Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the...

58
Some connections between open problems Nicolai Kraus University of Nottingham HoTTEST, 25 Oct 2018

Transcript of Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the...

Page 1: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

Some connections betweenopen problems

Nicolai Kraus

University of Nottingham

HoTTEST, 25 Oct 2018

Page 2: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

Open Problems

Define semi-simplicial types

A theory of∞-categories

appli-cations

HoTT“eating” itself

“Minimal”truncation UP

Open HoTT problems(suspension of set, . . . )

completesemi-Segal,cf. Capriottiet al.’16-18

trivial

viahigherCwFs?

reflection, cf.Shulman’14

(-1): K.’15

teaser:this talk

SEMISIMPLICIAL TYPES

(UF 2012/13, Lumsdaine et al.)

A0 :UA1 :A0 × A0 → UA2 : Π(x, y, z : A0), A1(x, y)

× A1(y, z)× A1(x, z)→ U

δ

x

y z

w

f g

h

jk

Example:A0 ≡ x, y, z, wA1(x, y) ≡ f, gA1(x,w) ≡ h,. . .A2(.., g, j, h) ≡ δ

PROBLEM: Find F : N→ U1such that F(n) 'type of tuples (A0, . . . ,An).UNSOLVED in “book-HoTT”,solved in Voevodsky’s HTS,our 2LTT (arXiv:1705.03307)

NOTE: semi is what allows theabove encoding.

HIGHER CATEGORIES

TASK: develop (∞, 1)-cat’s inHoTT (internally)WHY: occur everywhere inHoTT, e.g. “HIT H is initialin the category of H-algebras”(not captured by AKS)NOTE: “Semisimplicial types” ≈functors ∆op

+ → U(“simpl. types” ≈ ∆op → U ,others see K.-Sattler’17).APPROACH (if given SST):mimic Rezk’s Segal spaces (re-place space by type);issue: semi

COMPLETE SEMI-SEGAL TYPE

Def:• semisimpl. type (A0, A1, . . .)• Segal cond. (aka horn filling)• completeness (Harpaz’15)(note: Segal, compl. are prop)

(comp.)

(assoc.)

Completeness:

x xee

x xid

ee

Special case:

• A1 family of sets(⇒ only need A0, . . . , A3)' AKS categories

(also works one level higher).Capriotti-K.’18

TYPE THEORY IN TYPE THEORY

QUESTION (SHULMAN’14): DoesHoTT with (n+1) universesmodel HoTT with n universes?

Can we implement HoTT inHoTT?

Some partial results, e.g.Altenkirch-Kaposi’s type the-ory in type theory, Escardó,Xu, Buchholtz, Lumsdaine,Weaver, Tsementzis, . . .

PROBLEM:

• syntax should be a set• set-truncate ⇒ HoTT

not a model• idea: use ∞-cat’s to add

all coherences (cf. Al-tenkirch)

TT-IN-TT ⇒ SST: generate SSTterms, reflect them into thehost type theory.

ELIMINATING TRUNCATIONS

What is ‖A‖n → B(for untruncated B)?

E.g. if B is set:(‖A‖−1 → B)

' Σ(f : A→ B),Π(x, y : A), fx = fy

We have constructions of trun-cations (v Doorn, Rijke, K.)which give elimination princi-ples into arbitrary types –but difficult to apply!

USING HIGHER CAT’S

• Write η : U → ∞CAT,i.e. η(X) is the ∞-groupoid of X (RF re-placement of X).• Write coskeln :∞CAT→∞CAT for the [n]-coskeleton (removes cellsabove dimension n)

CONJECTURE: (‖A‖n → B)' (coskeln+1(ηA)→ ηB)

RESULT:

Works for n ≡ −1 (K.’15)

ELEMENTARY OPEN PROBLEMS

• Free ∞-group over a set:is it a set?• Suspension of a set:

is it a 1-type?• Adding a path to a 1-

type: what can we say?

What do these have to do withthe other questions?

Page 3: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

Open Problems

Define semi-simplicial types

A theory of∞-categories

appli-cations

HoTT“eating” itself

“Minimal”truncation UP

Open HoTT problems(suspension of set, . . . )

completesemi-Segal,cf. Capriottiet al.’16-18

trivial

viahigherCwFs?

reflection, cf.Shulman’14

(-1): K.’15

teaser:this talk

SEMISIMPLICIAL TYPES

(UF 2012/13, Lumsdaine et al.)

A0 :UA1 :A0 × A0 → UA2 : Π(x, y, z : A0), A1(x, y)

× A1(y, z)× A1(x, z)→ U

δ

x

y z

w

f g

h

jk

Example:A0 ≡ x, y, z, wA1(x, y) ≡ f, gA1(x,w) ≡ h,. . .A2(.., g, j, h) ≡ δ

PROBLEM: Find F : N→ U1such that F(n) 'type of tuples (A0, . . . ,An).UNSOLVED in “book-HoTT”,solved in Voevodsky’s HTS,our 2LTT (arXiv:1705.03307)

NOTE: semi is what allows theabove encoding.

HIGHER CATEGORIES

TASK: develop (∞, 1)-cat’s inHoTT (internally)WHY: occur everywhere inHoTT, e.g. “HIT H is initialin the category of H-algebras”(not captured by AKS)NOTE: “Semisimplicial types” ≈functors ∆op

+ → U(“simpl. types” ≈ ∆op → U ,others see K.-Sattler’17).APPROACH (if given SST):mimic Rezk’s Segal spaces (re-place space by type);issue: semi

COMPLETE SEMI-SEGAL TYPE

Def:• semisimpl. type (A0, A1, . . .)• Segal cond. (aka horn filling)• completeness (Harpaz’15)(note: Segal, compl. are prop)

(comp.)

(assoc.)

Completeness:

x xee

x xid

ee

Special case:

• A1 family of sets(⇒ only need A0, . . . , A3)' AKS categories

(also works one level higher).Capriotti-K.’18

TYPE THEORY IN TYPE THEORY

QUESTION (SHULMAN’14): DoesHoTT with (n+1) universesmodel HoTT with n universes?

Can we implement HoTT inHoTT?

Some partial results, e.g.Altenkirch-Kaposi’s type the-ory in type theory, Escardó,Xu, Buchholtz, Lumsdaine,Weaver, Tsementzis, . . .

PROBLEM:

• syntax should be a set• set-truncate ⇒ HoTT

not a model• idea: use ∞-cat’s to add

all coherences (cf. Al-tenkirch)

TT-IN-TT ⇒ SST: generate SSTterms, reflect them into thehost type theory.

ELIMINATING TRUNCATIONS

What is ‖A‖n → B(for untruncated B)?

E.g. if B is set:(‖A‖−1 → B)

' Σ(f : A→ B),Π(x, y : A), fx = fy

We have constructions of trun-cations (v Doorn, Rijke, K.)which give elimination princi-ples into arbitrary types –but difficult to apply!

USING HIGHER CAT’S

• Write η : U → ∞CAT,i.e. η(X) is the ∞-groupoid of X (RF re-placement of X).• Write coskeln :∞CAT→∞CAT for the [n]-coskeleton (removes cellsabove dimension n)

CONJECTURE: (‖A‖n → B)' (coskeln+1(ηA)→ ηB)

RESULT:

Works for n ≡ −1 (K.’15)

ELEMENTARY OPEN PROBLEMS

• Free ∞-group over a set:is it a set?• Suspension of a set:

is it a 1-type?• Adding a path to a 1-

type: what can we say?

What do these have to do withthe other questions?

Page 4: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

Open Problems

Define semi-simplicial types

A theory of∞-categories

appli-cations

HoTT“eating” itself

“Minimal”truncation UP

Open HoTT problems(suspension of set, . . . )

completesemi-Segal,cf. Capriottiet al.’16-18

trivial

viahigherCwFs?

reflection, cf.Shulman’14

(-1): K.’15

teaser:this talk

SEMISIMPLICIAL TYPES

(UF 2012/13, Lumsdaine et al.)

A0 :UA1 :A0 × A0 → UA2 : Π(x, y, z : A0), A1(x, y)

× A1(y, z)× A1(x, z)→ U

δ

x

y z

w

f g

h

jk

Example:A0 ≡ x, y, z, wA1(x, y) ≡ f, gA1(x,w) ≡ h,. . .A2(.., g, j, h) ≡ δ

PROBLEM: Find F : N→ U1such that F(n) 'type of tuples (A0, . . . ,An).UNSOLVED in “book-HoTT”,solved in Voevodsky’s HTS,our 2LTT (arXiv:1705.03307)

NOTE: semi is what allows theabove encoding.

HIGHER CATEGORIES

TASK: develop (∞, 1)-cat’s inHoTT (internally)WHY: occur everywhere inHoTT, e.g. “HIT H is initialin the category of H-algebras”(not captured by AKS)NOTE: “Semisimplicial types” ≈functors ∆op

+ → U(“simpl. types” ≈ ∆op → U ,others see K.-Sattler’17).APPROACH (if given SST):mimic Rezk’s Segal spaces (re-place space by type);issue: semi

COMPLETE SEMI-SEGAL TYPE

Def:• semisimpl. type (A0, A1, . . .)• Segal cond. (aka horn filling)• completeness (Harpaz’15)(note: Segal, compl. are prop)

(comp.)

(assoc.)

Completeness:

x xee

x xid

ee

Special case:

• A1 family of sets(⇒ only need A0, . . . , A3)' AKS categories

(also works one level higher).Capriotti-K.’18

TYPE THEORY IN TYPE THEORY

QUESTION (SHULMAN’14): DoesHoTT with (n+1) universesmodel HoTT with n universes?

Can we implement HoTT inHoTT?

Some partial results, e.g.Altenkirch-Kaposi’s type the-ory in type theory, Escardó,Xu, Buchholtz, Lumsdaine,Weaver, Tsementzis, . . .

PROBLEM:

• syntax should be a set• set-truncate ⇒ HoTT

not a model• idea: use ∞-cat’s to add

all coherences (cf. Al-tenkirch)

TT-IN-TT ⇒ SST: generate SSTterms, reflect them into thehost type theory.

ELIMINATING TRUNCATIONS

What is ‖A‖n → B(for untruncated B)?

E.g. if B is set:(‖A‖−1 → B)

' Σ(f : A→ B),Π(x, y : A), fx = fy

We have constructions of trun-cations (v Doorn, Rijke, K.)which give elimination princi-ples into arbitrary types –but difficult to apply!

USING HIGHER CAT’S

• Write η : U → ∞CAT,i.e. η(X) is the ∞-groupoid of X (RF re-placement of X).• Write coskeln :∞CAT→∞CAT for the [n]-coskeleton (removes cellsabove dimension n)

CONJECTURE: (‖A‖n → B)' (coskeln+1(ηA)→ ηB)

RESULT:

Works for n ≡ −1 (K.’15)

ELEMENTARY OPEN PROBLEMS

• Free ∞-group over a set:is it a set?• Suspension of a set:

is it a 1-type?• Adding a path to a 1-

type: what can we say?

What do these have to do withthe other questions?

Page 5: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

Open Problems

Define semi-simplicial types

A theory of∞-categories

appli-cations

HoTT“eating” itself

“Minimal”truncation UP

Open HoTT problems(suspension of set, . . . )

completesemi-Segal,cf. Capriottiet al.’16-18

trivial

viahigherCwFs?

reflection, cf.Shulman’14

(-1): K.’15

teaser:this talk

SEMISIMPLICIAL TYPES

(UF 2012/13, Lumsdaine et al.)

A0 :UA1 :A0 × A0 → UA2 : Π(x, y, z : A0), A1(x, y)

× A1(y, z)× A1(x, z)→ U

δ

x

y z

w

f g

h

jk

Example:A0 ≡ x, y, z, wA1(x, y) ≡ f, gA1(x,w) ≡ h,. . .A2(.., g, j, h) ≡ δ

PROBLEM: Find F : N→ U1such that F(n) 'type of tuples (A0, . . . ,An).

UNSOLVED in “book-HoTT”,solved in Voevodsky’s HTS,our 2LTT (arXiv:1705.03307)

NOTE: semi is what allows theabove encoding.

HIGHER CATEGORIES

TASK: develop (∞, 1)-cat’s inHoTT (internally)WHY: occur everywhere inHoTT, e.g. “HIT H is initialin the category of H-algebras”(not captured by AKS)NOTE: “Semisimplicial types” ≈functors ∆op

+ → U(“simpl. types” ≈ ∆op → U ,others see K.-Sattler’17).APPROACH (if given SST):mimic Rezk’s Segal spaces (re-place space by type);issue: semi

COMPLETE SEMI-SEGAL TYPE

Def:• semisimpl. type (A0, A1, . . .)• Segal cond. (aka horn filling)• completeness (Harpaz’15)(note: Segal, compl. are prop)

(comp.)

(assoc.)

Completeness:

x xee

x xid

ee

Special case:

• A1 family of sets(⇒ only need A0, . . . , A3)' AKS categories

(also works one level higher).Capriotti-K.’18

TYPE THEORY IN TYPE THEORY

QUESTION (SHULMAN’14): DoesHoTT with (n+1) universesmodel HoTT with n universes?

Can we implement HoTT inHoTT?

Some partial results, e.g.Altenkirch-Kaposi’s type the-ory in type theory, Escardó,Xu, Buchholtz, Lumsdaine,Weaver, Tsementzis, . . .

PROBLEM:

• syntax should be a set• set-truncate ⇒ HoTT

not a model• idea: use ∞-cat’s to add

all coherences (cf. Al-tenkirch)

TT-IN-TT ⇒ SST: generate SSTterms, reflect them into thehost type theory.

