Some Models of Colloids Generation and Transport · (I+ 1 iKd)I + +--ŽKd2] Kd where dV dKd3 (RI...

124
ENVIRONMENTAL EVALUATION GROUP 7007 WYOMING BOULEVARD, N.E. SUITE F-2 ALBUOUEROUE, NEW MEXICO 67109 (505) 81003 I AffvLAnsE ACTION EMPLOY Some Models of Colloids Generation and Transport Y. Hwang Korea Atomic Energy Research Institute P. L. Chambre, T. H. Pigford University of California W. W.-L. Lee Environmental Evaluation Group Albuquerque, NM May 3, 1993 K) Providing an independent technical analysis of the Waste Isoletion Pilot Plant (WIPPI. a lederal transuranic nuclear waste repositoly.

Transcript of Some Models of Colloids Generation and Transport · (I+ 1 iKd)I + +--ŽKd2] Kd where dV dKd3 (RI...

  • ENVIRONMENTAL EVALUATION GROUP

    7007 WYOMING BOULEVARD, N.E.SUITE F-2

    ALBUOUEROUE, NEW MEXICO 67109(505) 81003

    I AffvLAnsE ACTION EMPLOY

    Some Models of ColloidsGeneration and Transport

    Y. Hwang Korea Atomic Energy Research Institute

    P. L. Chambre, T. H. PigfordUniversity of California

    W. W.-L. LeeEnvironmental Evaluation Group

    Albuquerque, NM

    May 3, 1993K)

    Providing an independent technical analysis of the Waste Isoletion Pilot Plant (WIPPI.a lederal transuranic nuclear waste repositoly.

  • ,K>.

    Definitions

    Radiocolloid. Colloids of radioactive species. Probablyfonned from hydrolysis of actinides.

    Natural colloids. Non-radioactive colloidal particlesin natural waters.

    V>

    Solute. Radioactive species in soluton.

    Pseudocolloids. Natural colloids which have sorbedradioactive solute.

    K>

  • .1.1 ... \ .

    K)

    in porous rock radiocolloid transport

    advectiondiffusion

    In fractured rockradiocolloid transport

    If collolds behave like particles,previously published solutionsapplynew solutions if colloidsInteract with solute

    pseudocollold transport >

    solutions for

    --. pseudocolloid soluteadvection Vdiffusion V Vsorption on

    fr. walls V Vfr. solids a

    matrix duff. Vdecay - V Vfiltration V

    'K>

  • 1. Fluid flowThe continuity equation for steady, incompressible flow aroundan infinite cylinder

    V V-(fo)O, (1)where If is the radial coordinate [LI,6 is the angular coordinate [LI, andv(r, 0) is the vector of pore velocity symmetric over 0 = r.

    The velocity vector can be decomposed into the radial and an-gular components

    V=_U".co ( I- ) e, + O0sin 1 0 a) eA~~A>1

    _ aO < 0 < X (2)

    2. Colloid concentrationThe steady-state governing equation for colloid concentration inporous media is

    v J( 0) + S(r, 9) = O. (3)

    whereer + Va0 (4)V =era kife

    and J(r, 0) is the colloidal mass flux MIL2-t],a is the waste cylinder radius [LI,Df is the diffusion coefficient of colloid in liquid l2 t],Or is the unit vector in the r' direction,es is the unit vector in the 0 direction, andS(r 0) is the colloid filtration rate per unit volume of liquid perunit time ML 3-tl.

  • The colloidal mass flux per unit area per unit time is defined as

    J(f,8) (Fs)C(r ) -DfAa de

    (5)

    We need to evaluate the filtration rate term S(r, 0) in cylindricalgeometry.

    A ~A ( 2 t S( , ) = AU.,C(r, )/[cos0 1 (-2 + [sin (1+ 2)]

    (6)where A is a filtration coefficient for colloids, [1/Li, to be deter-mined.

    We solve numerically for the radiocolloid flux from the waste.

    I ..

  • 2'10

    110

    -q

    * Experimental dataBi-modal analysist=40 days

    .

    .0

    4.3

    Q

    U

    I'U-

    10

    .

    w-1 0

    .. S

    I-- .

    -2 -I.10 0 5 10 15 20

    Figure IDistance from source, cm

    . Normalized Neptunium Concentrations from theExperiment and Our Prediction Based on BimodalDistribution of Filtration Coefficient as a Functionof Distance Away from Inlet

    K21

  • 10

    104

    A=20 m1

    \10&'103 ml\

    0.06 0.1 0.,IB d02 0.25 0.3 0.35 0.4 1Distance from Waste Surface, m

    Notmaeizd rocotfold Fluxes as a Function ofDsance for Differmnt PotO VGIocIUGes

  • T2b

    Ir jr

    mEMINENNIdlsolul>4

    I\ - ' I

  • We consider one-dimensional advective-diffusive transport within the fracture, and assume that the colloidsare too large to diffuse into the rock matrix. Neglecting the possible colloid filtration within a fracture, thegoverning equation of pseudocolloid migration in'the fracture is

    tI + ) +EC6VI ( + SS(, Ot) + -S2 (t)j-lD + elelAcl 0,

    ,>09,t>0

    where is the ratio of liquid volume to total volume in the fracturecI(ac, t) is the amount of species sorbed on the colloid per unit volume of solid colloid MIL?v, Is the colloid pore velocity [tl,DI is the colloid dispersion coefficient [ltj,A Is the decay constant [/ti,el is the porosity within the fracture [-I,

    I Is the constant volume fraction of colloids In fracture liquid [-1,cS1 ( as, t) Is the rate of sorption to stationary solid [M/L - tJand E1S(a&, t) is the rate of desorption' from the pseudocollold [M/L 3 - .

