Solar Water Splitting Presentation

10
1 UTA Energy Technologies and Research Trends Michael Davis ME 5390-005 MAE 4301-005 Solar Water Splitting

Transcript of Solar Water Splitting Presentation

Page 1: Solar Water Splitting Presentation

1

UTA

Energy Technologies and Research Trends

Michael Davis

ME 5390-005 MAE 4301-005

Solar Water Splitting

Page 2: Solar Water Splitting Presentation

2

UTA

Photoelectrochemcial Water Splitting

• Top – Anode/Oxidation

• Bottom-Cathode/Hydrogen generation

• RHE – Reversible Hydrogen Electrode

• Involves Catalyst on both sides

• Uses PEM membrane to separate oxygen and hydrogen

(Marshall, 2014)

Page 3: Solar Water Splitting Presentation

3

UTA

Issues

Cost of Production:

•$2.00 per liter production from Natural Gas

•$6.50 per liter for photo-electrochemical production per liter (Van Noorden, 2012)

Slow oxygen evolution:Most research is on the anode

Deterioration in aqueous environment

Mechanical Issues: Compression and Transport of Gasses; Piping Networks

Taken from: (Miller, Garland, & Perret, 2008)

Page 4: Solar Water Splitting Presentation

4

UTA

DOE Testing Procedure

Taken from: (Miller, Garland, & Perret, 2008)

Page 5: Solar Water Splitting Presentation

5

UTA

Current Research

• Artificial Leaf is a photoelectrochemcial process

• This process is a premier choice for hydrogen production in the future

• Materials – Metal Oxides and Composite Metal Oxides

• Morphology (nano-scale)

• Efficiency

• Band Gap for light absorption

• Electron Transport

• Diffusion Length

Page 6: Solar Water Splitting Presentation

6

UTA

Research Trends - Materials

(James, Baum, Baum, & Gs-f-j, 2009)

(Devices, Mckone, Lewis, & Gray, 2014)

Page 7: Solar Water Splitting Presentation

7

UTA

Morphologies

• Nano Rods by APCVD (Chiam et al., 2014)

• Bi-layered thin films (Choudhary et al., 2012)

• Porous Structures (De Respinis et al., 2013)(De Tacconi et al., 2006)

• Nanowires / Nanotrees (Liu, Tang, Chen, Liu, & Yang, 2013)

• Nanoplatelets (Marelli et al., 2014)

• Nanofibers / Nanoparticles (Regonini et al., 2013)

Nanofibers / Nanoparticles (Regonini et al., 2013)

Nanoplatelets (Marelli et al., 2014)Nanowires / Nanotrees

(Liu, Tang, Chen, Liu, & Yang, 2013)

Page 8: Solar Water Splitting Presentation

8

UTA

Novel Aspect / Discovery and Product Idea

Hematite manufactured with the Sol-Gel Electrospinning technique (may not have been quantified)

Product Idea:

Put less efficient hydrogen photoelectrochemcial cells On the market to provide a source of fuel for a hydrogen Power generator that would work in unison with other technologies(comprehensive approach to home power sources)

Page 9: Solar Water Splitting Presentation

9

UTA

ReferencesChiam, S. Y., Kumar, M. H., Bassi, P. S., Seng, H. L., Barber, J., & Wong, L. H. (2014). Improving the E ffi ciency of Hematite Nanorods for Photoelectrochemical Water Splitting by Doping with Manganese.

Choudhary, S., Upadhyay, S., Kumar, P., Singh, N., Satsangi, V. R., Shrivastav, R., & Dass, S. (2012). Nanostructured bilayered thin films in photoelectrochemical water splitting - A review. International Journal of Hydrogen Energy, 37(24), 18713–18730. doi:10.1016/j.ijhydene.2012.10.028

De Respinis, M., De Temmerman, G., Tanyeli, I., Van De Sanden, M. C. M., Doerner, R. P., Baldwin, M. J., & Van De Krol, R. (2013). Efficient plasma route to nanostructure materials: Case study on the use of m-WO3 for solar water splitting. ACS Applied Materials and Interfaces, 5(15), 7621–7625. doi:10.1021/am401936q

De Tacconi, N. R., Chenthamarakshan, C. R., Yogeeswaran, G., Watcharenwong, a., De Zoysa, R. S., Basit, N. a., & Rajeshwar, K. (2006). Nanoporous TiO2 and WO3 films by anodization of titanium and tungsten substrates: Influence of process variables on morphology and photoelectrochemical response. Journal of Physical Chemistry B, 110(50), 25347–25355. doi:10.1021/jp064527v

Devices, W. S. W., Mckone, J. R., Lewis, N. S., & Gray, H. B. (2014). Will Solar-Driven Water-Splitting Devices See the Light of Day? Chemistry of Materials.

James, B. D., Baum, G. N., Baum, K. N., & Gs-f-j, D. O. E. C. N. (2009). Technoeconomic Analysis of Photoelectrochemical ( PEC ) Hydrogen Production Prepared by :, 22201(December).

Page 10: Solar Water Splitting Presentation

10

UTA

References cont:Liu, C., Tang, J., Chen, H. M., Liu, B., & Yang, P. (2013). A Fully Integrated Nanosystem of Semiconductor Nanowires for Direct Solar Water Splitting, (Figure 1), 2–5.

Marelli, M., Naldoni, a, Minguzzi, a, Allieta, M., Virgili, T., Scavia, G., … Dal Santo, V. (2014). Hierarchical hematite nanoplatelets for photoelectrochemical water splitting. ACS Appl Mater Interfaces, 2. doi:10.1021/am5030287

Marshall, J. (2014). Springtime for the artificial leaf. Nature, 510, 22–24. doi:10.1038/510022a

Miller, E. L., Garland, R., & Perret, R. (2008). The US DOE WORKING GROUP ON. Group.

Regonini, D., Teloeken, A. C., Alves, A. K., Berutti, F. A., Bergmann, C. P., Graule, T., & Clemens, F. (2013). Electrospun TiO 2 Fiber Composite Photoelectrodes for Water Splitting.

Van Noorden, R. (2012). “Artificial leaf” faces economic hurdle. Nature, 6–7. doi:10.1038/nature.2012.10703