ELIMINATING TRUNCATIONS

What is ‖A‖n → B(for untruncated B)?

E.g. if B is set:(‖A‖−1 → B)

' Σ(f : A→ B),Π(x, y : A), fx = fy

We have constructions of trun-cations (v Doorn, Rijke, K.)which give elimination princi-ples into arbitrary types –but difficult to apply!

USING HIGHER CAT’S

• Write η : U → ∞CAT,i.e. η(X) is the ∞-groupoid of X (RF re-placement of X).• Write coskeln :∞CAT→∞CAT for the [n]-coskeleton (removes cellsabove dimension n)

CONJECTURE: (‖A‖n → B)' (coskeln+1(ηA)→ ηB)

RESULT:

Works for n ≡ −1 (K.’15)

ELEMENTARY OPEN PROBLEMS

• Free ∞-group over a set:is it a set?• Suspension of a set:

is it a 1-type?• Adding a path to a 1-

type: what can we say?

What do these have to do withthe other questions?

Page 6: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

Open Problems

Define semi-simplicial types

A theory of∞-categories

appli-cations

HoTT“eating” itself

“Minimal”truncation UP

Open HoTT problems(suspension of set, . . . )

completesemi-Segal,cf. Capriottiet al.’16-18

trivial

viahigherCwFs?

reflection, cf.Shulman’14

(-1): K.’15

teaser:this talk

SEMISIMPLICIAL TYPES

(UF 2012/13, Lumsdaine et al.)

A0 :UA1 :A0 × A0 → UA2 : Π(x, y, z : A0), A1(x, y)

× A1(y, z)× A1(x, z)→ U

δ

x

y z

w

f g

h

jk

Example:A0 ≡ x, y, z, wA1(x, y) ≡ f, gA1(x,w) ≡ h,. . .A2(.., g, j, h) ≡ δ

PROBLEM: Find F : N→ U1such that F(n) 'type of tuples (A0, . . . ,An).UNSOLVED in “book-HoTT”,solved in Voevodsky’s HTS,our 2LTT (arXiv:1705.03307)

NOTE: semi is what allows theabove encoding.

HIGHER CATEGORIES

TASK: develop (∞, 1)-cat’s inHoTT (internally)WHY: occur everywhere inHoTT, e.g. “HIT H is initialin the category of H-algebras”(not captured by AKS)NOTE: “Semisimplicial types” ≈functors ∆op

+ → U(“simpl. types” ≈ ∆op → U ,others see K.-Sattler’17).APPROACH (if given SST):mimic Rezk’s Segal spaces (re-place space by type);issue: semi

COMPLETE SEMI-SEGAL TYPE

Def:• semisimpl. type (A0, A1, . . .)• Segal cond. (aka horn filling)• completeness (Harpaz’15)(note: Segal, compl. are prop)

(comp.)

(assoc.)

Completeness:

x xee

x xid

ee

Special case:

• A1 family of sets(⇒ only need A0, . . . , A3)' AKS categories

(also works one level higher).Capriotti-K.’18

TYPE THEORY IN TYPE THEORY

QUESTION (SHULMAN’14): DoesHoTT with (n+1) universesmodel HoTT with n universes?

Can we implement HoTT inHoTT?

Some partial results, e.g.Altenkirch-Kaposi’s type the-ory in type theory, Escardó,Xu, Buchholtz, Lumsdaine,Weaver, Tsementzis, . . .

PROBLEM:

• syntax should be a set• set-truncate ⇒ HoTT

not a model• idea: use ∞-cat’s to add

all coherences (cf. Al-tenkirch)

TT-IN-TT ⇒ SST: generate SSTterms, reflect them into thehost type theory.

ELIMINATING TRUNCATIONS

What is ‖A‖n → B(for untruncated B)?

E.g. if B is set:(‖A‖−1 → B)

' Σ(f : A→ B),Π(x, y : A), fx = fy

We have constructions of trun-cations (v Doorn, Rijke, K.)which give elimination princi-ples into arbitrary types –but difficult to apply!

USING HIGHER CAT’S

• Write η : U → ∞CAT,i.e. η(X) is the ∞-groupoid of X (RF re-placement of X).• Write coskeln :∞CAT→∞CAT for the [n]-coskeleton (removes cellsabove dimension n)

CONJECTURE: (‖A‖n → B)' (coskeln+1(ηA)→ ηB)

RESULT:

Works for n ≡ −1 (K.’15)

ELEMENTARY OPEN PROBLEMS

• Free ∞-group over a set:is it a set?• Suspension of a set:

is it a 1-type?• Adding a path to a 1-

type: what can we say?

What do these have to do withthe other questions?

Page 7: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

Open Problems

Define semi-simplicial types

A theory of∞-categories

appli-cations

HoTT“eating” itself

“Minimal”truncation UP

Open HoTT problems(suspension of set, . . . )

completesemi-Segal,cf. Capriottiet al.’16-18

trivial

viahigherCwFs?

reflection, cf.Shulman’14

(-1): K.’15

teaser:this talk

SEMISIMPLICIAL TYPES

(UF 2012/13, Lumsdaine et al.)

A0 :UA1 :A0 × A0 → UA2 : Π(x, y, z : A0), A1(x, y)

× A1(y, z)× A1(x, z)→ U

δ

x

y z

w

f g

h

jk

Example:A0 ≡ x, y, z, wA1(x, y) ≡ f, gA1(x,w) ≡ h,. . .A2(.., g, j, h) ≡ δ

PROBLEM: Find F : N→ U1such that F(n) 'type of tuples (A0, . . . ,An).UNSOLVED in “book-HoTT”,solved in Voevodsky’s HTS,our 2LTT (arXiv:1705.03307)

NOTE: semi is what allows theabove encoding.

HIGHER CATEGORIES

TASK: develop (∞, 1)-cat’s inHoTT (internally)WHY: occur everywhere inHoTT, e.g. “HIT H is initialin the category of H-algebras”(not captured by AKS)NOTE: “Semisimplicial types” ≈functors ∆op

+ → U(“simpl. types” ≈ ∆op → U ,others see K.-Sattler’17).APPROACH (if given SST):mimic Rezk’s Segal spaces (re-place space by type);issue: semi

COMPLETE SEMI-SEGAL TYPE

Def:• semisimpl. type (A0, A1, . . .)• Segal cond. (aka horn filling)• completeness (Harpaz’15)(note: Segal, compl. are prop)

(comp.)

(assoc.)

Completeness:

x xee

x xid

ee

Special case:

• A1 family of sets(⇒ only need A0, . . . , A3)' AKS categories

(also works one level higher).Capriotti-K.’18

TYPE THEORY IN TYPE THEORY

QUESTION (SHULMAN’14): DoesHoTT with (n+1) universesmodel HoTT with n universes?

Can we implement HoTT inHoTT?

Some partial results, e.g.Altenkirch-Kaposi’s type the-ory in type theory, Escardó,Xu, Buchholtz, Lumsdaine,Weaver, Tsementzis, . . .

PROBLEM:

• syntax should be a set• set-truncate ⇒ HoTT

not a model• idea: use ∞-cat’s to add

all coherences (cf. Al-tenkirch)

TT-IN-TT ⇒ SST: generate SSTterms, reflect them into thehost type theory.

ELIMINATING TRUNCATIONS

What is ‖A‖n → B(for untruncated B)?

E.g. if B is set:(‖A‖−1 → B)

' Σ(f : A→ B),Π(x, y : A), fx = fy

We have constructions of trun-cations (v Doorn, Rijke, K.)which give elimination princi-ples into arbitrary types –but difficult to apply!

USING HIGHER CAT’S

• Write η : U → ∞CAT,i.e. η(X) is the ∞-groupoid of X (RF re-placement of X).• Write coskeln :∞CAT→∞CAT for the [n]-coskeleton (removes cellsabove dimension n)

CONJECTURE: (‖A‖n → B)' (coskeln+1(ηA)→ ηB)

RESULT:

Works for n ≡ −1 (K.’15)

ELEMENTARY OPEN PROBLEMS

• Free ∞-group over a set:is it a set?• Suspension of a set:

is it a 1-type?• Adding a path to a 1-

type: what can we say?

What do these have to do withthe other questions?

Page 8: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

Open Problems

Define semi-simplicial types

A theory of∞-categories

appli-cations

HoTT“eating” itself

“Minimal”truncation UP

Open HoTT problems(suspension of set, . . . )

completesemi-Segal,cf. Capriottiet al.’16-18

trivial

viahigherCwFs?

reflection, cf.Shulman’14

(-1): K.’15

teaser:this talk

SEMISIMPLICIAL TYPES

(UF 2012/13, Lumsdaine et al.)

A0 :UA1 :A0 × A0 → UA2 : Π(x, y, z : A0), A1(x, y)

× A1(y, z)× A1(x, z)→ U

δ

x

y z

w

f g

h

jk

Example:A0 ≡ x, y, z, wA1(x, y) ≡ f, gA1(x,w) ≡ h,. . .A2(.., g, j, h) ≡ δ

PROBLEM: Find F : N→ U1such that F(n) 'type of tuples (A0, . . . ,An).UNSOLVED in “book-HoTT”,solved in Voevodsky’s HTS,our 2LTT (arXiv:1705.03307)

NOTE: semi is what allows theabove encoding.

HIGHER CATEGORIES

TASK: develop (∞, 1)-cat’s inHoTT (internally)WHY: occur everywhere inHoTT, e.g. “HIT H is initialin the category of H-algebras”(not captured by AKS)

NOTE: “Semisimplicial types” ≈functors ∆op

+ → U(“simpl. types” ≈ ∆op → U ,others see K.-Sattler’17).APPROACH (if given SST):mimic Rezk’s Segal spaces (re-place space by type);issue: semi

COMPLETE SEMI-SEGAL TYPE

Def:• semisimpl. type (A0, A1, . . .)• Segal cond. (aka horn filling)• completeness (Harpaz’15)(note: Segal, compl. are prop)

(comp.)

(assoc.)

Completeness:

x xee

x xid

ee

Special case:

• A1 family of sets(⇒ only need A0, . . . , A3)' AKS categories

(also works one level higher).Capriotti-K.’18

TYPE THEORY IN TYPE THEORY

QUESTION (SHULMAN’14): DoesHoTT with (n+1) universesmodel HoTT with n universes?

Can we implement HoTT inHoTT?

Some partial results, e.g.Altenkirch-Kaposi’s type the-ory in type theory, Escardó,Xu, Buchholtz, Lumsdaine,Weaver, Tsementzis, . . .

PROBLEM:

• syntax should be a set• set-truncate ⇒ HoTT

not a model• idea: use ∞-cat’s to add

all coherences (cf. Al-tenkirch)

TT-IN-TT ⇒ SST: generate SSTterms, reflect them into thehost type theory.

ELIMINATING TRUNCATIONS

What is ‖A‖n → B(for untruncated B)?

E.g. if B is set:(‖A‖−1 → B)

' Σ(f : A→ B),Π(x, y : A), fx = fy

We have constructions of trun-cations (v Doorn, Rijke, K.)which give elimination princi-ples into arbitrary types –but difficult to apply!

USING HIGHER CAT’S

• Write η : U → ∞CAT,i.e. η(X) is the ∞-groupoid of X (RF re-placement of X).• Write coskeln :∞CAT→∞CAT for the [n]-coskeleton (removes cellsabove dimension n)

CONJECTURE: (‖A‖n → B)' (coskeln+1(ηA)→ ηB)

RESULT:

Works for n ≡ −1 (K.’15)

ELEMENTARY OPEN PROBLEMS

• Free ∞-group over a set:is it a set?• Suspension of a set:

is it a 1-type?• Adding a path to a 1-

type: what can we say?

What do these have to do withthe other questions?

Page 9: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

Open Problems

Define semi-simplicial types

A theory of∞-categories

appli-cations

HoTT“eating” itself

“Minimal”truncation UP

Open HoTT problems(suspension of set, . . . )

completesemi-Segal,cf. Capriottiet al.’16-18

trivial

viahigherCwFs?

reflection, cf.Shulman’14

(-1): K.’15

teaser:this talk

SEMISIMPLICIAL TYPES

(UF 2012/13, Lumsdaine et al.)

A0 :UA1 :A0 × A0 → UA2 : Π(x, y, z : A0), A1(x, y)

× A1(y, z)× A1(x, z)→ U

δ

x

y z

w

f g

h

jk

Example:A0 ≡ x, y, z, wA1(x, y) ≡ f, gA1(x,w) ≡ h,. . .A2(.., g, j, h) ≡ δ

PROBLEM: Find F : N→ U1such that F(n) 'type of tuples (A0, . . . ,An).UNSOLVED in “book-HoTT”,solved in Voevodsky’s HTS,our 2LTT (arXiv:1705.03307)

NOTE: semi is what allows theabove encoding.

HIGHER CATEGORIES

TASK: develop (∞, 1)-cat’s inHoTT (internally)WHY: occur everywhere inHoTT, e.g. “HIT H is initialin the category of H-algebras”(not captured by AKS)NOTE: “Semisimplicial types” ≈functors ∆op

+ → U(“simpl. types” ≈ ∆op → U ,others see K.-Sattler’17).

APPROACH (if given SST):mimic Rezk’s Segal spaces (re-place space by type);issue: semi

COMPLETE SEMI-SEGAL TYPE

Def:• semisimpl. type (A0, A1, . . .)• Segal cond. (aka horn filling)• completeness (Harpaz’15)(note: Segal, compl. are prop)

(comp.)

(assoc.)