    For the same species as solute In liquid In the fracture

    OC2 (a., U ) Ocz(a0, t) O 2C(AWt q9 O) ______ ___v2 _ - ES 2(z,t)+ cS3(j t)-E 2 cj +EAC1*b+ b -Oa > 0t >

    wherec(, U) is the solute concentration in the fracture liquid [M/L3J, V2 Is the solute pore velocity M/t,

    S 3(a USI) is the rate of solute sorption on stationary fracture solids [MIL 3 -tib is the fracture half-width IL],

    I K-i K).

  • and q(az, t) is the diffusive solute flux into the rock matrix [MIL2-tj, given by

    q(r~ ) cpp B y |9 b S

    where p Is the rock porosity 1Dp Is the solute diffusion coefficient In water in porous rock [L/tI,and N(m, y, t) Is the solute concentration in pore water in the rock matrix [ML 3 1.

    For solute species sorbed on stationary fracture solids

    (l- OC3(a t _ EISj(, t) + (1 - )AC 3 (z, t) = 0, z > 0, t > 0

    where c3(ao, t) is the concentration of sorbed solute species [MAL3 1.

    For pseudocolloids on the stationary fracture solids

    (1 - Oc)g2a, ' t) _ tS&( 9 t) + (I - C 1)42>cC(& ,t) = 0, ar > 0,t > 0

    where &2 is the constant volume fraction of the sorbed colloid per unit volume of the stationary fracturesolid [.1.

    Inside the rock matrix

    4p of -)Dp a (' + 14AN(mg t) = 0 m > 0 t > 0 > 0where Rp is the solute retardation coefficient in the rock matrix [-1

    Linear sorption equilibrium between the solute species In the fracture liquid and the same species sorbedon the colloid is assumed. Both the solute species and the colloids In the fracture liquid are assumed to

  • undergo the linear sorption equilibrium with the fracture solids

    ClW t)

    CA2W, t)

    Adding the above equations, an equation for cl is obtained In terms of an effective retardation factor R,an effective dispersion coefficient D, and the retarded velocity v.

    Ract(c t)at

    v OCl(, t)oxu :

    D 8 2C( ) + RAcl(r, t) +D . e(b = 9 > .t > (*)

    where

    R= (1+

    *v=vl +

    D=D (I

    Kd)]

    KdVI)Kd,u)

    D2

    .DlKd,)

    e ] Kd2 Kd3! '

    Then the apparent migration front velocity of solute is

    V =-=R Iei (I+ 1 iKd)I + +- -ŽKd2] Kd

  • wheredV

    dKd3

    (RIR-2) 3

    R.R"A(

    I ( ' I )d + (1+ 1 Kd) Id]I

    Solving eq.(*) with the following Initial and boundary conditions

    N(a, oo, t) =O

    .N(mq kg t) = IC~g0Kd 3

    N(q, y,0) = 0,

    .c 1(0,t) = Kdco,

    c 1(oo, t 0,

    Cg(A, ) = 0

    W > O t >

    > t > 0

    t > 0

    t > 0

    W >0

    where co Is the Inlet solute concentration, we get the solution for the pseudocollold concentration.

    =2Kd3 C , exp IfI erfc [f2] exp [f3] dqir 2 7V-

    a > 0,t > 0

    where

    f =1V 4 RAD -v

    2D

    K>

  • f2=A2,p VDAKd3

    8Dbeli 2 -

    f3 = - 114D)

    With FILTRATION, the first equation becomes

    8a1(art)+ (IiVI8 + EJS1(aI, t) + -S2 (a, t)c-tlDl awl + C161Aci + eitiliAc, = 0,

    > t > where A is a filtration coefficient of radioactive solute sorbed on natural colloids Inside theThe solution for cl remains the same except for

    41T

    fracture, Il/LI.

    =2Kd3 co exp {f } erfc [f2] exp [f3] dq t >

    where

    fl.V2 + 4R*D - V

    2Dand

    * = 1 d_ + lA)] + 'Kd]del

    A

    Kd,

  • 10

    U._

    -2

    _0-100*'K 10*

    K m1oS* K" -10'l Pseudo-colloid

    DD v0. mrIax 10 2F3

    -10'

    RDpin10" a/vinlmWev inO.6 rn/a

    16-4 WM,00 1 .2 3 4

    Distance, m

    ) )

    6 6 7

    - I-:. ,., C^110

  • id1C10°

    10

    -1

    1-2

    0 , ,

    %

  • Where do we go from here?

    We have developed some analytic means for predicting colloid generationand migration rates.

    In so doing we have identified some parameters that need to be measuredin laboratory and field studies:

    filtration coefficientssorption coefficientsdiffusion coefficients

    T

    Do we know what these values are? Can they be measured? Can webound the colloid problem if we have some idea of these values?

    Is this an approach to performance assessment?

    Is colloids a problem in radioactive waste disposal?

