Soren Prestemon Lawrence Berkeley National Laboratory€¦ · Lawrence Berkeley National...

17
Magnet requirements and limitations Soren Prestemon Lawrence Berkeley National Laboratory

Transcript of Soren Prestemon Lawrence Berkeley National Laboratory€¦ · Lawrence Berkeley National...

Page 1: Soren Prestemon Lawrence Berkeley National Laboratory€¦ · Lawrence Berkeley National Laboratory. MAP Spring Meeting, FNAL Soren Prestemon– LBNL May 28, 2014 Outline • Vacuum

Magnet requirements and limitations

Soren Prestemon Lawrence Berkeley National Laboratory

Page 2: Soren Prestemon Lawrence Berkeley National Laboratory€¦ · Lawrence Berkeley National Laboratory. MAP Spring Meeting, FNAL Soren Prestemon– LBNL May 28, 2014 Outline • Vacuum

MAP Spring Meeting, FNAL Soren Prestemon– LBNL May 28, 2014

Outline

• Vacuum cooling channel concept

• Magnet design requirements

• Assumptions for conceptual design

• First design layout: ➡ Magnetic performance and issues

➡ Mechanical performance and issues

• Summary

2

Special thanks to Holger Witte (BNL) and Frank Borgnolutti (LBNL)

who performed the analyses presented here

Page 3: Soren Prestemon Lawrence Berkeley National Laboratory€¦ · Lawrence Berkeley National Laboratory. MAP Spring Meeting, FNAL Soren Prestemon– LBNL May 28, 2014 Outline • Vacuum

MAP Spring Meeting, FNAL Soren Prestemon– LBNL May 28, 2014

Cooling channel magnets

3

“Guggenhiem”

Target'

Bunche

r'Ph

ase'Ro

tator'

4D'Coo

ler'

Capture'Sol.'

Accumulator'

Compressor'

'''Proton'Driver' '''Front'End'

Hg@Je

t'Target'

'''AcceleraBon'

Decay'Ch

anne

l'

'''! Storage'Ring'

ν

#

'≈0.35'km'

Accelerators:'Linac,'RLA'or'FFAG'

0.2–1.2'GeV'1.2'–'5'GeV' 5'GeV'

Target'

'''Proton'Driver' '''Front'End'

'''AcceleraBon' '''Collider'Ring'

Accelerators:'''''Linac,'RLA'or'FFAG,'RCS'

'''Cooling'

#+!

6D'Coo

ling'

6D'Coo

ling'

Final'Coo

ling'

Bunch'

Merge'

#−!

#+! #−!

ECoM'126'GeV'1.5'TeV'3'TeV'

Share same complex

ν Factory Goal: O(1021) µ/year

within the accelerator acceptance

Neutrino)Factory)

Muon)Collider)

µ@Collider Goals: 126 GeV

~14,000 Higgs/yr Multi-TeV

Lumi > 1034cm-2s-1

Bunche

r'Ph

ase'Ro

tator'

Capture'Sol.'

Accumulator'

Compressor'

Hg@Je

t'Target'

Decay'Ch

anne

l'

Page 4: Soren Prestemon Lawrence Berkeley National Laboratory€¦ · Lawrence Berkeley National Laboratory. MAP Spring Meeting, FNAL Soren Prestemon– LBNL May 28, 2014 Outline • Vacuum

MAP Spring Meeting, FNAL Soren Prestemon– LBNL May 28, 2014

Layout (from D. Stratakis)

4

Lattice Space for Cryostats

12

• Space generated for diagnostics, cryostats

Parameter Baseline With Space Cool rate (trans.) 1.49 1.49

Cool rate (long.) 1.30 1.35

Transmission 87.2% (55 m) 86.4% (55 m) 19.3 →  20 MV/m

11 m

Cooling after merging (8 stages)

3.7 T (8.4 T) 6.0 T (9.2 T) 10.8 T (14.2 T) 13.6 T (15.0 T)

MAGNETIC FIELD axis (coil) 8

Absorber TOP VIEW LH & LIH

STAGE 2 STAGE 4 STAGE 6 STAGE 8 64 m (32 cells) 62.5 m (50 cells) 62 m (77 cells) 41.1 m (51 cells)

Page 5: Soren Prestemon Lawrence Berkeley National Laboratory€¦ · Lawrence Berkeley National Laboratory. MAP Spring Meeting, FNAL Soren Prestemon– LBNL May 28, 2014 Outline • Vacuum

MAP Spring Meeting, FNAL Soren Prestemon– LBNL May 28, 2014

Magnet design requirements• Specific field profile to satisfy requirements for transverse cooling

and longitudinal-transverse emittance exchange !