Completeness:

x xee

x xid

ee

Special case:

• A1 family of sets(⇒ only need A0, . . . , A3)' AKS categories

(also works one level higher).Capriotti-K.’18

TYPE THEORY IN TYPE THEORY

QUESTION (SHULMAN’14): DoesHoTT with (n+1) universesmodel HoTT with n universes?

Can we implement HoTT inHoTT?

Some partial results, e.g.Altenkirch-Kaposi’s type the-ory in type theory, Escardó,Xu, Buchholtz, Lumsdaine,Weaver, Tsementzis, . . .

PROBLEM:

• syntax should be a set• set-truncate ⇒ HoTT

not a model• idea: use ∞-cat’s to add

all coherences (cf. Al-tenkirch)

TT-IN-TT ⇒ SST: generate SSTterms, reflect them into thehost type theory.

ELIMINATING TRUNCATIONS

What is ‖A‖n → B(for untruncated B)?

E.g. if B is set:(‖A‖−1 → B)

' Σ(f : A→ B),Π(x, y : A), fx = fy

We have constructions of trun-cations (v Doorn, Rijke, K.)which give elimination princi-ples into arbitrary types –but difficult to apply!

USING HIGHER CAT’S

• Write η : U → ∞CAT,i.e. η(X) is the ∞-groupoid of X (RF re-placement of X).• Write coskeln :∞CAT→∞CAT for the [n]-coskeleton (removes cellsabove dimension n)

CONJECTURE: (‖A‖n → B)' (coskeln+1(ηA)→ ηB)

RESULT:

Works for n ≡ −1 (K.’15)

ELEMENTARY OPEN PROBLEMS

• Free ∞-group over a set:is it a set?• Suspension of a set:

is it a 1-type?• Adding a path to a 1-

type: what can we say?

What do these have to do withthe other questions?

Page 10: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

Open Problems

Define semi-simplicial types

A theory of∞-categories

appli-cations

HoTT“eating” itself

“Minimal”truncation UP

Open HoTT problems(suspension of set, . . . )

completesemi-Segal,cf. Capriottiet al.’16-18

trivial

viahigherCwFs?

reflection, cf.Shulman’14

(-1): K.’15

teaser:this talk

SEMISIMPLICIAL TYPES

(UF 2012/13, Lumsdaine et al.)

A0 :UA1 :A0 × A0 → UA2 : Π(x, y, z : A0), A1(x, y)

× A1(y, z)× A1(x, z)→ U

δ

x

y z

w

f g

h

jk

Example:A0 ≡ x, y, z, wA1(x, y) ≡ f, gA1(x,w) ≡ h,. . .A2(.., g, j, h) ≡ δ

PROBLEM: Find F : N→ U1such that F(n) 'type of tuples (A0, . . . ,An).UNSOLVED in “book-HoTT”,solved in Voevodsky’s HTS,our 2LTT (arXiv:1705.03307)

NOTE: semi is what allows theabove encoding.

HIGHER CATEGORIES

TASK: develop (∞, 1)-cat’s inHoTT (internally)WHY: occur everywhere inHoTT, e.g. “HIT H is initialin the category of H-algebras”(not captured by AKS)NOTE: “Semisimplicial types” ≈functors ∆op

+ → U(“simpl. types” ≈ ∆op → U ,others see K.-Sattler’17).APPROACH (if given SST):mimic Rezk’s Segal spaces (re-place space by type);issue: semi

COMPLETE SEMI-SEGAL TYPE

Def:• semisimpl. type (A0, A1, . . .)• Segal cond. (aka horn filling)• completeness (Harpaz’15)(note: Segal, compl. are prop)

(comp.)

(assoc.)

Completeness:

x xee

x xid

ee

Special case:

• A1 family of sets(⇒ only need A0, . . . , A3)' AKS categories

(also works one level higher).Capriotti-K.’18

TYPE THEORY IN TYPE THEORY

QUESTION (SHULMAN’14): DoesHoTT with (n+1) universesmodel HoTT with n universes?

Can we implement HoTT inHoTT?

Some partial results, e.g.Altenkirch-Kaposi’s type the-ory in type theory, Escardó,Xu, Buchholtz, Lumsdaine,Weaver, Tsementzis, . . .

PROBLEM:

• syntax should be a set• set-truncate ⇒ HoTT

not a model• idea: use ∞-cat’s to add

all coherences (cf. Al-tenkirch)

TT-IN-TT ⇒ SST: generate SSTterms, reflect them into thehost type theory.

ELIMINATING TRUNCATIONS

What is ‖A‖n → B(for untruncated B)?

E.g. if B is set:(‖A‖−1 → B)

' Σ(f : A→ B),Π(x, y : A), fx = fy

We have constructions of trun-cations (v Doorn, Rijke, K.)which give elimination princi-ples into arbitrary types –but difficult to apply!

USING HIGHER CAT’S

• Write η : U → ∞CAT,i.e. η(X) is the ∞-groupoid of X (RF re-placement of X).• Write coskeln :∞CAT→∞CAT for the [n]-coskeleton (removes cellsabove dimension n)

CONJECTURE: (‖A‖n → B)' (coskeln+1(ηA)→ ηB)

RESULT:

Works for n ≡ −1 (K.’15)

ELEMENTARY OPEN PROBLEMS

• Free ∞-group over a set:is it a set?• Suspension of a set:

is it a 1-type?• Adding a path to a 1-

type: what can we say?

What do these have to do withthe other questions?

Page 11: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

Open Problems

Define semi-simplicial types

A theory of∞-categories

appli-cations

HoTT“eating” itself

“Minimal”truncation UP

Open HoTT problems(suspension of set, . . . )

completesemi-Segal,cf. Capriottiet al.’16-18

trivial

viahigherCwFs?

reflection, cf.Shulman’14

(-1): K.’15

teaser:this talk

SEMISIMPLICIAL TYPES

(UF 2012/13, Lumsdaine et al.)

A0 :UA1 :A0 × A0 → UA2 : Π(x, y, z : A0), A1(x, y)

× A1(y, z)× A1(x, z)→ U

δ

x

y z

w

f g

h

jk

Example:A0 ≡ x, y, z, wA1(x, y) ≡ f, gA1(x,w) ≡ h,. . .A2(.., g, j, h) ≡ δ

PROBLEM: Find F : N→ U1such that F(n) 'type of tuples (A0, . . . ,An).UNSOLVED in “book-HoTT”,solved in Voevodsky’s HTS,our 2LTT (arXiv:1705.03307)

NOTE: semi is what allows theabove encoding.

HIGHER CATEGORIES

TASK: develop (∞, 1)-cat’s inHoTT (internally)WHY: occur everywhere inHoTT, e.g. “HIT H is initialin the category of H-algebras”(not captured by AKS)NOTE: “Semisimplicial types” ≈functors ∆op

+ → U(“simpl. types” ≈ ∆op → U ,others see K.-Sattler’17).APPROACH (if given SST):mimic Rezk’s Segal spaces (re-place space by type);issue: semi

COMPLETE SEMI-SEGAL TYPE

Def:• semisimpl. type (A0, A1, . . .)• Segal cond. (aka horn filling)• completeness (Harpaz’15)(note: Segal, compl. are prop)

(comp.)

(assoc.)

Completeness:

x xee

x xid

ee

Special case:

• A1 family of sets(⇒ only need A0, . . . , A3)' AKS categories

(also works one level higher).Capriotti-K.’18

TYPE THEORY IN TYPE THEORY

QUESTION (SHULMAN’14): DoesHoTT with (n+1) universesmodel HoTT with n universes?

Can we implement HoTT inHoTT?

Some partial results, e.g.Altenkirch-Kaposi’s type the-ory in type theory, Escardó,Xu, Buchholtz, Lumsdaine,Weaver, Tsementzis, . . .

PROBLEM:

• syntax should be a set• set-truncate ⇒ HoTT

not a model• idea: use ∞-cat’s to add

all coherences (cf. Al-tenkirch)

TT-IN-TT ⇒ SST: generate SSTterms, reflect them into thehost type theory.

ELIMINATING TRUNCATIONS

What is ‖A‖n → B(for untruncated B)?

E.g. if B is set:(‖A‖−1 → B)

' Σ(f : A→ B),Π(x, y : A), fx = fy

We have constructions of trun-cations (v Doorn, Rijke, K.)which give elimination princi-ples into arbitrary types –but difficult to apply!

USING HIGHER CAT’S

• Write η : U → ∞CAT,i.e. η(X) is the ∞-groupoid of X (RF re-placement of X).• Write coskeln :∞CAT→∞CAT for the [n]-coskeleton (removes cellsabove dimension n)

CONJECTURE: (‖A‖n → B)' (coskeln+1(ηA)→ ηB)

RESULT:

Works for n ≡ −1 (K.’15)

ELEMENTARY OPEN PROBLEMS

• Free ∞-group over a set:is it a set?• Suspension of a set:

is it a 1-type?• Adding a path to a 1-

type: what can we say?

What do these have to do withthe other questions?

Page 12: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

Open Problems

Define semi-simplicial types

A theory of∞-categories

appli-cations

HoTT“eating” itself

“Minimal”truncation UP

Open HoTT problems(suspension of set, . . . )

completesemi-Segal,cf. Capriottiet al.’16-18

trivial

viahigherCwFs?

reflection, cf.Shulman’14

(-1): K.’15

teaser:this talk

SEMISIMPLICIAL TYPES

(UF 2012/13, Lumsdaine et al.)

A0 :UA1 :A0 × A0 → UA2 : Π(x, y, z : A0), A1(x, y)

× A1(y, z)× A1(x, z)→ U

δ

x

y z

w

f g

h

jk

Example:A0 ≡ x, y, z, wA1(x, y) ≡ f, gA1(x,w) ≡ h,. . .A2(.., g, j, h) ≡ δ

PROBLEM: Find F : N→ U1such that F(n) 'type of tuples (A0, . . . ,An).UNSOLVED in “book-HoTT”,solved in Voevodsky’s HTS,our 2LTT (arXiv:1705.03307)

NOTE: semi is what allows theabove encoding.

HIGHER CATEGORIES

TASK: develop (∞, 1)-cat’s inHoTT (internally)WHY: occur everywhere inHoTT, e.g. “HIT H is initialin the category of H-algebras”(not captured by AKS)NOTE: “Semisimplicial types” ≈functors ∆op

+ → U(“simpl. types” ≈ ∆op → U ,others see K.-Sattler’17).APPROACH (if given SST):mimic Rezk’s Segal spaces (re-place space by type);issue: semi

COMPLETE SEMI-SEGAL TYPE

Def:• semisimpl. type (A0, A1, . . .)• Segal cond. (aka horn filling)• completeness (Harpaz’15)(note: Segal, compl. are prop)

(comp.)

(assoc.)

Completeness:

x xee

x xid

ee

Special case:

• A1 family of sets(⇒ only need A0, . . . , A3)' AKS categories

(also works one level higher).Capriotti-K.’18

TYPE THEORY IN TYPE THEORY

QUESTION (SHULMAN’14): DoesHoTT with (n+1) universesmodel HoTT with n universes?

Can we implement HoTT inHoTT?

Some partial results, e.g.Altenkirch-Kaposi’s type the-ory in type theory, Escardó,Xu, Buchholtz, Lumsdaine,Weaver, Tsementzis, . . .

PROBLEM:

• syntax should be a set• set-truncate ⇒ HoTT

not a model• idea: use ∞-cat’s to add

all coherences (cf. Al-tenkirch)

TT-IN-TT ⇒ SST: generate SSTterms, reflect them into thehost type theory.

ELIMINATING TRUNCATIONS

What is ‖A‖n → B(for untruncated B)?

E.g. if B is set:(‖A‖−1 → B)

' Σ(f : A→ B),Π(x, y : A), fx = fy

We have constructions of trun-cations (v Doorn, Rijke, K.)which give elimination princi-ples into arbitrary types –but difficult to apply!

USING HIGHER CAT’S

• Write η : U → ∞CAT,i.e. η(X) is the ∞-groupoid of X (RF re-placement of X).• Write coskeln :∞CAT→∞CAT for the [n]-coskeleton (removes cellsabove dimension n)

CONJECTURE: (‖A‖n → B)' (coskeln+1(ηA)→ ηB)

RESULT:

Works for n ≡ −1 (K.’15)

ELEMENTARY OPEN PROBLEMS

• Free ∞-group over a set:is it a set?• Suspension of a set:

is it a 1-type?• Adding a path to a 1-

type: what can we say?

What do these have to do withthe other questions?

Page 13: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

Open Problems

Define semi-simplicial types

A theory of∞-categories

appli-cations

HoTT“eating” itself

“Minimal”truncation UP

Open HoTT problems(suspension of set, . . . )

completesemi-Segal,cf. Capriottiet al.’16-18

trivial

viahigherCwFs?

reflection, cf.Shulman’14

(-1): K.’15

teaser:this talk

SEMISIMPLICIAL TYPES

(UF 2012/13, Lumsdaine et al.)

A0 :UA1 :A0 × A0 → UA2 : Π(x, y, z : A0), A1(x, y)

× A1(y, z)× A1(x, z)→ U

δ

x

y z

w

f g

h

jk

Example:A0 ≡ x, y, z, wA1(x, y) ≡ f, gA1(x,w) ≡ h,. . .A2(.., g, j, h) ≡ δ

PROBLEM: Find F : N→ U1such that F(n) 'type of tuples (A0, . . . ,An).UNSOLVED in “book-HoTT”,solved in Voevodsky’s HTS,our 2LTT (arXiv:1705.03307)

NOTE: semi is what allows theabove encoding.