    'v

  • n Isu

    Natural Macromolecular Polyelectrolytes(HumicsFulvics)

    A. Strong Complexors:e.g., * I ppm; UOgHu : U =5(

    B. Colloid Formers:as colloids themselves or as coatiinsurfaces on mineral colloids

    C. Strong Reductants:quinone type structures have E ca.PuO2+ = Pu(OH)4

    D. Photolyze:produce peroxide in surface watersincreases reduction strength

    D0-5000

    gs on

    0.7v

    ;,

    K)~

  • MIa

    Ali

    Go

    Br4

    Bro

    Br4

    Br,

    letalIA

    Irich

    Iy . 4

    ad. |

    ad.

    ad.

    ad.

    assume

    basedsolutior

    - Humate StipH _1

    6.0 6.27-0.04

    6.0 .6.68-0.47

    6.0 6.1 6-0.38

    6.0 6.53-0.30.

    4.5 8.2- 1.0

    4.65 7.0-0.3

    es Am binds to 3on free Coe gr

    in

    kbility ConstantsMethod Analysis

    LPAS a

    UV Spec a

    UV Spec a

    Ultraf ilt a

    Sol Extr b

    Spec b

    -Co2 a

    oups per L. ofa:

    b:

    K11I

  • K)

    Separation

    a) J-13 well water acidified to pH 2 (w. HCI),

    b) Passed through columns of XAD-8macroporous resin at 3 - 6 gal/hr.,

    c) Humics stripped with 0.1 M NaOH.

    d) Eluant adjusted to pHa2 and passedthrough XAD-8, then stripped with 0.1 MNaOH, repeated twice more.

    K)

  • K>1.

    Separation (continued)

    e) Almost 3000 gal. reduced 2.5 1 after 3columns.

    f) Freezed dried, then purified by severalcycles of dissolution In base, precipitationIn acid with ultrafiltration.

    g) Overall yield of 60 mg HA, 15 mg FA.

  • UV-VIS Absorbance

    a) Humics characterized by ratio ofabsorbances at 465 and 665 nm(E 4/E 6 ratio.)

    V)

    b) E 4 /E 6: 4 - 8 for humics.

    c) E 4 /E 6 : 4.1 for HA and 4.4 for FA fromJ-13.

    0--.

    K.)

  • Infrared Spectra

    a) Spectra of HA and FA from J-13 similar tothose of aquatic and lake sediments.

    K>b) The spectraspectra from

    differ noticeable fromsoil samples.

    HA

    I.-

  • Other Properties

    a) -13 nmr - typical of low mole. wt. aquaticFA and HA.

    b) pH ttration - 2.7 meq/g -CO 2H)/g FA- 4.6 meq/g (-CO2H)/g FA

    pKa(a=0.5) = 4.6 FA= 5.6 HA

    Properties are all typical of-aquatic humics.

  • 13

    12

    11

    10

    9

    8

    I-

    I I I I I I I I I

    S.

    5

    4

    a)3.>

    U)

    2 D)-)

    1

    '0O

    7

    6

    5

    4

    3

    2

    5-.

    .

    I I I I 1 I I l Ii

    0 1 2 3 4 5 6 7 8meq OHm/g HA

    Titration and first derivative curves for J-13water humic acid.

  • C

    C ; .

    300 200 100 0

    Chemical shift in ppm (6)

    The CP/MAS C-13 NMR spectrum of the J-13 waterhumic acid.

  • K>

    (I (b)Humic acid from coastalsediment in Bahama

    I I _ . I ~ ~ ~~~~~~~~I I

    diUCaCa

    Cx

    200 150 100 50 0(ppm)

  • K�)

    Binding Studies

    a) Used solvent extraction method:

    0.1 M (NaCIO4) + HDEHP In toluene

    b) D vs [-CO21 requires two parameters, p'1and 2.

    log P1 = (7.57±1.43)a + (4.47±0.49)log P 2 = (2.68±0.54)a + (10.70±0.18)

    K>1

  • Calculated Speclatlon

    No Ca*2

    Ra6.98.2

    Am9.5e-51.1e-4

    AmHu1.01.0

    AmCo3le-43e-4

    Am(C0312neg6e-5

    Am(OH)2e-54e-5

    K1,)C e f.Corrected for Ca+

    6.98.2

    0.030.02

    0.93. 0.41

    0.04o.43

    neg0 D.09

    0.0050.05

    )

  • K>

    COnlusions

    Am(lIl) - HA could affect significantly.

    U02+2 - HA probably would not affect unlessTOC > 0.2 ppm.

    Pu02 Pu0 2+ 2 - would be reduced to Pu(IV) byHA.

  • Particulate Material in Well J-13 WaterJ FII ti . Kerrisk and A.., .'I Ogard

    Objective* Assess the potential for significant

    transport on particulates in flowingradionuclidegroundwater

    * Why Well J-13 water?* Establishedljyvell (1963)

    * Routinely pumped* Close to Yucca Mountain

    * Topopah

    * ReferencESpring Member

    3: LA-10929-MS

    _~~~~~~~~~

    Los Alamos

    _K

  • -

    F 0

    m -m

    '46

    t

    dV8l..- . -*-

    GIN

    i��z

    (a~~~~~~~~~~~

    Ia

    K ) )

  • Sample Collection

    WellJ-13 -Prefilter' 1ORLm Hollow

    FiberFilter5 nm

    Membrane 53001 of waterFilter

    0.4 urm93001 of water

    -� K

    Los Alamos

    2 .

