockholm

Leipzig

Spatial Risk Premium on WeatherBarcelona

RomeMadrid

ParisEssen

AmsterdamLondon

BerlinStockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 38: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Empirical Risk Premia and Hedging Weather Exposure 3-20

Out-of-Sample Forecast: Leipzig

2000 2002 2004 2006 2008 2010

−20

−10

010

2030

Jan Mar May Jul Sep Nov Jan2

46

810

Figure 10: Λt , σt for Leipzig.Spatial Risk Premium on Weather

BarcelonaRome

MadridParis

EssenAmsterdam

LondonBerlin

Stockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 39: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Empirical Risk Premia and Hedging Weather Exposure 3-21

Out-of-Sample Forecast: Leipzig

0 5 10 15 20 25 30

−0.

6−

0.4

−0.

20.

00.

20.

40.

6

Apr Jun Aug Oct−

40−

200

2040

Figure 11: ξ and the resulting forecast for RP for Leipzig vs RP of Berlin.Spatial Risk Premium on Weather

BarcelonaRome

MadridParis

EssenAmsterdam

LondonBerlin

Stockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 40: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Empirical Risk Premia and Hedging Weather Exposure 3-22

FCAT (θ̂, 20100801, 20100831) = 536

cumulated average temperature in °C

log

elec

tric

ity c

onsu

mpt

ion

in K

wt p

er c

apita

0 200 400 600 800

6.2

6.3

6.4

6.5

F_cat(20100801,20100831)=536

Spatial Risk Premium on WeatherBarcelona

RomeMadrid

ParisEssen

AmsterdamLondon

BerlinStockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 41: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Empirical Risk Premia and Hedging Weather Exposure 3-23

Example: Hedging weather risk in electricitydemand

� c – marginal costs of meeting additional log demand of 1%per customer

� n – number of customers� b – estimated marginal effects of 1

◦C CAT on log demand

starting from threshold FCAT� α – number of WD hold, p – tick value of WD (for traded

futures in Europe: 20EUR)

exposure benefitscnb(CAT − FCAT ) αp(CAT − FCAT )

� hedging, s.t.cnb = αp

Spatial Risk Premium on WeatherBarcelona

RomeMadrid

ParisEssen

AmsterdamLondon

BerlinStockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 42: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Empirical Risk Premia and Hedging Weather Exposure 3-24

Example: Hedging weather risk in electricitydemand

parameter value unitsc 1 EUR per 1% log Kwt/pP (∼ 0.25 EUR/Kwt)n 100, 000 customersb 0.016 1% log Kwt/pP and 1

◦C CAT·

p 20 EUR per 1◦C CAT

α 80 contracts long

Table 5: An elementary example of a hedging strategy.

Spatial Risk Premium on WeatherBarcelona

RomeMadrid

ParisEssen

AmsterdamLondon

BerlinStockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 43: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Empirical Risk Premia and Hedging Weather Exposure 3-25

Appendix

RPij =

∫ τ2

τ1

θiw (u)σ̄i (u)du︸ ︷︷ ︸

βi0

+

∫ τ2

τ1

θiw (u)︸ ︷︷ ︸∑

m βimξim(u)

{σij(u)− σ̄i (u)}︸ ︷︷ ︸∑k cijkξik (u)

du

= βi0 +∑m

∑k

βimcijk

∫ τ2

τ1

ξik(u)ξim(u)du︸ ︷︷ ︸=

0, k 6= m,

1, k = m

= βi0 +∑k

βikcijk .

BACK

Spatial Risk Premium on WeatherBarcelona

RomeMadrid

ParisEssen

AmsterdamLondon

BerlinStockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 44: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Empirical Risk Premia and Hedging Weather Exposure 3-26

Literature

E. Akdeniz Duran and W.K. Härdle and M. OsipenkoDifference based ridge and Liu type estimators insemiparametric regression modelsJournal of Multivariate Analysis, 2013.

F.E. Benth and J.S. Benth and S. KoekebakkerPutting a Price on TemperatureScandinavian Journal of Statistics 34: 746-767, 2007

A. Fotheringham and C. Brudson and M. CharltonGeographically Weighted Regression: the Analysis of SpatiallyVarying RelationshipsJohn Willey & Sohns, 2002.

Spatial Risk Premium on WeatherBarcelona

RomeMadrid

ParisEssen

AmsterdamLondon

BerlinStockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 45: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Empirical Risk Premia and Hedging Weather Exposure 3-27

Literature

W.K. Härdle and B.López CabreraImplied Market Price of Weather RiskApplied Mathematical Finance, 2012.

W.K. Härdle and M. OsipenkoSpatial Risk Premium on Weather Derivatives and HedgingWeather Exposure in ElectricityThe Energy Journal, 2013.

B. ØksendalStochastic Differential EquationsSpringer, New York.

Spatial Risk Premium on WeatherBarcelona

RomeMadrid

ParisEssen

AmsterdamLondon

BerlinStockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 46: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Empirical Risk Premia and Hedging Weather Exposure 3-28

Literature

F. Perez-Gonzalez and H. YunRisk Management and Firm Value: Evidence from WeatherDerivativesJournal of Finance, 2013.

J.O. Ramsay, B.W. SilvermanFunctional Data AnalysisSpringer Verlag, Heidelberg, 2008

Spatial Risk Premium on WeatherBarcelona

RomeMadrid

ParisEssen

AmsterdamLondon

BerlinStockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

Page 47: Spatial Risk Premium on Weather and Hedging Weather ... · (1) I p-dimensionalOrnstein-UhlenbeckprocessX(t): dX(t) = AX(t)dt + e p˙(t)dB(t); I B(t) isBrownianmotion,e p pthcolumnofI

Spatial Risk Premium on Weather andHedging Weather Exposure in Electricity

Wolfgang Karl HärdleMaria Osipenko

Ladislaus von BortkiewiczChair of StatisticsC.A.S.E. Centre for Applied Statisticsand EconomicsSchool of Business and EconomicsHumboldt-Universität zu Berlinhttp://lvb.wiwi.hu-berlin.de

BarcelonaRome

MadridParis

EssenAmsterdam

LondonBerlin

Stockholm

AprMay

JunJul

AugSep

Oct

−100

−50

0

50

1