HIGHER CATEGORIES

TASK: develop (∞, 1)-cat’s inHoTT (internally)WHY: occur everywhere inHoTT, e.g. “HIT H is initialin the category of H-algebras”(not captured by AKS)NOTE: “Semisimplicial types” ≈functors ∆op

+ → U(“simpl. types” ≈ ∆op → U ,others see K.-Sattler’17).APPROACH (if given SST):mimic Rezk’s Segal spaces (re-place space by type);issue: semi

COMPLETE SEMI-SEGAL TYPE

Def:• semisimpl. type (A0, A1, . . .)• Segal cond. (aka horn filling)• completeness (Harpaz’15)(note: Segal, compl. are prop)

(comp.)

(assoc.)

Completeness:

x xee

x xid

ee

Special case:

• A1 family of sets(⇒ only need A0, . . . , A3)' AKS categories

(also works one level higher).Capriotti-K.’18

TYPE THEORY IN TYPE THEORY

QUESTION (SHULMAN’14): DoesHoTT with (n+1) universesmodel HoTT with n universes?

Can we implement HoTT inHoTT?

Some partial results, e.g.Altenkirch-Kaposi’s type the-ory in type theory, Escardó,Xu, Buchholtz, Lumsdaine,Weaver, Tsementzis, . . .

PROBLEM:

• syntax should be a set• set-truncate ⇒ HoTT

not a model• idea: use ∞-cat’s to add

all coherences (cf. Al-tenkirch)

TT-IN-TT ⇒ SST: generate SSTterms, reflect them into thehost type theory.

ELIMINATING TRUNCATIONS

What is ‖A‖n → B(for untruncated B)?

E.g. if B is set:(‖A‖−1 → B)

' Σ(f : A→ B),Π(x, y : A), fx = fy

We have constructions of trun-cations (v Doorn, Rijke, K.)which give elimination princi-ples into arbitrary types –but difficult to apply!

USING HIGHER CAT’S

• Write η : U → ∞CAT,i.e. η(X) is the ∞-groupoid of X (RF re-placement of X).• Write coskeln :∞CAT→∞CAT for the [n]-coskeleton (removes cellsabove dimension n)

CONJECTURE: (‖A‖n → B)' (coskeln+1(ηA)→ ηB)

RESULT:

Works for n ≡ −1 (K.’15)

ELEMENTARY OPEN PROBLEMS

• Free ∞-group over a set:is it a set?• Suspension of a set:

is it a 1-type?• Adding a path to a 1-

type: what can we say?

What do these have to do withthe other questions?

Page 14: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

Open Problems

Define semi-simplicial types

A theory of∞-categories

appli-cations

HoTT“eating” itself

“Minimal”truncation UP

Open HoTT problems(suspension of set, . . . )

completesemi-Segal,cf. Capriottiet al.’16-18

trivial

viahigherCwFs?

reflection, cf.Shulman’14

(-1): K.’15

teaser:this talk

SEMISIMPLICIAL TYPES

(UF 2012/13, Lumsdaine et al.)

A0 :UA1 :A0 × A0 → UA2 : Π(x, y, z : A0), A1(x, y)

× A1(y, z)× A1(x, z)→ U

δ

x

y z

w

f g

h

jk

Example:A0 ≡ x, y, z, wA1(x, y) ≡ f, gA1(x,w) ≡ h,. . .A2(.., g, j, h) ≡ δ

PROBLEM: Find F : N→ U1such that F(n) 'type of tuples (A0, . . . ,An).UNSOLVED in “book-HoTT”,solved in Voevodsky’s HTS,our 2LTT (arXiv:1705.03307)

NOTE: semi is what allows theabove encoding.

HIGHER CATEGORIES

TASK: develop (∞, 1)-cat’s inHoTT (internally)WHY: occur everywhere inHoTT, e.g. “HIT H is initialin the category of H-algebras”(not captured by AKS)NOTE: “Semisimplicial types” ≈functors ∆op

+ → U(“simpl. types” ≈ ∆op → U ,others see K.-Sattler’17).APPROACH (if given SST):mimic Rezk’s Segal spaces (re-place space by type);issue: semi

COMPLETE SEMI-SEGAL TYPE

Def:• semisimpl. type (A0, A1, . . .)• Segal cond. (aka horn filling)• completeness (Harpaz’15)(note: Segal, compl. are prop)

(comp.)

(assoc.)

Completeness:

x xee

x xid

ee

Special case:

• A1 family of sets(⇒ only need A0, . . . , A3)' AKS categories

(also works one level higher).Capriotti-K.’18

TYPE THEORY IN TYPE THEORY

QUESTION (SHULMAN’14): DoesHoTT with (n+1) universesmodel HoTT with n universes?

Can we implement HoTT inHoTT?

Some partial results, e.g.Altenkirch-Kaposi’s type the-ory in type theory, Escardó,Xu, Buchholtz, Lumsdaine,Weaver, Tsementzis, . . .

PROBLEM:

• syntax should be a set• set-truncate ⇒ HoTT

not a model• idea: use ∞-cat’s to add

all coherences (cf. Al-tenkirch)

TT-IN-TT ⇒ SST: generate SSTterms, reflect them into thehost type theory.

ELIMINATING TRUNCATIONS

What is ‖A‖n → B(for untruncated B)?

E.g. if B is set:(‖A‖−1 → B)

' Σ(f : A→ B),Π(x, y : A), fx = fy

We have constructions of trun-cations (v Doorn, Rijke, K.)which give elimination princi-ples into arbitrary types –but difficult to apply!

USING HIGHER CAT’S

• Write η : U → ∞CAT,i.e. η(X) is the ∞-groupoid of X (RF re-placement of X).• Write coskeln :∞CAT→∞CAT for the [n]-coskeleton (removes cellsabove dimension n)

CONJECTURE: (‖A‖n → B)' (coskeln+1(ηA)→ ηB)

RESULT:

Works for n ≡ −1 (K.’15)

ELEMENTARY OPEN PROBLEMS

• Free ∞-group over a set:is it a set?• Suspension of a set:

is it a 1-type?• Adding a path to a 1-

type: what can we say?

What do these have to do withthe other questions?

Page 15: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

Open Problems

Define semi-simplicial types

A theory of∞-categories

appli-cations

HoTT“eating” itself

“Minimal”truncation UP

Open HoTT problems(suspension of set, . . . )

completesemi-Segal,cf. Capriottiet al.’16-18

trivial

viahigherCwFs?

reflection, cf.Shulman’14

(-1): K.’15

teaser:this talk

SEMISIMPLICIAL TYPES

(UF 2012/13, Lumsdaine et al.)

A0 :UA1 :A0 × A0 → UA2 : Π(x, y, z : A0), A1(x, y)

× A1(y, z)× A1(x, z)→ U

δ

x

y z

w

f g

h

jk

Example:A0 ≡ x, y, z, wA1(x, y) ≡ f, gA1(x,w) ≡ h,. . .A2(.., g, j, h) ≡ δ

PROBLEM: Find F : N→ U1such that F(n) 'type of tuples (A0, . . . ,An).UNSOLVED in “book-HoTT”,solved in Voevodsky’s HTS,our 2LTT (arXiv:1705.03307)

NOTE: semi is what allows theabove encoding.

HIGHER CATEGORIES

TASK: develop (∞, 1)-cat’s inHoTT (internally)WHY: occur everywhere inHoTT, e.g. “HIT H is initialin the category of H-algebras”(not captured by AKS)NOTE: “Semisimplicial types” ≈functors ∆op

+ → U(“simpl. types” ≈ ∆op → U ,others see K.-Sattler’17).APPROACH (if given SST):mimic Rezk’s Segal spaces (re-place space by type);issue: semi

COMPLETE SEMI-SEGAL TYPE

Def:• semisimpl. type (A0, A1, . . .)• Segal cond. (aka horn filling)• completeness (Harpaz’15)(note: Segal, compl. are prop)

(comp.)

(assoc.)

Completeness:

x xee

x xid

ee

Special case:

• A1 family of sets(⇒ only need A0, . . . , A3)' AKS categories

(also works one level higher).Capriotti-K.’18

TYPE THEORY IN TYPE THEORY

QUESTION (SHULMAN’14): DoesHoTT with (n+1) universesmodel HoTT with n universes?

Can we implement HoTT inHoTT?

Some partial results, e.g.Altenkirch-Kaposi’s type the-ory in type theory, Escardó,Xu, Buchholtz, Lumsdaine,Weaver, Tsementzis, . . .

PROBLEM:

• syntax should be a set• set-truncate ⇒ HoTT

not a model• idea: use ∞-cat’s to add

all coherences (cf. Al-tenkirch)

TT-IN-TT ⇒ SST: generate SSTterms, reflect them into thehost type theory.

ELIMINATING TRUNCATIONS

What is ‖A‖n → B(for untruncated B)?

E.g. if B is set:(‖A‖−1 → B)

' Σ(f : A→ B),Π(x, y : A), fx = fy

We have constructions of trun-cations (v Doorn, Rijke, K.)which give elimination princi-ples into arbitrary types –but difficult to apply!

USING HIGHER CAT’S

• Write η : U → ∞CAT,i.e. η(X) is the ∞-groupoid of X (RF re-placement of X).• Write coskeln :∞CAT→∞CAT for the [n]-coskeleton (removes cellsabove dimension n)

CONJECTURE: (‖A‖n → B)' (coskeln+1(ηA)→ ηB)

RESULT:

Works for n ≡ −1 (K.’15)

ELEMENTARY OPEN PROBLEMS

• Free ∞-group over a set:is it a set?• Suspension of a set:

is it a 1-type?• Adding a path to a 1-

type: what can we say?

What do these have to do withthe other questions?

Page 16: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

Open Problems

Define semi-simplicial types

A theory of∞-categories

appli-cations

HoTT“eating” itself

“Minimal”truncation UP

Open HoTT problems(suspension of set, . . . )

completesemi-Segal,cf. Capriottiet al.’16-18

trivial

viahigherCwFs?

reflection, cf.Shulman’14

(-1): K.’15

teaser:this talk

SEMISIMPLICIAL TYPES

(UF 2012/13, Lumsdaine et al.)

A0 :UA1 :A0 × A0 → UA2 : Π(x, y, z : A0), A1(x, y)

× A1(y, z)× A1(x, z)→ U

δ

x

y z

w

f g

h

jk

Example:A0 ≡ x, y, z, wA1(x, y) ≡ f, gA1(x,w) ≡ h,. . .A2(.., g, j, h) ≡ δ

PROBLEM: Find F : N→ U1such that F(n) 'type of tuples (A0, . . . ,An).UNSOLVED in “book-HoTT”,solved in Voevodsky’s HTS,our 2LTT (arXiv:1705.03307)

NOTE: semi is what allows theabove encoding.

HIGHER CATEGORIES

TASK: develop (∞, 1)-cat’s inHoTT (internally)WHY: occur everywhere inHoTT, e.g. “HIT H is initialin the category of H-algebras”(not captured by AKS)NOTE: “Semisimplicial types” ≈functors ∆op

+ → U(“simpl. types” ≈ ∆op → U ,others see K.-Sattler’17).APPROACH (if given SST):mimic Rezk’s Segal spaces (re-place space by type);issue: semi

COMPLETE SEMI-SEGAL TYPE

Def:• semisimpl. type (A0, A1, . . .)• Segal cond. (aka horn filling)• completeness (Harpaz’15)(note: Segal, compl. are prop)

(comp.)

(assoc.)

Completeness:

x xee

x xid

ee

Special case:

• A1 family of sets(⇒ only need A0, . . . , A3)' AKS categories

(also works one level higher).Capriotti-K.’18

TYPE THEORY IN TYPE THEORY

QUESTION (SHULMAN’14): DoesHoTT with (n+1) universesmodel HoTT with n universes?

Can we implement HoTT inHoTT?

Some partial results, e.g.Altenkirch-Kaposi’s type the-ory in type theory, Escardó,Xu, Buchholtz, Lumsdaine,Weaver, Tsementzis, . . .

PROBLEM:

• syntax should be a set• set-truncate ⇒ HoTT

not a model• idea: use ∞-cat’s to add

all coherences (cf. Al-tenkirch)

TT-IN-TT ⇒ SST: generate SSTterms, reflect them into thehost type theory.

ELIMINATING TRUNCATIONS

What is ‖A‖n → B(for untruncated B)?

E.g. if B is set:(‖A‖−1 → B)

' Σ(f : A→ B),Π(x, y : A), fx = fy

We have constructions of trun-cations (v Doorn, Rijke, K.)which give elimination princi-ples into arbitrary types –but difficult to apply!

USING HIGHER CAT’S

• Write η : U → ∞CAT,i.e. η(X) is the ∞-groupoid of X (RF re-placement of X).• Write coskeln :∞CAT→∞CAT for the [n]-coskeleton (removes cellsabove dimension n)

CONJECTURE: (‖A‖n → B)' (coskeln+1(ηA)→ ηB)

RESULT:

Works for n ≡ −1 (K.’15)

ELEMENTARY OPEN PROBLEMS

• Free ∞-group over a set:is it a set?• Suspension of a set:

is it a 1-type?• Adding a path to a 1-

type: what can we say?

What do these have to do withthe other questions?

Page 17: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

Open Problems

Define semi-simplicial types

A theory of∞-categories

appli-cations

HoTT“eating” itself

“Minimal”truncation UP

Open HoTT problems(suspension of set, . . . )

completesemi-Segal,cf. Capriottiet al.’16-18

trivial

viahigherCwFs?

reflection, cf.Shulman’14

(-1): K.’15

teaser:this talk

SEMISIMPLICIAL TYPES

(UF 2012/13, Lumsdaine et al.)