  • Sample Analysis

    * Membrane Filters (> 0.4 gim)* Water wash, centrifuge, alcohol wash, dry* Weigh

    * 0.25 g solid from 9300 1 of water* 2.7 x 1 05 g solid/I water

    * Elemental. analysis* Hollow Fiber (0.4 m - 5 nm)

    * Backflush* 0.0025 g solid from 5300 1 of water* Elemental analysis

    Los Alamos_//-- --- -And K-

  • Catio>n. Co mpositionParticulate Sample. i .:+ 1. l nbrae fotr Hollow Fiber Filter

    0.4 (0.4 jim 5 nm)60% Is

    5°_ __1 U

    . ' ] ,i, i,\

    of

    . AIf

    4 , I I ~ ~ .j!

    S

    SI

    FeNa

    .% I

    ,. 41�..

    i

    * i

    .1 I

    .

    ; iV

    i.

    'i.

    - ,.

    .. I .

    .

    ' . ,...

    . I4; ;4 . ,

    i ; :

    .i . .

    * t. ,-

    wp 3.

    UAl,

    .j

    1 ) .K .. >.Los Alamos

    K )

  • 3i

    h cIulates in J-13nuclide Transport;.

    , *. O. ,

    ,, I .

    .*ix Is tlc Cis t

    the sorptiia i iculaes in J-1 3 water (mlhe 6oncettibn o particulates in J-13 water (g/l)he dissolved radidnufl6dp species concentration irr (moles/)2 ,;R+> s ;$:i;.i fits an,+; ;uateInhv moles Srbebed on"articulates/

    1=R 1.00

    fg)

    i J-13

    water

    -i

    species sorbed on6lid¢; 1Ospecies!I ..* llbI , 1-

    II

    4

    ..;i,

    I _ _ . _ . . .~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    i

    \1

    Los Alamos

    Kj

  • mhtcpaq D&%f inetae in .12 Wutaron Radignuclide Transport

    . . .. - .} > ~~~~~~~z10=0.01

    a?.L; .h*;-*, ........................-...-._

    4n7~~~~~~~~~~~~~~~~~~~~~~~~~~~~~:; ' 1 ............... ..E

    - - -- ----- |--

    r*.

    I~~~~IO

    d . . 1 ' 1w - x I *t . X . .. , ....,,,, ,

    4 ,-6 : jj{1 - ;, -1 - 0

    r. O . ... 4 i , I * . . I

    - -' ., - t

    �vI

    K>

  • c+us 11 WQ uestions

    * If particulates in, Well -1 3 water ard representativeof groundwater underthe repository and the

    sorption ratipf- part 1,tes is not significantly large-e thai) re6po Qat4i M dlirlonuclide transport byparticulat ignificant problem

    ;i W J nve of. groundwaterunder h'SerptIn rtPif

    What i th otoni ato of the particulate material

    )k r

    I?54..

    . Los Alamos-

    I/ ~Kj

  • g a

    U II U U a

    U lea

    U U U i'u a a

    .Intel �446ck 'bZlI l

  • I i=a9

    ~~~~~~ e

    * a a a

    l~~~ V V VU

    - ~~~~

    f

  • * e 0- a g -e~~~~~~~~~~~~~~

    C - - - C - 9* 0 -

    K> K), el

  • I~~~~~ 1_

    ~~~~~~~~~- s a

    K> K)- I

  • I _~~~0

    *l - - -.6*S

    -| S 6 .6 .

    -S S S S m S

    U . U O~~K -7

  • -~~~~ A A

    **

    ~~~~~ -- - S-- U -S -

    KU K)~~~~~�I-j

  • 0 0

    A S

    SU -

    S. --

    m S.

    e Se - S 0 S

    K)lb

  • K)j

  • ;-~~~~~~ AA~

    l~~ ~~ . -.- *

    At

  • ~~- - ee S

    -~~ - S

    Any, )d

  • K) vle

  • K-> K)j

  • . I

  • l~~~ *@ S. - 5- 0

    -~~ 55 - SS-U-

    S.- 5|S S

    K>f

  • Characterization of inorganic colloids from someNTS well waters

    t B.E. VianiS.1. Martin

    Lawrence Livermore National Laboratory

    M. ten BrinkUSGS

    * . Ta?

    l

    K>

  • Characterization

    * Samples collected* t A

    f( in pumped wells,. q.

    Ov , i -iMasse ind by filrati

    * Mass determined by filtration

    * Phases d :ifed bk$lEO and XRD

    * Individual phase compositions measured by EDXS

    K-' K)

  • NTS groundwater colloids I

    * -1 mg/L

    * Inorganip

    If . nit. f t- 4;

    * Fe & Si dxides, layer slicates, exotics, some that go poof

    * Mineralogy related to sampling well

    I

    I>K

  • Colloid concentrations in some NTS waters

    Particles captured b+1.015 tim membrane filters

    Well t Particles TDS

    4,mg/L mg/L

    J-1 3 2a 1.4 281UE-9c. 3.1 151

    UE-20n-1 5.1 255

    5c 1.1 381

    K> K>

  • Preparation of samples for TEM analysis

    I II.

    . .I.,I I

    . I

    .,I

    r14

    '5.

    -.!

    I¢''

    I

    I I

    I .

    00

    sample

    filter paper

    holey-carbon-coatedcopper grid

    K)

  • Well Jm13 -Mica LU!

    I fr.0, , ).

    ,.s

    I , . .I L

    .0 ... AV IIf

    X .