• Design must be “realizable”: ➡ Realistic coil cross-sections ➡ Realistic support structures ➡ Available materials (properties) ➡ Basic assembly feasibility

5

Recent Vacuum Cooling Channel Workshop,

held at LBNL, helped clarify some outstanding interface and space requirements issues

Page 6: Soren Prestemon Lawrence Berkeley National Laboratory€¦ · Lawrence Berkeley National Laboratory. MAP Spring Meeting, FNAL Soren Prestemon– LBNL May 28, 2014 Outline • Vacuum

MAP Spring Meeting, FNAL Soren Prestemon– LBNL May 28, 2014

Assumptions for conceptual design

• Magnetics:

➡ Use superconductor properties that are commercially available

➡ Assume coil JE that is demonstrated to be feasible

!

• Mechanical:

➡ Structures use readily available and proven materials

➡ Apply realistic boundary conditions (stick-slip, pre-stress)

➡ Some space allocated for cryogenics

6

Page 7: Soren Prestemon Lawrence Berkeley National Laboratory€¦ · Lawrence Berkeley National Laboratory. MAP Spring Meeting, FNAL Soren Prestemon– LBNL May 28, 2014 Outline • Vacuum

MAP Spring Meeting, FNAL Soren Prestemon– LBNL May 28, 2014

First layout: overview• Consider “tilted” and “straight” solenoids

• Fill factors based on sampling of existing magnets

• Properties from commercially available superconductors

7

Nb3Sn

NbTi

Material( Magnet( k" average(

Nb#Ti&

Tevatron(MB( 0.23(

0.26&

HERA(MB( 0.26(

SSC(MB(inner( 0.30(

SSC(MB(outer( 0.27(

RHIC(MB( 0.23(

LHC(MB(inner( 0.29(

LHC(MB(outer( 0.24(

FRESCA(inner( 0.29(

FRESCA(outer( 0.26(

Nb3Sn&

CERNBElin(inner( 0.29(

0.33&

CERNBElin(inner( 0.26(

MSUT(inner( 0.33(

MSUT(outer( 0.34(

LBNL(D20(inner( 0.48(

LBNL(D20(outer( 0.34(

FNAL(HFDA02B03( 0.29(

NED( 0.31(

Nb3Sn( HQ(quadrupole( 0.32( 0.32(

Nb3Sn( HD2( 0.33( 0.33(

Reference:(L.(Rossi(and(Ezio(Todesco,(«Electromagne;c&design&of&superconduc;ng&dipoles&based&on&sector&coils”,&PHYSICAL(REVIEW(

SPECIAL(TOPICS(B(ACCELERATORS(AND(BEAMS(10,(112401((2007)(

JE = kJSC

Page 8: Soren Prestemon Lawrence Berkeley National Laboratory€¦ · Lawrence Berkeley National Laboratory. MAP Spring Meeting, FNAL Soren Prestemon– LBNL May 28, 2014 Outline • Vacuum

MAP Spring Meeting, FNAL Soren Prestemon– LBNL May 28, 2014

Axial field profile

8

!13.7&T&

13.7&T&

Z-position [m]

Axia

l fiel

d [T

]

Page 9: Soren Prestemon Lawrence Berkeley National Laboratory€¦ · Lawrence Berkeley National Laboratory. MAP Spring Meeting, FNAL Soren Prestemon– LBNL May 28, 2014 Outline • Vacuum

MAP Spring Meeting, FNAL Soren Prestemon– LBNL May 28, 2014

Magnetics: load lines• Assume OST RRP Nb3Sn (Godeke fit; 5% degradation, SF-corrected)

• Assume NbTi with 3kA/mm2 @ 5T, 4.2K (Bottura fit)

9

0

50

100

150

200

250

300

0 5 10 15 20

Jeng

inee

ring

(A/m

m2)

B (T)

Nb#Ti&(1.9&K)&

Nb3Sn&(1.9K)&Nb3Sn&(4.2K)&

Nb#Ti&(4.2&K)&

Inner&solenoid&

Middle&solenoid&

Outer&solenoid&

Page 10: Soren Prestemon Lawrence Berkeley National Laboratory€¦ · Lawrence Berkeley National Laboratory. MAP Spring Meeting, FNAL Soren Prestemon– LBNL May 28, 2014 Outline • Vacuum