A0 :UA1 :A0 × A0 → UA2 : Π(x, y, z : A0), A1(x, y)

× A1(y, z)× A1(x, z)→ U

δ

x

y z

w

f g

h

jk

Example:A0 ≡ x, y, z, wA1(x, y) ≡ f, gA1(x,w) ≡ h,. . .A2(.., g, j, h) ≡ δ

PROBLEM: Find F : N→ U1such that F(n) 'type of tuples (A0, . . . ,An).UNSOLVED in “book-HoTT”,solved in Voevodsky’s HTS,our 2LTT (arXiv:1705.03307)

NOTE: semi is what allows theabove encoding.

HIGHER CATEGORIES

TASK: develop (∞, 1)-cat’s inHoTT (internally)WHY: occur everywhere inHoTT, e.g. “HIT H is initialin the category of H-algebras”(not captured by AKS)NOTE: “Semisimplicial types” ≈functors ∆op

+ → U(“simpl. types” ≈ ∆op → U ,others see K.-Sattler’17).APPROACH (if given SST):mimic Rezk’s Segal spaces (re-place space by type);issue: semi

COMPLETE SEMI-SEGAL TYPE

Def:• semisimpl. type (A0, A1, . . .)• Segal cond. (aka horn filling)• completeness (Harpaz’15)(note: Segal, compl. are prop)

(comp.)

(assoc.)

Completeness:

x xee

x xid

ee

Special case:

• A1 family of sets(⇒ only need A0, . . . , A3)' AKS categories

(also works one level higher).Capriotti-K.’18

TYPE THEORY IN TYPE THEORY

QUESTION (SHULMAN’14): DoesHoTT with (n+1) universesmodel HoTT with n universes?

Can we implement HoTT inHoTT?

Some partial results, e.g.Altenkirch-Kaposi’s type the-ory in type theory, Escardó,Xu, Buchholtz, Lumsdaine,Weaver, Tsementzis, . . .

PROBLEM:

• syntax should be a set• set-truncate ⇒ HoTT

not a model• idea: use ∞-cat’s to add

all coherences (cf. Al-tenkirch)

TT-IN-TT ⇒ SST: generate SSTterms, reflect them into thehost type theory.

ELIMINATING TRUNCATIONS

What is ‖A‖n → B(for untruncated B)?

E.g. if B is set:(‖A‖−1 → B)

' Σ(f : A→ B),Π(x, y : A), fx = fy

We have constructions of trun-cations (v Doorn, Rijke, K.)which give elimination princi-ples into arbitrary types –but difficult to apply!

USING HIGHER CAT’S

• Write η : U → ∞CAT,i.e. η(X) is the ∞-groupoid of X (RF re-placement of X).• Write coskeln :∞CAT→∞CAT for the [n]-coskeleton (removes cellsabove dimension n)

CONJECTURE: (‖A‖n → B)' (coskeln+1(ηA)→ ηB)

RESULT:

Works for n ≡ −1 (K.’15)

ELEMENTARY OPEN PROBLEMS

• Free ∞-group over a set:is it a set?• Suspension of a set:

is it a 1-type?• Adding a path to a 1-

type: what can we say?

What do these have to do withthe other questions?

Page 18: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

Open Problems

Define semi-simplicial types

A theory of∞-categories

appli-cations

HoTT“eating” itself

“Minimal”truncation UP

Open HoTT problems(suspension of set, . . . )

completesemi-Segal,cf. Capriottiet al.’16-18

trivial

viahigherCwFs?

reflection, cf.Shulman’14

(-1): K.’15

teaser:this talk

SEMISIMPLICIAL TYPES

(UF 2012/13, Lumsdaine et al.)

A0 :UA1 :A0 × A0 → UA2 : Π(x, y, z : A0), A1(x, y)

× A1(y, z)× A1(x, z)→ U

δ

x

y z

w

f g

h

jk

Example:A0 ≡ x, y, z, wA1(x, y) ≡ f, gA1(x,w) ≡ h,. . .A2(.., g, j, h) ≡ δ

PROBLEM: Find F : N→ U1such that F(n) 'type of tuples (A0, . . . ,An).UNSOLVED in “book-HoTT”,solved in Voevodsky’s HTS,our 2LTT (arXiv:1705.03307)

NOTE: semi is what allows theabove encoding.

HIGHER CATEGORIES

TASK: develop (∞, 1)-cat’s inHoTT (internally)WHY: occur everywhere inHoTT, e.g. “HIT H is initialin the category of H-algebras”(not captured by AKS)NOTE: “Semisimplicial types” ≈functors ∆op

+ → U(“simpl. types” ≈ ∆op → U ,others see K.-Sattler’17).APPROACH (if given SST):mimic Rezk’s Segal spaces (re-place space by type);issue: semi

COMPLETE SEMI-SEGAL TYPE

Def:• semisimpl. type (A0, A1, . . .)• Segal cond. (aka horn filling)• completeness (Harpaz’15)(note: Segal, compl. are prop)

(comp.)

(assoc.)

Completeness:

x xee

x xid

ee

Special case:

• A1 family of sets(⇒ only need A0, . . . , A3)' AKS categories

(also works one level higher).Capriotti-K.’18

TYPE THEORY IN TYPE THEORY

QUESTION (SHULMAN’14): DoesHoTT with (n+1) universesmodel HoTT with n universes?

Can we implement HoTT inHoTT?

Some partial results, e.g.Altenkirch-Kaposi’s type the-ory in type theory, Escardó,Xu, Buchholtz, Lumsdaine,Weaver, Tsementzis, . . .

PROBLEM:

• syntax should be a set• set-truncate ⇒ HoTT

not a model• idea: use ∞-cat’s to add

all coherences (cf. Al-tenkirch)

TT-IN-TT ⇒ SST: generate SSTterms, reflect them into thehost type theory.

ELIMINATING TRUNCATIONS

What is ‖A‖n → B(for untruncated B)?

E.g. if B is set:(‖A‖−1 → B)

' Σ(f : A→ B),Π(x, y : A), fx = fy

We have constructions of trun-cations (v Doorn, Rijke, K.)which give elimination princi-ples into arbitrary types –but difficult to apply!

USING HIGHER CAT’S

• Write η : U → ∞CAT,i.e. η(X) is the ∞-groupoid of X (RF re-placement of X).• Write coskeln :∞CAT→∞CAT for the [n]-coskeleton (removes cellsabove dimension n)

CONJECTURE: (‖A‖n → B)' (coskeln+1(ηA)→ ηB)

RESULT:

Works for n ≡ −1 (K.’15)

ELEMENTARY OPEN PROBLEMS

• Free ∞-group over a set:is it a set?• Suspension of a set:

is it a 1-type?• Adding a path to a 1-

type: what can we say?

What do these have to do withthe other questions?

Page 19: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

Open Problems

Define semi-simplicial types

A theory of∞-categories

appli-cations

HoTT“eating” itself

“Minimal”truncation UP

Open HoTT problems(suspension of set, . . . )

completesemi-Segal,cf. Capriottiet al.’16-18

trivial

viahigherCwFs?

reflection, cf.Shulman’14

(-1): K.’15

teaser:this talk

SEMISIMPLICIAL TYPES

(UF 2012/13, Lumsdaine et al.)

A0 :UA1 :A0 × A0 → UA2 : Π(x, y, z : A0), A1(x, y)

× A1(y, z)× A1(x, z)→ U

δ

x

y z

w

f g

h

jk

Example:A0 ≡ x, y, z, wA1(x, y) ≡ f, gA1(x,w) ≡ h,. . .A2(.., g, j, h) ≡ δ

PROBLEM: Find F : N→ U1such that F(n) 'type of tuples (A0, . . . ,An).UNSOLVED in “book-HoTT”,solved in Voevodsky’s HTS,our 2LTT (arXiv:1705.03307)

NOTE: semi is what allows theabove encoding.

HIGHER CATEGORIES

TASK: develop (∞, 1)-cat’s inHoTT (internally)WHY: occur everywhere inHoTT, e.g. “HIT H is initialin the category of H-algebras”(not captured by AKS)NOTE: “Semisimplicial types” ≈functors ∆op

+ → U(“simpl. types” ≈ ∆op → U ,others see K.-Sattler’17).APPROACH (if given SST):mimic Rezk’s Segal spaces (re-place space by type);issue: semi

COMPLETE SEMI-SEGAL TYPE

Def:• semisimpl. type (A0, A1, . . .)• Segal cond. (aka horn filling)• completeness (Harpaz’15)(note: Segal, compl. are prop)

(comp.)

(assoc.)

Completeness:

x xee

x xid

ee

Special case:

• A1 family of sets(⇒ only need A0, . . . , A3)' AKS categories

(also works one level higher).Capriotti-K.’18

TYPE THEORY IN TYPE THEORY

QUESTION (SHULMAN’14): DoesHoTT with (n+1) universesmodel HoTT with n universes?

Can we implement HoTT inHoTT?

Some partial results, e.g.Altenkirch-Kaposi’s type the-ory in type theory, Escardó,Xu, Buchholtz, Lumsdaine,Weaver, Tsementzis, . . .

PROBLEM:

• syntax should be a set• set-truncate ⇒ HoTT

not a model• idea: use ∞-cat’s to add

all coherences (cf. Al-tenkirch)

TT-IN-TT ⇒ SST: generate SSTterms, reflect them into thehost type theory.

ELIMINATING TRUNCATIONS

What is ‖A‖n → B(for untruncated B)?

E.g. if B is set:(‖A‖−1 → B)

' Σ(f : A→ B),Π(x, y : A), fx = fy

We have constructions of trun-cations (v Doorn, Rijke, K.)which give elimination princi-ples into arbitrary types –but difficult to apply!

USING HIGHER CAT’S

• Write η : U → ∞CAT,i.e. η(X) is the ∞-groupoid of X (RF re-placement of X).• Write coskeln :∞CAT→∞CAT for the [n]-coskeleton (removes cellsabove dimension n)

CONJECTURE: (‖A‖n → B)' (coskeln+1(ηA)→ ηB)

RESULT:

Works for n ≡ −1 (K.’15)

ELEMENTARY OPEN PROBLEMS

• Free ∞-group over a set:is it a set?• Suspension of a set:

is it a 1-type?• Adding a path to a 1-

type: what can we say?

What do these have to do withthe other questions?

Page 20: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

Open Problems

Define semi-simplicial types

A theory of∞-categories

appli-cations

HoTT“eating” itself

“Minimal”truncation UP

Open HoTT problems(suspension of set, . . . )

completesemi-Segal,cf. Capriottiet al.’16-18

trivial

viahigherCwFs?

reflection, cf.Shulman’14

(-1): K.’15

teaser:this talk

SEMISIMPLICIAL TYPES

(UF 2012/13, Lumsdaine et al.)

A0 :UA1 :A0 × A0 → UA2 : Π(x, y, z : A0), A1(x, y)

× A1(y, z)× A1(x, z)→ U

δ

x

y z

w

f g

h

jk

Example:A0 ≡ x, y, z, wA1(x, y) ≡ f, gA1(x,w) ≡ h,. . .A2(.., g, j, h) ≡ δ

PROBLEM: Find F : N→ U1such that F(n) 'type of tuples (A0, . . . ,An).UNSOLVED in “book-HoTT”,solved in Voevodsky’s HTS,our 2LTT (arXiv:1705.03307)

NOTE: semi is what allows theabove encoding.

HIGHER CATEGORIES

TASK: develop (∞, 1)-cat’s inHoTT (internally)WHY: occur everywhere inHoTT, e.g. “HIT H is initialin the category of H-algebras”(not captured by AKS)NOTE: “Semisimplicial types” ≈functors ∆op

+ → U(“simpl. types” ≈ ∆op → U ,others see K.-Sattler’17).APPROACH (if given SST):mimic Rezk’s Segal spaces (re-place space by type);issue: semi

COMPLETE SEMI-SEGAL TYPE

Def:• semisimpl. type (A0, A1, . . .)• Segal cond. (aka horn filling)• completeness (Harpaz’15)(note: Segal, compl. are prop)

(comp.)

(assoc.)

Completeness:

x xee

x xid

ee

Special case:

• A1 family of sets(⇒ only need A0, . . . , A3)' AKS categories

(also works one level higher).Capriotti-K.’18

TYPE THEORY IN TYPE THEORY

QUESTION (SHULMAN’14): DoesHoTT with (n+1) universesmodel HoTT with n universes?

Can we implement HoTT inHoTT?

Some partial results, e.g.Altenkirch-Kaposi’s type the-ory in type theory, Escardó,Xu, Buchholtz, Lumsdaine,Weaver, Tsementzis, . . .

PROBLEM:

• syntax should be a set• set-truncate ⇒ HoTT

not a model• idea: use ∞-cat’s to add

all coherences (cf. Al-tenkirch)

TT-IN-TT ⇒ SST: generate SSTterms, reflect them into thehost type theory.

ELIMINATING TRUNCATIONS

What is ‖A‖n → B(for untruncated B)?

E.g. if B is set:(‖A‖−1 → B)

' Σ(f : A→ B),Π(x, y : A), fx = fy

We have constructions of trun-cations (v Doorn, Rijke, K.)which give elimination princi-ples into arbitrary types –but difficult to apply!