    1.0 pm . T

    K> K)

  • Well J=13-Hematite

    1.0 pm

    i T

    IlCountsto

    C

    IC

    IC

    SC

    Sc

    3C

    2(

    'I

    O

    ho

    mo

    0o

    00

    0

    I a

    I

    I

    lu

    101

    oeCu he Ca

    1 6

    lb S2 14 Is is 20k*V

  • Well J-13 -Illite|

    41~~~~~~~~~~~~~~~~~~~~~~~~~~~~~o

    Counts

    90

    so

    ?0

    to

    so

    Fe

    So .K~~~~~~~~~~~~~~~~s~e

    K> v)

  • Well 19c-Cdstobaite

    1.0 Pm

    4 .

    t '. ,

    Counts

    t0

    120

    0

    60

    I Cu

    kaw44-a S a

    KU1-

  • Well 19c-Amorphous silica

    1.0 pim

    too ~~~~~Cu

    1 *120

    . 0 6

    soCu Cu

    sokCr

    K-> K)

  • Well 5c -Hematite

    iI

    0.5 Plm. ?

    480

    420

    360

    300

    240

    ISO

    120

    50

    0*

    a4,

    t. .

    0

    Fs

    F a

    4

    Cu__L -at" 12 14 1 1 d

    K>.,; a a t2 t4 1 a A

    A cMW~UwIe 20 A WA .1 "i 3)0. tIe Kt. 12_ A___ _

  • Topopah Springs tuff fracture flow experiment -0.05 rn/day -Hematite

    lohm

    I

    1.0PMCount

    :8o

    .120

    360

    300

    240

    120

    4 .

    :3 ¶~~~~~~~~~~~~~~

    a

    Fe

    K> Go0JICr.F*Cu tISM ~ WL~C

    -- - -- - -- - - - k*lV

  • Topopah Springs tuff fracture flow experiment -0.05 m/day -Quartz

    .W

    I

    1.0 amCounti T

    10

    ISO

    120

    60

    so

    a St

    I

    Cu

    U

    I

    6%b-%ft#ov4LAK> k*V K)I I i 4 \-A 6 i a i 10

  • Conclusions

    * Most of the Inorganic phases identified are consistent withminerals in formation.

    * Contamination inferred from presence of exotic phases orcompositions.

    * Different wells display differences in mineralogy.- Well J-13: Iron oxides, layer silicates, and Ca-phase

    . .

    - Well 5c: Iron oxides and layer silicates- Well 19c: Silicon oxides

    * Particles that are damaged by the electron beam, and those thatare not captured by the holey-carbon-flim are not sampled.

    * Inorganic colloids in "clean" groundwaters and those generatedin core-flow experiments are readily detected and identifiedusing this method.

  • Direct Quantification of Organic Material

    in NTS Well Waters

    a .

    Cynthia E. A. PalmerRobert J. SilvaHoward L. Hall

    Gregory L. KlunderRichard E. RussoDavid A. Wruck

    L -�� ........ K. K�11� .

  • Total organic carbon in NTS well water

    NTS Well

    4

    8

    16D

    20W

    Cane Springs

    A

    0.229

    0.247

    0.227

    0.254

    0.551

    Sample Preservation Method

    B C D

    0.113 0.00951 -0.0626

    0.507 -0.0587

    0.135 0.00914 -0.0386

    0.153 -0.0213 -0.0776

    0.416 0.254 0.233

    E

    0.0203

    -0.0154

    0.0157

    0.0262

    0.268

    . .

    I .,

    Methods A:

    B:c:

    D:

    E.

    H 3 P04 , light, ambient temperature, plastic bottle

    H 2SO4 , dark, cold room, plastic bottle

    H 2SO4 , dark, cold room, glass bottle (EPA protocol)

    H 2SO4 , light, ambient temperature, glass bottle

    Na03 , H2SO4 , dark, cold room, glass bottle (Whitbeckprotocol)

    N-es: Aldrich Humic Acid (Na salt) 44 78% C by weightw~~~~~~~~~~~~~~~~_ - - K)j

  • Technical Issues

    * Appropriate "zero'

    * High concentration of Inorganic carbon measured beforelow organic carbon concentration

    - adjust pH to 3- bubble Ar through sample - 30 minutes- three determinations of [TOC]

    , T

    *Standard Additions I .

    K)

  • Analyses of H 2 0 Background ILUDetector Response

    (mV)

    MiIII-Q H 20 B. 281

    Milli-Q H 20 B. 222

    MiIIIQ H 20 B. 151

    HPLC H 2 0 ,

    lowest NTS groundwater

    32.391

    52.054

    51.398

    20.484

    13.389

    K> K)

  • Charge Transfer Fluorescence Determination

    Groundwater< 0.20 ppm TOC

    100 ppm Eu+3

    Complex _1o Eu-organicFormation

    Laser Excitation

    of organic ligandwith 354 nm light

    Eu-organic*

    Eu-organic Charge WTransfer

    Eu-organic*Fluorescence

    Eu-organic

    T

    K)

  • Effects of varying concentration of Humic Acid

    [Eu+3 ] = 100 ppm pH = 5.24

    450

    400

    3504-

    ' 300

    0u 250C

    0(nL 2000

    150

    100

    500 100 200 300 400 500 600 700 800 900 1000

    HA Concentration (ppb)

    K>-- KJ

  • Effect of varying pH

    [Eu*3] = 100 ppm [HA] = 300 ppb

    200 1.8

    180

    160

    E 140E_ 1200

    4T 100-y

    80a-

    cC

    '4

    E

    (a

    a)

    to0

    aly

    a0

    60

    40

    20

    pH

    --- 49 2 nm -- 613 nm & 492nm/613nm

    < -I

  • Technical Issues

    * Precipitation formed in well water samples

    * Photodegradation of material In well water samples

    * * Eu fluorescence observed

    * Tunable excitation

    * Less powerful excitation source

    K> KYV

  • Swedish EffortAbsorb

    DEAE - cellulose

    Desorb0.3 It-- mNaOH

    IAcidify

    II

    SolubleAsorbXA-

    Desorb0.1 we agoNaOH

    ion exchange

    Lyophilize

    Fulvic Acid

    .1

    I .