MAP Spring Meeting, FNAL Soren Prestemon– LBNL May 28, 2014

Magnetics - status• Middle and outer (NbTi) coils have ample margin

• Inner (Nb3Sn) solenoid is marginally feasible ➡ room for further optimization (iteration with beam modeling)

• Both single-wire and Rutherford cable can be considered ➡ Magnet protection: inductance considerations (not yet addressed)

✓ know that solutions exist (prefer passive, but may need active)

➡ dB/dt-induced quenching down the train needs to be evaluated

✓ mitigate by judicious grouping, possible eddy-current field clamping

10

%"of"the"load"line"at"opera/onal"current"Inner%solenoid% Middle%solenoid% Outer%solenoid%

Nb4Ti"@"4.2"K" /% 76%% 74%%Nb4Ti"@"1.9"K" /% 59%% 58%%

Nb3Sn"@"4.2"K" 88%% /% /%Nb3Sn"@"1.9"K" 81%% /% /%

Page 11: Soren Prestemon Lawrence Berkeley National Laboratory€¦ · Lawrence Berkeley National Laboratory. MAP Spring Meeting, FNAL Soren Prestemon– LBNL May 28, 2014 Outline • Vacuum

MAP Spring Meeting, FNAL Soren Prestemon– LBNL May 28, 2014

Structure: magnetic forces• Significant longitudinal forces between coils

➡ No fault-force analysis so far

• Prefer groupings with zero net longitudinal force ➡ but recognize inter-grouping forces will arise if one quenches

11

1.5$MN$2.0$MN$1.4$MN$

*1.5$MN$

*2.0$MN$ *1.4$MN$

Page 12: Soren Prestemon Lawrence Berkeley National Laboratory€¦ · Lawrence Berkeley National Laboratory. MAP Spring Meeting, FNAL Soren Prestemon– LBNL May 28, 2014 Outline • Vacuum

MAP Spring Meeting, FNAL Soren Prestemon– LBNL May 28, 2014

Conceptual layout• Sliding without friction for all coil/structure contact surfaces

• Separation allowed

12

1

XYZ

Powering

APR 15 201408:37:01

ELEMENTS

/EXPANDED

MAT NUM

1

XYZ

Powering

APR 15 201408:37:01

ELEMENTS

/EXPANDED

MAT NUM

1

XYZ

Powering

APR 15 201408:37:01

ELEMENTS

/EXPANDED

MAT NUM

1

XYZ

Powering

APR 15 201408:37:01

ELEMENTS

/EXPANDED

MAT NUM

RF#cavity#

Nb,Ti#Coils#

Nb3Sn#Coil#

Stainless,steel#casings#

20#mm#

Stainless-steel#

Nb3Sn&

NbTi&

NbTi&

20#mm#

23#mm#

5#mm#

15#mm#

15#mm#

20#mm#

2#mm#gap#

23#mm#

2#mm#gap#

5#mm#

5#mm#

Page 13: Soren Prestemon Lawrence Berkeley National Laboratory€¦ · Lawrence Berkeley National Laboratory. MAP Spring Meeting, FNAL Soren Prestemon– LBNL May 28, 2014 Outline • Vacuum

MAP Spring Meeting, FNAL Soren Prestemon– LBNL May 28, 2014

Coilpack properties• Use historical data from various magnet types

13

D.R. Chichili et al., Investigation of Cable Insulation and Thermo- Mechanical Properties of Nb3Sn Composite.

I. Dixon et al. Mechanical properties of epoxy impregnated superconducting solenoids

Reference' Year' Insula.on' Cond' Loading'Direc.on'X'

(Gpa)'Direc.on'Y'

(Gpa)'Direc.on'Z'

(Gpa)'

Nb>Ti'Dixon&& 1996&DGEBA&resin&+&E2glass&cloth& rect&strand& 1&cycle& 59.3& 41.0& 99.5&Chow& 1998&Epoxy&+&glass&cloth& rect&strand&Monotonic& 52.9& 44.4& 56.8&Chow& 1998&Mixture&law& rect&strand& && 35.3& 35.3& 106.2&ReyHer& 2001&epoxy&+&60μm&quartz&fiber&tape& cable& Cyclic& 2& 46& 2&

Nb3Sn'