USING HIGHER CAT’S

• Write η : U → ∞CAT,i.e. η(X) is the ∞-groupoid of X (RF re-placement of X).• Write coskeln :∞CAT→∞CAT for the [n]-coskeleton (removes cellsabove dimension n)

CONJECTURE: (‖A‖n → B)' (coskeln+1(ηA)→ ηB)

RESULT:

Works for n ≡ −1 (K.’15)

ELEMENTARY OPEN PROBLEMS

• Free ∞-group over a set:is it a set?• Suspension of a set:

is it a 1-type?• Adding a path to a 1-

type: what can we say?

What do these have to do withthe other questions?

Page 21: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

Open Problems

Define semi-simplicial types

A theory of∞-categories

appli-cations

HoTT“eating” itself

“Minimal”truncation UP

Open HoTT problems(suspension of set, . . . )

completesemi-Segal,cf. Capriottiet al.’16-18

trivial

viahigherCwFs?

reflection, cf.Shulman’14

(-1): K.’15

teaser:this talk

SEMISIMPLICIAL TYPES

(UF 2012/13, Lumsdaine et al.)

A0 :UA1 :A0 × A0 → UA2 : Π(x, y, z : A0), A1(x, y)

× A1(y, z)× A1(x, z)→ U

δ

x

y z

w

f g

h

jk

Example:A0 ≡ x, y, z, wA1(x, y) ≡ f, gA1(x,w) ≡ h,. . .A2(.., g, j, h) ≡ δ

PROBLEM: Find F : N→ U1such that F(n) 'type of tuples (A0, . . . ,An).UNSOLVED in “book-HoTT”,solved in Voevodsky’s HTS,our 2LTT (arXiv:1705.03307)

NOTE: semi is what allows theabove encoding.

HIGHER CATEGORIES

TASK: develop (∞, 1)-cat’s inHoTT (internally)WHY: occur everywhere inHoTT, e.g. “HIT H is initialin the category of H-algebras”(not captured by AKS)NOTE: “Semisimplicial types” ≈functors ∆op

+ → U(“simpl. types” ≈ ∆op → U ,others see K.-Sattler’17).APPROACH (if given SST):mimic Rezk’s Segal spaces (re-place space by type);issue: semi

COMPLETE SEMI-SEGAL TYPE

Def:• semisimpl. type (A0, A1, . . .)• Segal cond. (aka horn filling)• completeness (Harpaz’15)(note: Segal, compl. are prop)

(comp.)

(assoc.)

Completeness:

x xee

x xid

ee

Special case:

• A1 family of sets(⇒ only need A0, . . . , A3)' AKS categories

(also works one level higher).Capriotti-K.’18

TYPE THEORY IN TYPE THEORY

QUESTION (SHULMAN’14): DoesHoTT with (n+1) universesmodel HoTT with n universes?

Can we implement HoTT inHoTT?

Some partial results, e.g.Altenkirch-Kaposi’s type the-ory in type theory, Escardó,Xu, Buchholtz, Lumsdaine,Weaver, Tsementzis, . . .

PROBLEM:

• syntax should be a set• set-truncate ⇒ HoTT

not a model• idea: use ∞-cat’s to add

all coherences (cf. Al-tenkirch)

TT-IN-TT ⇒ SST: generate SSTterms, reflect them into thehost type theory.

ELIMINATING TRUNCATIONS

What is ‖A‖n → B(for untruncated B)?

E.g. if B is set:(‖A‖−1 → B)

' Σ(f : A→ B),Π(x, y : A), fx = fy

We have constructions of trun-cations (v Doorn, Rijke, K.)which give elimination princi-ples into arbitrary types –but difficult to apply!

USING HIGHER CAT’S

• Write η : U → ∞CAT,i.e. η(X) is the ∞-groupoid of X (RF re-placement of X).• Write coskeln :∞CAT→∞CAT for the [n]-coskeleton (removes cellsabove dimension n)

CONJECTURE: (‖A‖n → B)' (coskeln+1(ηA)→ ηB)

RESULT:

Works for n ≡ −1 (K.’15)

ELEMENTARY OPEN PROBLEMS

• Free ∞-group over a set:is it a set?• Suspension of a set:

is it a 1-type?• Adding a path to a 1-

type: what can we say?

What do these have to do withthe other questions?

Page 22: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

Open Problems

Define semi-simplicial types

A theory of∞-categories

appli-cations

HoTT“eating” itself

“Minimal”truncation UP

Open HoTT problems(suspension of set, . . . )

completesemi-Segal,cf. Capriottiet al.’16-18

trivial

viahigherCwFs?

reflection, cf.Shulman’14

(-1): K.’15

teaser:this talk

SEMISIMPLICIAL TYPES

(UF 2012/13, Lumsdaine et al.)

A0 :UA1 :A0 × A0 → UA2 : Π(x, y, z : A0), A1(x, y)

× A1(y, z)× A1(x, z)→ U

δ

x

y z

w

f g

h

jk

Example:A0 ≡ x, y, z, wA1(x, y) ≡ f, gA1(x,w) ≡ h,. . .A2(.., g, j, h) ≡ δ

PROBLEM: Find F : N→ U1such that F(n) 'type of tuples (A0, . . . ,An).UNSOLVED in “book-HoTT”,solved in Voevodsky’s HTS,our 2LTT (arXiv:1705.03307)

NOTE: semi is what allows theabove encoding.

HIGHER CATEGORIES

TASK: develop (∞, 1)-cat’s inHoTT (internally)WHY: occur everywhere inHoTT, e.g. “HIT H is initialin the category of H-algebras”(not captured by AKS)NOTE: “Semisimplicial types” ≈functors ∆op

+ → U(“simpl. types” ≈ ∆op → U ,others see K.-Sattler’17).APPROACH (if given SST):mimic Rezk’s Segal spaces (re-place space by type);issue: semi

COMPLETE SEMI-SEGAL TYPE

Def:• semisimpl. type (A0, A1, . . .)• Segal cond. (aka horn filling)• completeness (Harpaz’15)(note: Segal, compl. are prop)

(comp.)

(assoc.)

Completeness:

x xee

x xid

ee

Special case:

• A1 family of sets(⇒ only need A0, . . . , A3)' AKS categories

(also works one level higher).Capriotti-K.’18

TYPE THEORY IN TYPE THEORY

QUESTION (SHULMAN’14): DoesHoTT with (n+1) universesmodel HoTT with n universes?

Can we implement HoTT inHoTT?

Some partial results, e.g.Altenkirch-Kaposi’s type the-ory in type theory, Escardó,Xu, Buchholtz, Lumsdaine,Weaver, Tsementzis, . . .

PROBLEM:

• syntax should be a set• set-truncate ⇒ HoTT

not a model• idea: use ∞-cat’s to add

all coherences (cf. Al-tenkirch)

TT-IN-TT ⇒ SST: generate SSTterms, reflect them into thehost type theory.

ELIMINATING TRUNCATIONS

What is ‖A‖n → B(for untruncated B)?

E.g. if B is set:(‖A‖−1 → B)

' Σ(f : A→ B),Π(x, y : A), fx = fy

We have constructions of trun-cations (v Doorn, Rijke, K.)which give elimination princi-ples into arbitrary types –but difficult to apply!

USING HIGHER CAT’S

• Write η : U → ∞CAT,i.e. η(X) is the ∞-groupoid of X (RF re-placement of X).• Write coskeln :∞CAT→∞CAT for the [n]-coskeleton (removes cellsabove dimension n)

CONJECTURE: (‖A‖n → B)' (coskeln+1(ηA)→ ηB)

RESULT:

Works for n ≡ −1 (K.’15)

ELEMENTARY OPEN PROBLEMS

• Free ∞-group over a set:is it a set?• Suspension of a set:

is it a 1-type?• Adding a path to a 1-

type: what can we say?

What do these have to do withthe other questions?

Page 23: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

Open Problems

Define semi-simplicial types

A theory of∞-categories

appli-cations

HoTT“eating” itself

“Minimal”truncation UP

Open HoTT problems(suspension of set, . . . )

completesemi-Segal,cf. Capriottiet al.’16-18

trivial

viahigherCwFs?

reflection, cf.Shulman’14

(-1): K.’15

teaser:this talk

SEMISIMPLICIAL TYPES

(UF 2012/13, Lumsdaine et al.)

A0 :UA1 :A0 × A0 → UA2 : Π(x, y, z : A0), A1(x, y)

× A1(y, z)× A1(x, z)→ U

δ

x

y z

w

f g

h

jk

Example:A0 ≡ x, y, z, wA1(x, y) ≡ f, gA1(x,w) ≡ h,. . .A2(.., g, j, h) ≡ δ

PROBLEM: Find F : N→ U1such that F(n) 'type of tuples (A0, . . . ,An).UNSOLVED in “book-HoTT”,solved in Voevodsky’s HTS,our 2LTT (arXiv:1705.03307)

NOTE: semi is what allows theabove encoding.

HIGHER CATEGORIES

TASK: develop (∞, 1)-cat’s inHoTT (internally)WHY: occur everywhere inHoTT, e.g. “HIT H is initialin the category of H-algebras”(not captured by AKS)NOTE: “Semisimplicial types” ≈functors ∆op

+ → U(“simpl. types” ≈ ∆op → U ,others see K.-Sattler’17).APPROACH (if given SST):mimic Rezk’s Segal spaces (re-place space by type);issue: semi

COMPLETE SEMI-SEGAL TYPE

Def:• semisimpl. type (A0, A1, . . .)• Segal cond. (aka horn filling)• completeness (Harpaz’15)(note: Segal, compl. are prop)

(comp.)

(assoc.)

Completeness:

x xee

x xid

ee

Special case:

• A1 family of sets(⇒ only need A0, . . . , A3)' AKS categories

(also works one level higher).Capriotti-K.’18

TYPE THEORY IN TYPE THEORY

QUESTION (SHULMAN’14): DoesHoTT with (n+1) universesmodel HoTT with n universes?

Can we implement HoTT inHoTT?

Some partial results, e.g.Altenkirch-Kaposi’s type the-ory in type theory, Escardó,Xu, Buchholtz, Lumsdaine,Weaver, Tsementzis, . . .

PROBLEM:

• syntax should be a set• set-truncate ⇒ HoTT

not a model• idea: use ∞-cat’s to add

all coherences (cf. Al-tenkirch)

TT-IN-TT ⇒ SST: generate SSTterms, reflect them into thehost type theory.

ELIMINATING TRUNCATIONS

What is ‖A‖n → B(for untruncated B)?

E.g. if B is set:(‖A‖−1 → B)

' Σ(f : A→ B),Π(x, y : A), fx = fy

We have constructions of trun-cations (v Doorn, Rijke, K.)which give elimination princi-ples into arbitrary types –but difficult to apply!

USING HIGHER CAT’S

• Write η : U → ∞CAT,i.e. η(X) is the ∞-groupoid of X (RF re-placement of X).• Write coskeln :∞CAT→∞CAT for the [n]-coskeleton (removes cellsabove dimension n)

CONJECTURE: (‖A‖n → B)' (coskeln+1(ηA)→ ηB)

RESULT:

Works for n ≡ −1 (K.’15)

ELEMENTARY OPEN PROBLEMS

• Free ∞-group over a set:is it a set?• Suspension of a set:

is it a 1-type?• Adding a path to a 1-

type: what can we say?

What do these have to do withthe other questions?

Page 24: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

Open Problems

Define semi-simplicial types

A theory of∞-categories

appli-cations

HoTT“eating” itself

“Minimal”truncation UP

Open HoTT problems(suspension of set, . . . )

completesemi-Segal,cf. Capriottiet al.’16-18

trivial

viahigherCwFs?

reflection, cf.Shulman’14

(-1): K.’15

teaser:this talk

SEMISIMPLICIAL TYPES

(UF 2012/13, Lumsdaine et al.)

A0 :UA1 :A0 × A0 → UA2 : Π(x, y, z : A0), A1(x, y)

× A1(y, z)× A1(x, z)→ U

δ

x

y z

w

f g

h

jk

Example:A0 ≡ x, y, z, wA1(x, y) ≡ f, gA1(x,w) ≡ h,. . .A2(.., g, j, h) ≡ δ

PROBLEM: Find F : N→ U1such that F(n) 'type of tuples (A0, . . . ,An).UNSOLVED in “book-HoTT”,solved in Voevodsky’s HTS,our 2LTT (arXiv:1705.03307)

NOTE: semi is what allows theabove encoding.

HIGHER CATEGORIES

TASK: develop (∞, 1)-cat’s inHoTT (internally)WHY: occur everywhere inHoTT, e.g. “HIT H is initialin the category of H-algebras”(not captured by AKS)NOTE: “Semisimplicial types” ≈functors ∆op

+ → U(“simpl. types” ≈ ∆op → U ,others see K.-Sattler’17).APPROACH (if given SST):mimic Rezk’s Segal spaces (re-place space by type);issue: semi

COMPLETE SEMI-SEGAL TYPE

Def:• semisimpl. type (A0, A1, . . .)• Segal cond. (aka horn filling)• completeness (Harpaz’15)(note: Segal, compl. are prop)

(comp.)

(assoc.)

Completeness:

x xee

x xid

ee

Special case:

• A1 family of sets(⇒ only need A0, . . . , A3)' AKS categories

(also works one level higher).Capriotti-K.’18

TYPE THEORY IN TYPE THEORY

QUESTION (SHULMAN’14): DoesHoTT with (n+1) universesmodel HoTT with n universes?

Can we implement HoTT inHoTT?

Some partial results, e.g.Altenkirch-Kaposi’s type the-ory in type theory, Escardó,Xu, Buchholtz, Lumsdaine,Weaver, Tsementzis, . . .