    IInsoluble

    sorXAD-8

    Desorb0.1 eI

    NaOHt

    Ion exchanget

    Lyophilize

    Humic AcidK-I

  • Technical Issues U:* No acidification of well water required

    * Unsuccessful at rinsing DEAE free of organic materialbefore loading well water

    * Laser light scattering

    * Flow cytometryT

    .

  • RADIONUCLIDE MIGRATION AT THE NEVADA TEST SITE

    JAMES R. HUNT

    DEPARTMENT OF CIVIL ENGINEERINGUNIVERSITY OF CALIFORNIA AT BERKELEY

    SUPPORT:HYDROLOGY AND RADIONUCUDE MIGRATION PROGRAM

    LAWRENCE LIVERMORE NATIONAL LABORATORY

    . s

    K)

  • NEVADA TEST SITE

    J3cn (P52 P55)

    *CambAcus.(RNM-1, WUM23)

    \'s IWeOs r + c

    0 5 1OiA0 5 . , IO 5 10 15 m

    9LtL

  • CAMBRIC SITE CROSS SECTION

    Depth(n)

    CambricUse RNM-A Surface 3132 ft

    (6/15/85) (620/74) 0-II1IIII 1O0-

    I AlluviumI EstimatedI chimney

    I'

  • CAMBRIC8000-

    J 6000 DITCH

    O DEEPCL ~~~~~~~~~LYSIMETER

    4000X

    2000- ow

    0'75 80 85 90

    YEAR

    ,L. . N

  • PWV41.6" 0.4 2 -a r"tQ

    jqT3CJ qr�� *+WT )

    Y�'. V . Tn &. A -�, - ) Qgt. IC14 a. )LiCL-377¶-w % iLPLNL

    0

    200

    400

    E 600

    Ca800

    1000

    1200

    1400

    Figure 2.L Vertical section of the Cheshire study area, showing schematically the relationship be-twen the UEZkn-1 satlite wel and the cavity and formation samplin points in the U2anPS hole.The hypothesized direction of groundwater movement is upward from the cavity through the chimneyto the upper permeable zone, and thn lateraly to the formation and saellte sampling points

    6

  • PARTICLE CONCENTRATIONS BY SEQUENTIAL ULTRAFILTRATION

    LOCATION

    CAVITY

    SIZE RANGE

    200-6 nm50-3

    CONCENTRATION

    55 mg/L10

    FORMATION 50-3 4

    . Y

    I ,.WL4 Lt"t)

    KJ

  • TRANSPORT OF RADIONUCLIDES FROM THE CAVITY

    HALF LIFE FORMATION FRACTION SATELLITERADIONUCLIDE IY TO CAVITY DISSOLVED TO CAVITY

    RATIO IN CAVITY RATIO

    3H 12.26 0.86 1.0 1.1522Na 2.6 0.126 0.93

    oCo 6.27 0.034 0.021

    '°Ru 1.02 0.25 0.1412Sb 2.76 0.54 0.97 0.22

    _"Cs_ . 2.065 0.072 0.684 I-

    ' 87Cs 30.17 . 0.17 0.65 0.001Ual.". US6Eu 4.7-13.4 0.026

  • CHESHIRE RADIONUCUDES

    WA6C '..

    o 0.1 0.2 0.3 OA 05 0 0.7 0.8 0X 1.0Fraction dissolved, cavity

    \K)

  • Prokllhs oS Ck.ask\e Do-to. Set

    1, mrpd la"Ies

    z. Stor'cl4 bowles4. (Jr at lcrd w 5cnrel

    14. UTviam 4ior ve

    -S, 4I\ CASIH19

    9.-.

  • PARTIALLY CLOGGED FRACTURE

    4

    zaiD -- - ~ ~ ~ ~ ~ IPo +x

    -

    IX-0

    tDat >)'I4

  • K>f

    PARTICLES MOVE FASTER THAN WATERIF EXCLUDED FROM POROUS REGION

    APERTURE - 0.1 cm

    POROSITY = 0.95

    CONSTANT PRESSURE GRADIENT

    PERMEABILITY, k cm2)

    0-

    -J

    so

    tll

    :

    X

    10

    la

    10

    2.5-

    10

    1.5~

    10

    0.5

    k-10 1

    k-I 8

    I

    0.2 0. 4 0.6 0.8 10NORMALIZED POROUS REGION THICKNESS

    4 .4, " Nkj. (CA- , 4u JiA4)

  • TAYLOR DISPERSION IN FRACTURE

    OVERALL LONGITUDINAL DISPERSION

    + 2 b 2DL = Db 210

    Db = BROWNIAN OR MOLECULAR DIFFUSIVITY

    = 1 0-5 cm2/s FOR SOLUTE

    = 4x1 O9 cm2Is FOis 1 pum PARTICLE

    !~ ~ 'K)

