(Source: Kundur’s book) - Department of Electrical...

8
17 (Source: Kundur’s book)

Transcript of (Source: Kundur’s book) - Department of Electrical...

17

(Source: Kundur’s book)

18

Complex Power Flow Through Transmission Lines

S R

S R

V VA BI C D I

0R RV V= S SV V d=

BB B Zq ¢= =12AZ YA A q¢ ¢

= = +S RRV AVIB

SR

R S

VV D BI C A I

S RS

AV VIB

)*

(3 3 RR RS V I * * 2 2

*

| || | | || |3 3 ( ) 3 ( )| | | |

R S R S R RB B A

V V A V V V A VB B B

( ( ) ( )2

) || || |( ) ( )

| ||| |

| |S LR L L

B AL L

BL RA V V VBB

( ) (2

( ))

)3

2

(

**

*

| || |( ) ( )

|| || |

| || |3 3

|S S S L L R LS L L

S SL

S BR

A B

A VA V VVVSV V

BB BI

det 1AD BCD A

2

( 1) / ( 1) /C AD B

A B

A0, B90o

• For a lossless line, B=jX’, A=0, B=90o, and A=cosl

( ) ((3 )

)(3 )

| || |sinS L L R L L

R S

V VX

PP

2( ) ( ) ( )

(3 )

| | | || |cos cosR L L S L L R L L

R

V V VQ

X X

2

( ) ( ) ( )(3 )

| | | || |cos cosS L L S L L R L L

S

V V VQ

X X

( )R BC R

( ) S BC R

19

Sending & Receiving End Power Circle Diagram

• When do two circles intersect?

2( )| || |

( )| |S L L

S B A

A VC

B

2( )| || |

( )| |R L L

R B A

A VC

B

( ) ( )| || || |

S L L R L LV VR

B

| | | | 2S RC C R ( ) ( )2 2( ) ( )

2 | || || | (| | | | )| | | |

S L L R L LS L L R L L

V VA V VB B

( ) ( )2 2

( ) ( )

2 | || || |

| | | |S L L R L L

S L L R L L

V VA

V V

| | | cosh | | cosh( ) | | cosh( ) | 1A j zy

1 (=1 iff |VS|=|VR|)

A special case having two circles intersecting:A lossless line with |VS|=|VR| and |A|=|cosl|1

A necessary condition:

P

QSending end

circle

Receiving end circle

B-A

(PS, QS)

(PR, QR)

CS

CR

R

R

+B

B

A

A

(3 ) ( )R R BS C R (3 ) ( ) S S BS C R

20

21

Power Transmission Capacity• Thermal loading limit:

– A conductor is stretched if its temperature increases due to real power loss, which will increase the sag between transmission towers

– With the current-carrying capacity (Ithermal) of the conductor provided by the manufacturer, the thermal loading limit is

• Steady-state stability limit (ignoring losses)

– Theoretical limit P3,max with max=90o

– Practical line loadability with max=30o to 45o

3thermal rated theramalS V I

| | sin

sin( )

cX B Z

L LCC

max

( ) ( ) ( ) ( )3 , max max

2( ) ( ) max

| || | | || |sin sin

sin| | | | sin ( )( )( )

sin

S L L R L L S L L R L L

c

S L L R L L rated

rated rated C

V V V VP

X ZV V VV V Z

maxsin| || |

sin(2 / )Spu RpuV V SIL

maxsin| || |sinSpu RpuV V SIL

1 5000km

if =60Hzf LCf

(They are all real numbers)

22

Example 5.6

3

| || |sin

sinSpu RpuV V SIL

P

Solution: (a)

3 max

| || |sin 90 1167MW =700/sin(36.87 )

sinSpu RpuV V SIL

P

23

Sending & Receiving End Power Circle Diagram

R=1167 (MVA) = P3(max)

CS=0+j1196 (MVA)

CR= -j969 (MVA)

Assume <30o

Practical line loadability =583.5MW

-1500 -1000 -500 0 500 1000 1500-2500

-2000

-1500

-1000

-500

0

500

1000

1500

2000

2500

P (MW)

Q (M

var)

CS

CR

R30o

30o

-700 -600 -500 -400 -300 -200 -100 0 100 200 300 400 500 600 700-300

-200

-100

0

100

200

300

400

P (MW)

Q (M

var)

1167

583.5

24

Line Loadability Curves• Assume VRVS=400kV, Ithermal=3000A, SIL=499.83MW and max=30o

– SThermal =2078MW– Line loadability vs. Line length:

50 100 150 200 250 3000

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Line Length (km)

Load

ing

Lim

it (M

VA)

SIL=499.83

Thermal Limit=2078

Theoretical limit

Practical line loadability

( ) ( )3 max

| || |S L L R L LV VP

X

o 3 max3 max,300.5P P

0 500 1000 1500 2000 2500 3000 3500 4000-5000

0

5000

Line Length (km)

Load

ing

Lim

it (M

VA

)

0 500 1000 1500 2000 2500 3000 3500 4000-5000

0

5000

Line Length (km)

Load

ing

Lim

it (M

VA

)