PROBLEM:

• syntax should be a set• set-truncate ⇒ HoTT

not a model• idea: use ∞-cat’s to add

all coherences (cf. Al-tenkirch)

TT-IN-TT ⇒ SST: generate SSTterms, reflect them into thehost type theory.

ELIMINATING TRUNCATIONS

What is ‖A‖n → B(for untruncated B)?

E.g. if B is set:(‖A‖−1 → B)

' Σ(f : A→ B),Π(x, y : A), fx = fy

We have constructions of trun-cations (v Doorn, Rijke, K.)which give elimination princi-ples into arbitrary types –but difficult to apply!

USING HIGHER CAT’S

• Write η : U → ∞CAT,i.e. η(X) is the ∞-groupoid of X (RF re-placement of X).• Write coskeln :∞CAT→∞CAT for the [n]-coskeleton (removes cellsabove dimension n)

CONJECTURE: (‖A‖n → B)' (coskeln+1(ηA)→ ηB)

RESULT:

Works for n ≡ −1 (K.’15)

ELEMENTARY OPEN PROBLEMS

• Free ∞-group over a set:is it a set?• Suspension of a set:

is it a 1-type?• Adding a path to a 1-

type: what can we say?

What do these have to do withthe other questions?

Page 25: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

Open Problems

Define semi-simplicial types

A theory of∞-categories

appli-cations

HoTT“eating” itself

“Minimal”truncation UP

Open HoTT problems(suspension of set, . . . )

completesemi-Segal,cf. Capriottiet al.’16-18

trivial

viahigherCwFs?

reflection, cf.Shulman’14

(-1): K.’15

teaser:this talk

SEMISIMPLICIAL TYPES

(UF 2012/13, Lumsdaine et al.)

A0 :UA1 :A0 × A0 → UA2 : Π(x, y, z : A0), A1(x, y)

× A1(y, z)× A1(x, z)→ U

δ

x

y z

w

f g

h

jk

Example:A0 ≡ x, y, z, wA1(x, y) ≡ f, gA1(x,w) ≡ h,. . .A2(.., g, j, h) ≡ δ

PROBLEM: Find F : N→ U1such that F(n) 'type of tuples (A0, . . . ,An).UNSOLVED in “book-HoTT”,solved in Voevodsky’s HTS,our 2LTT (arXiv:1705.03307)

NOTE: semi is what allows theabove encoding.

HIGHER CATEGORIES

TASK: develop (∞, 1)-cat’s inHoTT (internally)WHY: occur everywhere inHoTT, e.g. “HIT H is initialin the category of H-algebras”(not captured by AKS)NOTE: “Semisimplicial types” ≈functors ∆op

+ → U(“simpl. types” ≈ ∆op → U ,others see K.-Sattler’17).APPROACH (if given SST):mimic Rezk’s Segal spaces (re-place space by type);issue: semi

COMPLETE SEMI-SEGAL TYPE

Def:• semisimpl. type (A0, A1, . . .)• Segal cond. (aka horn filling)• completeness (Harpaz’15)(note: Segal, compl. are prop)

(comp.)

(assoc.)

Completeness:

x xee

x xid

ee

Special case:

• A1 family of sets(⇒ only need A0, . . . , A3)' AKS categories

(also works one level higher).Capriotti-K.’18

TYPE THEORY IN TYPE THEORY

QUESTION (SHULMAN’14): DoesHoTT with (n+1) universesmodel HoTT with n universes?

Can we implement HoTT inHoTT?

Some partial results, e.g.Altenkirch-Kaposi’s type the-ory in type theory, Escardó,Xu, Buchholtz, Lumsdaine,Weaver, Tsementzis, . . .

PROBLEM:

• syntax should be a set• set-truncate ⇒ HoTT

not a model• idea: use ∞-cat’s to add

all coherences (cf. Al-tenkirch)

TT-IN-TT ⇒ SST: generate SSTterms, reflect them into thehost type theory.

ELIMINATING TRUNCATIONS

What is ‖A‖n → B(for untruncated B)?

E.g. if B is set:(‖A‖−1 → B)

' Σ(f : A→ B),Π(x, y : A), fx = fy

We have constructions of trun-cations (v Doorn, Rijke, K.)which give elimination princi-ples into arbitrary types –but difficult to apply!

USING HIGHER CAT’S

• Write η : U → ∞CAT,i.e. η(X) is the ∞-groupoid of X (RF re-placement of X).• Write coskeln :∞CAT→∞CAT for the [n]-coskeleton (removes cellsabove dimension n)

CONJECTURE: (‖A‖n → B)' (coskeln+1(ηA)→ ηB)

RESULT:

Works for n ≡ −1 (K.’15)

ELEMENTARY OPEN PROBLEMS

• Free ∞-group over a set:is it a set?• Suspension of a set:

is it a 1-type?• Adding a path to a 1-

type: what can we say?

What do these have to do withthe other questions?

Page 26: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

Open Problems

Define semi-simplicial types

A theory of∞-categories

appli-cations

HoTT“eating” itself

“Minimal”truncation UP

Open HoTT problems(suspension of set, . . . )

completesemi-Segal,cf. Capriottiet al.’16-18

trivial

viahigherCwFs?

reflection, cf.Shulman’14

(-1): K.’15

teaser:this talk

SEMISIMPLICIAL TYPES

(UF 2012/13, Lumsdaine et al.)

A0 :UA1 :A0 × A0 → UA2 : Π(x, y, z : A0), A1(x, y)

× A1(y, z)× A1(x, z)→ U

δ

x

y z

w

f g

h

jk

Example:A0 ≡ x, y, z, wA1(x, y) ≡ f, gA1(x,w) ≡ h,. . .A2(.., g, j, h) ≡ δ

PROBLEM: Find F : N→ U1such that F(n) 'type of tuples (A0, . . . ,An).UNSOLVED in “book-HoTT”,solved in Voevodsky’s HTS,our 2LTT (arXiv:1705.03307)

NOTE: semi is what allows theabove encoding.

HIGHER CATEGORIES

TASK: develop (∞, 1)-cat’s inHoTT (internally)WHY: occur everywhere inHoTT, e.g. “HIT H is initialin the category of H-algebras”(not captured by AKS)NOTE: “Semisimplicial types” ≈functors ∆op

+ → U(“simpl. types” ≈ ∆op → U ,others see K.-Sattler’17).APPROACH (if given SST):mimic Rezk’s Segal spaces (re-place space by type);issue: semi

COMPLETE SEMI-SEGAL TYPE

Def:• semisimpl. type (A0, A1, . . .)• Segal cond. (aka horn filling)• completeness (Harpaz’15)(note: Segal, compl. are prop)

(comp.)

(assoc.)

Completeness:

x xee

x xid

ee

Special case:

• A1 family of sets(⇒ only need A0, . . . , A3)' AKS categories

(also works one level higher).Capriotti-K.’18

TYPE THEORY IN TYPE THEORY

QUESTION (SHULMAN’14): DoesHoTT with (n+1) universesmodel HoTT with n universes?

Can we implement HoTT inHoTT?

Some partial results, e.g.Altenkirch-Kaposi’s type the-ory in type theory, Escardó,Xu, Buchholtz, Lumsdaine,Weaver, Tsementzis, . . .

PROBLEM:

• syntax should be a set• set-truncate ⇒ HoTT

not a model• idea: use ∞-cat’s to add

all coherences (cf. Al-tenkirch)

TT-IN-TT ⇒ SST: generate SSTterms, reflect them into thehost type theory.

ELIMINATING TRUNCATIONS

What is ‖A‖n → B(for untruncated B)?

E.g. if B is set:(‖A‖−1 → B)

' Σ(f : A→ B),Π(x, y : A), fx = fy

We have constructions of trun-cations (v Doorn, Rijke, K.)which give elimination princi-ples into arbitrary types –but difficult to apply!

USING HIGHER CAT’S

• Write η : U → ∞CAT,i.e. η(X) is the ∞-groupoid of X (RF re-placement of X).• Write coskeln :∞CAT→∞CAT for the [n]-coskeleton (removes cellsabove dimension n)

CONJECTURE: (‖A‖n → B)' (coskeln+1(ηA)→ ηB)

RESULT:

Works for n ≡ −1 (K.’15)

ELEMENTARY OPEN PROBLEMS

• Free ∞-group over a set:is it a set?• Suspension of a set:

is it a 1-type?• Adding a path to a 1-

type: what can we say?

What do these have to do withthe other questions?

Page 27: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

Open Problems

Define semi-simplicial types

A theory of∞-categories

appli-cations

HoTT“eating” itself

“Minimal”truncation UP

Open HoTT problems(suspension of set, . . . )

completesemi-Segal,cf. Capriottiet al.’16-18

trivial

viahigherCwFs?

reflection, cf.Shulman’14

(-1): K.’15

teaser:this talk

SEMISIMPLICIAL TYPES

(UF 2012/13, Lumsdaine et al.)

A0 :UA1 :A0 × A0 → UA2 : Π(x, y, z : A0), A1(x, y)

× A1(y, z)× A1(x, z)→ U

δ

x

y z

w

f g

h

jk

Example:A0 ≡ x, y, z, wA1(x, y) ≡ f, gA1(x,w) ≡ h,. . .A2(.., g, j, h) ≡ δ

PROBLEM: Find F : N→ U1such that F(n) 'type of tuples (A0, . . . ,An).UNSOLVED in “book-HoTT”,solved in Voevodsky’s HTS,our 2LTT (arXiv:1705.03307)

NOTE: semi is what allows theabove encoding.

HIGHER CATEGORIES

TASK: develop (∞, 1)-cat’s inHoTT (internally)WHY: occur everywhere inHoTT, e.g. “HIT H is initialin the category of H-algebras”(not captured by AKS)NOTE: “Semisimplicial types” ≈functors ∆op

+ → U(“simpl. types” ≈ ∆op → U ,others see K.-Sattler’17).APPROACH (if given SST):mimic Rezk’s Segal spaces (re-place space by type);issue: semi

COMPLETE SEMI-SEGAL TYPE

Def:• semisimpl. type (A0, A1, . . .)• Segal cond. (aka horn filling)• completeness (Harpaz’15)(note: Segal, compl. are prop)

(comp.)

(assoc.)

Completeness:

x xee

x xid

ee

Special case:

• A1 family of sets(⇒ only need A0, . . . , A3)' AKS categories

(also works one level higher).Capriotti-K.’18

TYPE THEORY IN TYPE THEORY

QUESTION (SHULMAN’14): DoesHoTT with (n+1) universesmodel HoTT with n universes?

Can we implement HoTT inHoTT?

Some partial results, e.g.Altenkirch-Kaposi’s type the-ory in type theory, Escardó,Xu, Buchholtz, Lumsdaine,Weaver, Tsementzis, . . .

PROBLEM:

• syntax should be a set• set-truncate ⇒ HoTT

not a model• idea: use ∞-cat’s to add

all coherences (cf. Al-tenkirch)

TT-IN-TT ⇒ SST: generate SSTterms, reflect them into thehost type theory.

ELIMINATING TRUNCATIONS

What is ‖A‖n → B(for untruncated B)?

E.g. if B is set:(‖A‖−1 → B)

' Σ(f : A→ B),Π(x, y : A), fx = fy

We have constructions of trun-cations (v Doorn, Rijke, K.)which give elimination princi-ples into arbitrary types –but difficult to apply!

USING HIGHER CAT’S

• Write η : U → ∞CAT,i.e. η(X) is the ∞-groupoid of X (RF re-placement of X).• Write coskeln :∞CAT→∞CAT for the [n]-coskeleton (removes cellsabove dimension n)

CONJECTURE: (‖A‖n → B)' (coskeln+1(ηA)→ ηB)

RESULT:

Works for n ≡ −1 (K.’15)

ELEMENTARY OPEN PROBLEMS

• Free ∞-group over a set:is it a set?• Suspension of a set:

is it a 1-type?• Adding a path to a 1-

type: what can we say?

What do these have to do withthe other questions?

Page 28: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

“Elementary” ProblemsWedge of A-many circles:

A 1 WA

Or, as HIT:

data WA

base : WA

loops : A→ base = base

Free group FG(A) is Ω(WA).If A is a set⇒ is FG(A) a set?

Slightly more general:

A 1

1 ΣA

If A is a set, is ΣA a 1-type?

Page 29: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

“Elementary” ProblemsWedge of A-many circles:

A 1 WA

Or, as HIT:

data WA

base : WA

loops : A→ base = base

Free group FG(A) is Ω(WA).If A is a set⇒ is FG(A) a set?

Slightly more general:

A 1

1 ΣA

If A is a set, is ΣA a 1-type?

Page 30: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

“Elementary” Problems (cont.)Adding a path:

2 1

B B

If B is a 1-type, is the pushoutB still a 1-type?

Generalization of the above:

A C

B D

If A is a set and B,C are 1-types, is D a 1-type?

Notes: (1) Yes, if LEM; (2) Probably no, if we try togeneralize further (thanks to P. Capriotti for the left example):

2 1

∥∥S2∥∥2

+∥∥S2

∥∥2

∥∥S2∥∥2∨∥∥S2

∥∥2

S1 1

1 S2

Page 31: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

“Elementary” Problems (cont.)Adding a path:

2 1

B B

If B is a 1-type, is the pushoutB still a 1-type?

Generalization of the above:

A C

B D

If A is a set and B,C are 1-types, is D a 1-type?

Notes: (1) Yes, if LEM; (2) Probably no, if we try togeneralize further (thanks to P. Capriotti for the left example):

2 1

∥∥S2∥∥2

+∥∥S2

∥∥2

∥∥S2∥∥2∨∥∥S2

∥∥2

S1 1

1 S2

Page 32: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

“Elementary” Problems (cont.)Adding a path:

2 1

B B

If B is a 1-type, is the pushoutB still a 1-type?