  • BREAKTHROUGH CURVES FOR U = 1 m/dAND 1 m DOWNSTREAM

    1.0

    0.8

    0

    a

    J:

    US

    S

    c

    0

    0,.I:

    0.6

    0.4

    0.2

    0.0 L.0.7 0.8 0.9 1.0 1.1 1.2

    Time [day]

    1.3

    V 0,,,A ��

    9

  • SCHEMATIC OF PARALLEL PLATE FLOW SYSTEM

    from daystock tank

    direction

    of fow

    o constant flow6tcnt~kreturn u toIstock takstock tank

    pressure A " ")transducer

    PARALLEL PLATES - Top View

    K> K)�11�

  • EXPERIMENTAL PARAMETERS

    * Parallel plate dimensions:- aperture, b = 0.026 cm- width, WTOT = 10.2 cm

    - length, L = 25.4 cm

    * Approach velocity of 184 m/day (flow rate = 3.38 mUmIn)* Montmorillonite, Initial concentration = 500 mgIL* O.IM NaCI, 0.IM CaCI2, lg/L NaN3* Experiment duration of approximately 820 hours

  • RUN 7 NORMALIZED HEAD VERSUS TIME DATA

    12

    10

    8e

    I eX

    - - / -

    .S -

    S ~ S~

    I I f * - _

    6

    4

    )

    2

    n- - - - - - - - - - - - - - - --

    0 100 200 300 400 500 600 700 800

    Time [r]

    900

    3?

  • 10

    a

    E . | RUN 7 DATA

    6- 6 |estimated

    circles: measured(average of three)

    0C 40 ~~VJAJ~

    2

    0 100 200 300 400 500 600 700 800

    Time [hr]

  • FOR A PARTIALLY CLOGGED FRACTURE

    PARTICLE VELOCITY > SOLUTE VELOCITY

    PARTICLE DISPERSION > SOLUTE DISPERSION

    V. PARTICLES ARRIVE SOONER THAN SOLUTES

    EXPERIMENTALLY, WHEN SOLIDS OCCUPY 1 % OF FRACTUREVOLUME, HEAD LOSS INCREASES BY A FACTOR OF 10

    EXPECT COMPLETE CLOGGING IF HEAD LOSS IS CONSTANT4?,

    1

  • Ue )

    Bu444JAA + 4U-. Too i AdA _AAJ : t 4 ' go

    Tf"+ sews. %ce.% 9 3, £s-s .8.

    ramp Dow -S,

    Tha"t

    clI Z)ja"4

    Alu" 4.1i

    F'l'o%±'t " ThIWA4- 6* C i¶9) -4 t 4uwu~c&iJAL4%5 XJap "4a Co o .~Ž.4 4Ao~*

    " -read , I

    ag Wfiur .

    - . i Aj.AAJ4.f

    i f-Axj

    tw""tN

    CA.,� Xi - PhD A, U. C.

    ot v& 'ru* STh , j>op/3v- , tC- 70S.

    1)

  • Lu~ II "ICrlo s cwut-2

    FULSCO

    7)IF Flow Is 044) T

    (be_ l~ ts ftjo noU.

    jr4 roA 5k~

    t o

    c..o1Igi4 UW II c6eo;t 0-ta-t~ cJ.3 4fciluAe&.

    3

  • Utasum. 7pg

    *'

    T*mWseoar

    4 T s

    I"j'

    I

    I

    f

    I

    rgI

    ?

    I

    !I

    0

    e

    0

    f

    *9991

    "I*% %O.

    Ad "satT LoaSE.

    1)m

  • Cqotuwrn Sr'SaILTAtu"Se-sm-.

    a.

    b

    .

    I',

    Co

    co

    el

    I . .

    pi

    P.

    )

    r~

    Iola A.t vs

    v.A, cde

    -. ..

    1.0?ar 'ells�

    9-

    _~. _o

  • Characteristics and Mobilityof Actinides in an

    Aquifer in a Semi-arid Region

    by

    W. L. PolzerE. H. Essington

    Environmental Science GroupLos Alamos National Laboratory

    Based on'Cooperative Studywith

    Argonne National Laboratory

    W. R. Penrose, D. M. Nelson,and K. A. Orlandini

  • Liquid Waste Treatment Processat LANL

    . Addition of iron sulfate and lime

    * Precipitation of iron hydroxide and calciumcarbonate

    )'

    9

  • Treated Waste EffluentDischarge Area

    • Shallow alluvium aquifer in Mortandad Canyon

    • Storage capacity of aquifer(20-30) x 103 m 3

    • Annual storm runoff(25-125) x 103 m 3

    * Annual effluent discharge-40 x 103 m 3

    * Water movement-90% subsurface

  • 10o 1

    z 10°

    C t^ 24 Am (MBq)

    101l * Total Pu (MBq)

    0 Volume (k.m3)

    102~

    1980 1981 1982 1983 1984

    Year

  • Monitoring Access WellsMortandad Canyon Shallow Aquifer

    Lm,. Water Table

    I

    MCO-5.Alluvium

    MCO-75SCAM.

