Solar Cookstove Final Report

download Solar Cookstove Final Report

of 53

Transcript of Solar Cookstove Final Report

  • 7/29/2019 Solar Cookstove Final Report

    1/53

  • 7/29/2019 Solar Cookstove Final Report

    2/53

    1.BackgroundandContext

    1.1Introduction

    ThelushforestsinIndiacomprise8%oftheworldstotalbiodiversity1and

    contributeroughly235.78billionrupeestothenationalGDP2

    .Howeverpressurefromincreasingpopulationsbothhumanandlivestockaredestroyingthisincredibleresource.InIndia,anestimated800millionpeopleusebiomassforcooking3and55%oftheforestsnationalGDPcontributionisintheformoffirewood2.Theburningofwoodasfuelleadstomassiveincreasesindeforestationandgreenhousegasemissions.Conservationeffortstoprotecttheforestsbeganintheearly1900s4,butconservation-basedrestrictionsandbanningofwoodcollectioninprotectedareashasledtoillicitactivityinsteadofadecreaseinforestusage.ThishasbeenwelldocumentedfortheKumbalgarhWildlifeSanctuary(KWS)inRajasthan,IndiawhichisthehomeofthreatenedwildlifeincludingtheSlothBear,StarredTortoise,andSterculiaUrens.TheKWSalsoformsanimportantecological

    barrierpreventingtheextensionoftheTharDesertintotheAravallihillranges.1,5,6

    Thereare22villageslocatedinsidetheKWSand138incloseproximityrequiringincreasingamountsofwoodforfuelandclearedlandforfarmingandlivestock.Atypicalhouseholdintheareaconsumes6-8kgfirewoodperdayand~30%ofhouseholdssell~10kgwoodperday.1Theinhabitantsofthesevillagesarewellawareoftheeffectsofdeforestationevidentinthescarcityofwoodresources,cropraidingbyanimalsintheKWSthatarelosingtheirnaturalhabitat,andrecentclimatechangesincludingadecreaseinrainfallandanincreaseinthefrequencyofdrought.1Womennowspendupto7hoursperdaycollectingfirewoodduetoscarcewoodresources7andevenriskrapeandextortionbyventuringintoprotectedlandswhenwoodisnotavailableelsewhere.8

    1.2ClimateHealersandtheSolarCookstoveSolution

    1PersonalCommunicationwiththeFoundationforEcologicalSecurity(FES).2PersonallycommunicatedbyFESrepresentativefromareportfromtheInsituteofEconomicGrowth(IEG),NewDelhi,India,2002.3https://www.engineeringforchange.org/workspace/view/22/1#tabs=/workspace/files/22/14http://rajforest.nic.in/general_intro.htm

    5PRobbins,KMcSweney,AChhangani,JLRice.Conservationasitis:IllicitresourceuseinawildlifereserveinIndia.HumanEcology37(5)2009.6PFRobbins,AKChhanganiJRice,ETrigosa,SMMohnot.EnforcementauthorityandvegetationchangeatKumbhalgarhWildlifeSanctuary,Rajasthan,India.EnvironmentalManagement402007.7PosterpresentedbystudentsoftheUniversityofIowatitledRuralIndiaSolarCookerImplementationbyBBehrendt,WDavies,EGuio,JMahlik,AMoffitt,BOLoughlin,EOsgood,JRichards,&MToth.8PersonalcommunicationwithSaileshRaoofClimateHealers.

  • 7/29/2019 Solar Cookstove Final Report

    3/53

    AnalternativetocookingwithfirewoodwouldgreatlydecreasethepressuresontheKWSandthegreaterforestsofIndiawhilesimultaneouslydecreasinggreenhousegasemissionsandsavingtimeforthewomenwhocurrentlyspendhourscollectingwood.Furthermoreanalternativetoburningbiomassindoorswoulddecreaseharmfulsmokeinhalationandresultingrespiratorydiseases.NGO

    (Non-GovernmentOrganization)ClimateHealersbeganpartneringwithlocalenvironmentalNGOFES(FoundationforEcologicalSecurity)in2008todevelopsuchanalternative.FEShasworkedintheregionsince2002,gainingadeepknowledgeofthecomplexissuessurroundingdeforestationoftheKWS.FESalsopartnerswiththeIndianRuralEmploymentBoardtofulfilltheIndiangovernmentsNationalRuralEmploymentGuaranteeof100daysofemploymentat100rupeesperdayforonememberofeachhousehold.FESproposesandoverseesprojectsfortheIndiangovernment,butisrunningoutofworktobedone.9