Generalization of the above:

A C

B D

If A is a set and B,C are 1-types, is D a 1-type?

Notes: (1) Yes, if LEM; (2) Probably no, if we try togeneralize further (thanks to P. Capriotti for the left example):

2 1

∥∥S2∥∥2

+∥∥S2

∥∥2

∥∥S2∥∥2∨∥∥S2

∥∥2

S1 1

1 S2

Page 33: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

The Difficulty

How to characterize path spaces inA C

B D

?

If A is a set and B,C are 1-types, we want path spaces in Dto be sets.

Favonia-Shulman’s HoTT version of the Seifert-van Kampentheorem characterizes path spaces as lists.

Page 34: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

The Difficulty

How to characterize path spaces inA C

B D

?

If A is a set and B,C are 1-types, we want path spaces in Dto be sets.

Favonia-Shulman’s HoTT version of the Seifert-van Kampentheorem characterizes path spaces as lists.

Page 35: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

The Difficulty

How to characterize path spaces inA C

B D

?

If A is a set and B,C are 1-types, we want path spaces in Dto be sets.

Favonia-Shulman’s HoTT version of the Seifert-van Kampentheorem characterizes the set-truncation of path spaces asset-quotients of lists.

(. . . so this does not answer the question.)

Page 36: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

The Difficulty

How to characterize path spaces inA C

B D

?

If A is a set and B,C are 1-types, we want path spaces in Dto be sets.

Favonia-Shulman’s HoTT version of the Seifert-van Kampentheorem characterizes the set-truncation of path spaces asset-quotients of lists.

(. . . so this does not answer the question.)

The problem:

Forming “coherent quotients” without truncating is hard.

Page 37: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

Quotienting by directed relationsWhat I need from a directed relation:

• a set W : U , together with a function deg : W → N;• a family ;: W ×W → U ;• such that (w ; v)→ deg(w) > deg(v).• for (w, v, u : W ) such that w ; v and w ; u, we gett : W together with v ;rt t and u ;rt t.

Here, ;rt is the refl-trans closure of ;, as in:

data ;rt: W → W → Unil : w : W → (w ;rt w)

cons : w, v, u : W → (w ;rt v)

→ (v ; u)→ (w ;rt u)

Idea: We want (W/ ;).

Page 38: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

Quotienting by directed relationsWhat I need from a directed relation:

• a set W : U , together with a function deg : W → N;• a family ;: W ×W → U ;• such that (w ; v)→ deg(w) > deg(v).• for (w, v, u : W ) such that w ; v and w ; u, we gett : W together with v ;rt t and u ;rt t.

Here, ;rt is the refl-trans closure of ;, as in:

data ;rt: W → W → Unil : w : W → (w ;rt w)

cons : w, v, u : W → (w ;rt v)

→ (v ; u)→ (w ;rt u)

Idea: We want (W/ ;).

Page 39: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

General case – undirected relationConsider any set X with ∼: X → X → U .Write (X/ ∼) for the set-quotient, with [−] : X → (X/ ∼).

Fact: For any x, y : X, the canonical map

Φ : (x ∼rst y)→ ([x] = [y]) (1)

is surjective.

Consequence: If Y is a 1-type, then the type

(X/ ∼)→ Y (2)

is equivalent to the type of triples (f, p, q) where

f : X → Y

p : Π(a, b : X), (a ∼ b)→ f(a) = f(b)

q : Π(a : X), (l : a ∼rst a), p∗(a, l) = refl

(3)

Page 40: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

General case – undirected relationConsider any set X with ∼: X → X → U .Write (X/ ∼) for the set-quotient, with [−] : X → (X/ ∼).

Fact: For any x, y : X, the canonical map

Φ : (x ∼rst y)→ ([x] = [y]) (1)

is surjective.

Consequence: If Y is a 1-type, then the type

(X/ ∼)→ Y (2)

is equivalent to the type of triples (f, p, q) where

f : X → Y

p : Π(a, b : X), (a ∼ b)→ f(a) = f(b)

q : Π(a : X), (l : a ∼rst a), p∗(a, l) = refl

(3)

Page 41: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

General case – undirected relationConsider any set X with ∼: X → X → U .Write (X/ ∼) for the set-quotient, with [−] : X → (X/ ∼).

Fact: For any x, y : X, the canonical map

Φ : (x ∼rst y)→ ([x] = [y]) (1)

is surjective.

Consequence: If Y is a 1-type, then the type

(X/ ∼)→ Y (2)

is equivalent to the type of triples (f, p, q) where

f : X → Y

p : Π(a, b : X), (a ∼ b)→ f(a) = f(b)

q : Π(a : X), (l : a ∼rst a), p∗(a, l) = refl

(3)

Page 42: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

General case – undirected relation

f : X → Y

p : Π(a, b : X), (a ∼ b)→ f(a) = f(b)

q : Π(a : X), (l : a ∼rst a), p∗(a, l) = refl

“Polygon” in X:

••

••

∼∼

∼∼

f : maps points to points in Yp: maps lines to equalities in Yq: polygon in Y is trivial

Page 43: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

General case – undirected relation

f : X → Y

p : Π(a, b : X), (a ∼ b)→ f(a) = f(b)

q : Π(a : X), (l : a ∼rst a), p∗(a, l) = refl

“Polygon” in X:

••

••

∼∼

∼∼

f : maps points to points in Yp: maps lines to equalities in Yq: polygon in Y is trivial

Page 44: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

What do we gain from a directed relation?

“Polygon” in W , ; directed,vertices are the degrees:

4

3

2

7

6

4

9

1

;;

;

;

;;

;

;

Page 45: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

What do we gain from a directed relation?

“Polygon” in W , ; directed,vertices are the degrees:

4

3

2

7

6

4

9

1

;;

;

;

;;

;

;

1

5

Page 46: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

What do we gain from a directed relation?

“Polygon” in W , ; directed,vertices are the degrees:

4

3

2

7

6

4

9

1

;;

;

;

;;

;

;

1

5 2

Page 47: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

What do we gain from a directed relation (cont)?

Lexicographical order on ordered lists on N is well-founded

⇒ this process necessarily terminates with the trivial polygon

⇒ every “polygon” can be disassembled into “confluencepolygons”

⇒ inf : X → Y

p : Π(a, b : X), (a ; b)→ f(a) = f(b)

q : Π(a : X), (l : a ;rst a), p∗(a, l) = refl

it is enough if q quantifies over those shapes given from theconfluence condition!

q : confluence shapesp7→ commuting polygons

Page 48: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

What do we gain from a directed relation (cont)?

This gives a fairly easy way to construct functions

(W/ ;)→ Y

if Y is a 1-type!

Back to the SvK theorem:

A (set) C (1-type)

B (1-type) D (???)

SvK theorem (Fav.-Shulm.): (lists/ ;) ' ‖eq-types in D‖0Now we can get: (lists/ ;)→ ‖eq-types in D‖1(which is the hard part of “2nd hom-groups of D are trivial”).

Page 49: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

What do we gain from a directed relation (cont)?

This gives a fairly easy way to construct functions

(W/ ;)→ Y

if Y is a 1-type!

Back to the SvK theorem:

A (set) C (1-type)

B (1-type) D (???)

SvK theorem (Fav.-Shulm.): (lists/ ;) ' ‖eq-types in D‖0Now we can get: (lists/ ;)→ ‖eq-types in D‖1(which is the hard part of “2nd hom-groups of D are trivial”).

Page 50: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

What do we gain from a directed relation (cont)?

This gives a fairly easy way to construct functions

(W/ ;)→ Y

if Y is a 1-type!

Back to the SvK theorem:

A (set) C (1-type)

B (1-type) D (???)

SvK theorem (Fav.-Shulm.): (lists/ ;) ' ‖eq-types in D‖0Now we can get: (lists/ ;)→ ‖eq-types in D‖1(which is the hard part of “2nd hom-groups of D are trivial”).

Page 51: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

How to generalize?

f : X → Y

p : Π(a, b : X), (a ∼ b)→ f(a) = f(b)

q : confluence shapesp7→ commuting polygons

Next step (Y is a 2-type): q maps the boundary of anypolyhedron whose sides are confluence shapes to a trivialpolyhedron in Y ?Seems difficult. . .

Idea: In many examples (including the SvK-example), wehave strong confluence (reflexive instead of refl-trans closure).

⇒ Only need to consider cubes!Seems much more doable (even in arbitrary dimensions?)

Thank you for your attention!

Page 52: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

How to generalize?

f : X → Y

p : Π(a, b : X), (a ∼ b)→ f(a) = f(b)

q : confluence shapesp7→ commuting polygons

Next step (Y is a 2-type): q maps the boundary of anypolyhedron whose sides are confluence shapes to a trivialpolyhedron in Y ?Seems difficult. . .

Idea: In many examples (including the SvK-example), wehave strong confluence (reflexive instead of refl-trans closure).

⇒ Only need to consider cubes!Seems much more doable (even in arbitrary dimensions?)

Thank you for your attention!

Page 53: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

How to generalize?

f : X → Y

p : Π(a, b : X), (a ∼ b)→ f(a) = f(b)

q : confluence shapesp7→ commuting polygons

Next step (Y is a 2-type): q maps the boundary of anypolyhedron whose sides are confluence shapes to a trivialpolyhedron in Y ?Seems difficult. . .

Idea: In many examples (including the SvK-example), wehave strong confluence (reflexive instead of refl-trans closure).

⇒ Only need to consider cubes!Seems much more doable (even in arbitrary dimensions?)

Thank you for your attention!

Page 54: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

How to generalize?

f : X → Y

p : Π(a, b : X), (a ∼ b)→ f(a) = f(b)

q : confluence shapesp7→ commuting polygons

Next step (Y is a 2-type): q maps the boundary of anypolyhedron whose sides are confluence shapes to a trivialpolyhedron in Y ?Seems difficult. . .

Idea: In many examples (including the SvK-example), wehave strong confluence (reflexive instead of refl-trans closure).

⇒ Only need to consider cubes!Seems much more doable (even in arbitrary dimensions?)

Thank you for your attention!

Page 55: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

ReferencesMentioned or related papers and talks, roughly in order ofoccurrence. (Many papers have been published “formally”, clickablearXiv links are for convenience.)• Vladimir Voevodsky. A type system with two kinds of identity

types. 2013.• Danil Annenkov, Paolo Capriotti, and Nicolai Kraus. Two-level

type theory and applications. 2017. arXiv:1705.03307• Paolo Capriotti. Models of Type Theory with Strict Equality.

2016. arXiv:1702.04912• Emily Riehl and Michael Shulman. A type theory for synthetic∞-categories. 2017. arXiv:1705.07442

• Benedikt Ahrens, Chris Kapulkin, and Michael Shulman.Univalent categories and the Rezk completion.2015.arXiv:1303.0584

• Steve Awodey, Nicola Gambino, and Kristina Sojakova.Homotopy-initial algebras in type theory. 2017.arXiv:1504.05531

Page 56: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

References (cont.)• Nicolai Kraus and Christian Sattler. Space-valued

diagrams, type-theoretically (extended abstract). 2017.arXiv:1704.04543• Yonatan Harpaz. Quasi-unital ∞-Categories. 2015.

arXiv:1210.0212• Charles Rezk. A model for the homotopy theory of

homotopy theory. 2001. arXiv:math/9811037• Paolo Capriotti and Nicolai Kraus. Univalent Higher

Categories via Complete Semi-Segal Types. 2018.arXiv:1707.03693• Michael Shulman. Homotopy Type Theory should eat

itself (but so far, it’s too big to swallow). 2014. Blogpost.• Thorsten Altenkirch. Towards higher models and syntax

of type theory. HoTTEST talk, 10 May 2018.

Page 57: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

References (cont.)• Ambrus Kaposi. Type theory in a type theory with

quotient inductive types. PhD thesis, 2016.• Thorsten Altenkirch and Ambrus Kaposi. Type Theory in

Type Theory Using Quotient Inductive Types. 2016.• Martín Hötzel Escardó and Chuangjie Xu. Autophagia.

2014. Agda file online.• Nicolai Kraus. The General Universal Property of the

Propositional. 2015. arXiv:1411.2682• Paolo Capriotti, Nicolai Kraus, and Andrea Vezzosi.

Functions out of Higher Truncations. 2015.arXiv:1507.01150• Nicolai Kraus. Truncation Levels in Homotopy Type

Theory. PhD thesis, 2015.• Floris van Doorn. Constructing the Propositional

Truncation using Non-recursive HITs. 2016.arXiv:1512.02274

Page 58: Some connections between open problems · 10/25/2018  · Write : U!1CAT, i.e. (X) is the 1-groupoid of X (RF re-placementofX). Writecoskel n: 1CAT ! 1CAT for the [n]-coskeleton (removes

References (cont.)

• Nicolai Kraus. Constructions with non-recursivetruncations. 2016.• Egbert Rijke. The join construction. 2017.

arXiv:1701.07538• Ulrik Buchholtz, Floris van Doorn, and Egbert Rijke.

Higher Groups in Homotopy Type Theory. 2018.arXiv:1802.04315• Nicolai Kraus and Thorsten Altenkirch. Free Higher

Groups in Homotopy Type Theory. 2018.arXiv:1805.02069• Kuen-Bang Hou (Favonia) and Michael Shulman. The

Seifert-van Kampen Theorem in Homotopy Type Theory.2016.