    K> K>V

  • Actinide Characteristics

    * Concentration

    * Distribution ratio

    . Oxidation state (Pu)

    * Ion-exchange properties

    * Size fractionation

    * Chemical reactivity

    Rate of movement

    9

  • Surface Sampling Station and Monitoring Wellsin Mortandad Canyon (March 1983)*

    Parameter Surface MCO-4 MCO-5 MCO-6 MCO-7.5

    Distance 1900 1807 2235 2660 3390fromoutfall, m

    Depth of 5.2 7.3 12.5 18.6well, m

    Depth to *' 1.2 -4.3 9.1 13.1water, m

    Pump 4.4 6.6 11.9 18.0depth, m

    Sampling 4.1 2.8 3.8 1.9rate,Umin

    *Distances are measured along the stream bed.

    K> K>

  • 10°

    Cr

    0-W

    -I

    C:

    00

    l-1

    102

    *............ l.... .. .. * . ..... ***** ..******. -.

    24 1Am

    . i

    103- 2 3 9 , 24 0 pU

    rvlay 198241A4I

    1800 2200 2600 3000 3400

    Distance from Outfall (m)

  • Characteristics of Aquifer Water

    pHEh02Oxidation stateDOC

    6.4 10.1>200 mV>0.3 gg/mL>90% Pu[lIlIV]

  • 106

    i52 3 9, 24 0 PU

    -J

    -

    C:

    041o

    id .

    10

    id

    Lee..c *I ........ e.....

    24 1 AmMay 19811�-

    1800 2200 2600 3000 3400

    Distance from Outfall (m)

    K -\ , K�Ij-

  • Low Molecular Weight OrganicsMortandad Canyon Aquifer

    Concentration (ppb)

    WaterPyridenes(pyridene)

    Natr'I prod(quaiacol)

    Phenols(phenol)

    Organ acids(isobutyric)

    Alkyl benz(o-xylene)

    MCO-4 2.4 24 23 140 13

    Surface

    MCO-5

    MCO-6

    MCO-7.5

    * 1.3T! ,

    3.7

    2.3

    3.1

    14

    20

    19

    16

    8.4

    28

    32

    38

    90

    160

    110

    94

    9.4

    17

    140

    12

    K> K)

  • 10

    i1

    104

    z

    00 0 0

    0 00

    0U

    U0

    0 U0 0

    0 a 0 . 0

    .

    t. , a 0.

    r

    o MCO-5* MCO-75o mcO-6

    1i. . . . . . . . I , . . . ..... a I a I . a a a I. a

    -1 IdCOLLOIDAL

    icdDOC (ppm)

    i1'I

    V)

  • Distribution of Charged SpeciesMortandad Canyon Aquifer

    Percent23 99 4 0pu 2 4 1 Am

    Water Anionic Neutral Anionic Neutral

    Wasteoutfall

    MCO-4

    Surface

    MCO-5

    MCO-6

    MCO-7.5

    7

    T2

    3

    3

    4

    94

    99

    93

    96

    91

    11 78

    3 98

    3 97

    17

    46

    31

    84

    s63

    8 94 93

  • Distribution of Anionic PuMortandad Canyon Aquifer

    Percent

    Water 239Pu (ambient) 23Pu (tracer)

    Background -- 20Waste outfall .7 13

    MCO-4 2 29Surface 3 --MCO-5 3 24MCO-6 4 -, -

    MCO-7.5 8 56

  • Distribution of Anionic 2'AmMortandad Canyon Aquifer

    Percent

    Water Ambient- Tracer

    Background - 26Waste outfall 11 6

    MCO-4 3 17Surface 3 20MCO-5 17 18MCO-6 46 18

    MCO-7.5 31 37

  • Actinides in Colloidal - Size FactionsMortandad Canyon MCO-5 Water

    Percent

    *Size Pu Amfraction Ambient Tacer Ambient Tracer

    0.025,um-0.45,am

    lOOK MW-0.025,m

    1OK MW-lOOK MW

  • Actinides in

  • Actinides in >10K MWSize FactionsMortandad Canyon MCO-5 Water

    Percent

    Sizefraction

    Pu AmAmbient Thacer Ambient Thacer

    0.025,um-.0.45gm

    lOOK MW-0.025,Am

    1OK MW-lOOK MW

    .94... I

    34

    0.5 2

    70

    2

    28

    56

    6

    385.5 64

    K> K>

  • 238pu to 239240Pu Ratios inMortandad Canyon Samples, - 1982 and 1983

    Distance from Outfall (m)l l l l l l l

    1807 1900 2235 2400 2660 3180 3390

    Aquifer water 0.21 0.30 0.59 5.01982

    Suspended sediment * 0.04 - 0.59 0.35 0.081982

    Aquifer water 0.19 0.77 1.6 6.81983

    Suspended sediment 0.18 0.38 0.60 0.231983

    Surface sediment 0.15 0.16 0.251983

  • . n (Th

    10

    0c _o

    cr:

    M

    co

    co

    0

    0

    '*1Gi0)

    1

    0.11976 1978 1980 1982 1984 1986

    Year

  • Characteristics of Actinidesin Mortandad Canyon Shallow Aquifer

    Pu > 90% Pu(lll,IV)

    Charge distributionPredominantly neutralSome negative charge

    Size distribution 3Pu -Colloidal (0.025-0.45 gm)Am -Colloidal (0.025-0.45 jm)

    -Soluble (

  • Characteristics of Actinidesin Mortandad Canyon Shallow Aquifer

    (cont'd)

    * Reactivity (isotopic equilibrium)Irreversible-very slow to react(laboratory and field)

    • Rate of movement (relative)Pu < water (tritium)(e.g., Pu -1 0 times slower than tritium)