Chow& 1998&Epoxy&+&Sglass&braid& cable& Monotonic& 34.5& 27.6& 67.7&Chow& 1998&Mixture&law& cable& && 34.4& 24.6& 80.6&ReyHer& 2001&epoxy&+&60μm&quartz&fiber&tape& cable& Cyclic& 2& 45& 2&Chichili& 2000&epoxy&CTD2101K&+&S2&glass& cable& Monotonic& 2& 26& 56&Chichili& 2000&epoxy&CTD2101K&+&S2&glass& cable& Cyclic& 2& 40& 2&

References:)•  M.)Rey-er!et!al.,!“Characteriza/on!of!the!thermo4mechanical!behaviour!of!insulated!cable!stacks!representa/ve!

of!accelerator!magnet!coils!(2001).!•  D.)R.)Chichili)et!al.,!“Inves/ga/on!of!cable!insula/on!and!thermo4mechanical!proper/es!of!epoxy!impregnated!

Nb3Sn!composite”!(2000).!•  Ken)P.)Chow!et!al.,!“Measurements!of!modulus!of!elas/city!and!thermal!contrac/on!of!epoxy!impregnated!

Niobium4Tin!and!Niobium4Titanium!composites!(1999).!•  Iain)R.)Dixon)et!al.,!“Mechanical!proper/es!of!epoxy!Impregnated!Superconduc/ng!solenoids”!(1996).!!

Magnet'axis'(x)'

Magnet'axis'(x)'

Radial'(y)' X"(m/m)" Y"(m/m)" Z"(m/m)"

Nb+Ti" !0.00341' !0.00437' !0.00274'

Nb3Sn" !0.00305' !0.00367' !0.00305'

From"295"to"77"K"

Page 14: Soren Prestemon Lawrence Berkeley National Laboratory€¦ · Lawrence Berkeley National Laboratory. MAP Spring Meeting, FNAL Soren Prestemon– LBNL May 28, 2014 Outline • Vacuum

MAP Spring Meeting, FNAL Soren Prestemon– LBNL May 28, 2014

Structural analysis: version I• Version 1: no pre-stress

• Evaluate states at: ➡ cooldown

➡ Energized

14

187$MPa$

100$MPa$

σx#(MPa)# σy#(MPa)# σz#(MPa)#

Middle&solenoid& 150& 187& 200&

Outer&solenoid& 53& 70& 68&

σx# σy#

NbTi

Nb3Sn

Page 15: Soren Prestemon Lawrence Berkeley National Laboratory€¦ · Lawrence Berkeley National Laboratory. MAP Spring Meeting, FNAL Soren Prestemon– LBNL May 28, 2014 Outline • Vacuum

MAP Spring Meeting, FNAL Soren Prestemon– LBNL May 28, 2014

Structural analysis: version II• Version 1I: pre-stress

• Evaluate states at: ➡ assembly

➡ cooldown

➡ Energized

15

100#µm#shim#

0.27%&

No#radial#shim#

0.19%&

With#100#µm#radial#shim#

0"MPA" 340"MPA"

0"MPA" 1"GPA"

Room temperature

Cold+Energized

Page 16: Soren Prestemon Lawrence Berkeley National Laboratory€¦ · Lawrence Berkeley National Laboratory. MAP Spring Meeting, FNAL Soren Prestemon– LBNL May 28, 2014 Outline • Vacuum

MAP Spring Meeting, FNAL Soren Prestemon– LBNL May 28, 2014

Tilting vs dipole superposition

• Tilting: ➡ “benign” tilt angle

➡ may need additional “knob”

!

• Dipole superposition: ➡ clean “knob”

➡ solenoids keep rotational symmetry

➡ need space for dipole

➡ dipole sees high field (~1T on 15T background

16

Page 17: Soren Prestemon Lawrence Berkeley National Laboratory€¦ · Lawrence Berkeley National Laboratory. MAP Spring Meeting, FNAL Soren Prestemon– LBNL May 28, 2014 Outline • Vacuum

MAP Spring Meeting, FNAL Soren Prestemon– LBNL May 28, 2014

Summary• First conceptual design of the vacuum cooling channel magnets

➡ Basic feasibility being established (pending optimization)

➡ Need to clarify and document requirements for cryogenics and vac. RF

✓ Vacuum Cooling Workshop helped significantly

➡ Room for improvement:

✓ Iterate magnet design and beam modeling to better optimize performance versus magnet complexity/risk

✓ Use magnet modeling tools to iterate/optimize design:

‣ materials selection

‣ develop pre-stress concept

• No show-stoppers, but…

➡ lots to do: magnet protection, powering, fault scenarios, …

17

Most importantly, a design process and design tools

are being developed to allow iterative analysis