    Toeliminatetheuseoffirewoodforcooking,ClimateHealersproposedasolarcookstovetoreplacethe3-stonefirecurrentlyusedtoburnbiomassforcooking.ThesolarcookstovewouldtakeadvantageoftheimpressivesolarirradiationoftheregionandwouldideallybemanufacturedinthevillagestoprovideemploymentprojectsthroughFESandtheIndiangovernment.ClimateHealerschosetofocusfirstonthevillageofKarechasarepresentativeofthedryRajasthanregionandHadagoriasarepresentativeoftheOrissaregionknownformonsoons.TheworkdescribedinthisreportfocusesspecificallyonKarechwiththehopeofexpandingtoallforest-proximalregionsofIndiaoncetheconcepthasbeenproven.

    Karechisavillageof240householdswherenearlyeveryhouseholdmusttakeadvantageofthegovernmentsNationalRuralEmploymentGuarantee.InitialcontactandcommunicationwiththevillageofKarechinvolvedthedistributionof2solarlightsperhousehold,whichledtoimpressivepopularityandrespectfor

    ClimateHealersasthesolarlightsallowedthevillagerstoworkandstudyatnight,avoidsnakeswhenventuringintotheforestintheearlymorning,andcreateafestiveenvironmentforweddingsandfestivals.10

    SixprototypesofthefirstNamastesolarcookstovedevelopedbyClimateHealerswereintroducedinthevillagesofKarechandHadagoriinJanuary2010.TheresponsewasoverwhelminglynegativeduemostlytothefactthattheNamastestoverequiresuseduringthedaywhentheinhabitantsofthevillagearebusywithworkandotherchores.Thiswasnotedtobeinstarkoppositiontothesolarlights,whichcouldchargeunattendedalldayandbeusedatnight.Otherfeedbackfrommembersofthevillageswhotestedthestoveincluded:

    9PersonalcommunicationwithSaileshRaoofClimateHealers.10ClimateHealersProjectReportfromAugust2010availableontheEngineeringforChangewebsite:https://www.engineeringforchange.org/workspace/view/22/1#tabs=/workspace/files/22/1

  • 7/29/2019 Solar Cookstove Final Report

    4/53

    TheNamastestovecanonlybeusedoutdoorsandduringtheday;whereastraditionalcookingisdoneindoorsbeforesunriseandaftersunset.

    TheNamastestoveisunstablegiventhehillyterrainandwindyconditionsofKarech.

    TheNamastestoveistootallforthetraditionalapproachofcookingwhileseated.

    TheNamastestoveisinconvenientbecauseitrequiresconstantadjustingandattendance.

    TheheightandattentionrequiredmakeitdifficulttoholdachildwhileusingtheNamastestove.

    ClimateHealersthereforeresolvedtodesignastoredenergysolarcookstovetoenablecookingattypicalmealtimesinKarech:aftersunsetandbeforesunrise.11

    1.3Thechallengeofthestoredenergysolarcookstove

    Theidealstoredenergysolarcookstovemustmeetthefollowingdesignconstraints:

    Solarenergystorage:Numeroussolarcookstovesandsolarovenswithoutstorageexistasmodelsforsolarcollectionandarediscussedinsection2.Solarstorageoptionsincludestorageintheformofelectricity,sensiblestoragematerials(sand,vegetableoil,engineoil),latentheatstoragematerials(acetamide,stearicacid,acetanilide,erythritol),orchemicalstorage.Eachoftheseoptionsisexploredindetailinsection2,butmanyarestillindevelopmentforsmall-scaleapplications.12ThisaddressestheneedsoftheprimarystakeholdersthewomenofKarech.

    Useoflocalmaterials:LocalmaterialsinthevillageofKarechincludesand,bamboo,brick,andofcoursethewoodthatweaimtoprotect.Outsideresourcesmustbebroughtinonroughandcurvyroads.ThereisonegeneralstoreinthevillageofKarechsuppliedviatheseroads.13ThisaddressestheneedofstakeholderClimateHealerstokeepcostslowanddecreaseimpactontheenvironment.

    Manufacturinginthevillage:ManufacturinginthevillagewouldprovideprojectsfortheNationalRuralEmploymentGuaranteeandthereforefundingthroughtheIndiangovernment.Inaddition,usersofthestove

    11ClimateHealersProjectReportfromAugust2010availableontheEngineeringforChangewebsite:https://www.engineeringforchange.org/workspace/view/22/1#tabs=/workspace/files/22/112RMMuthusivagami,RVelragj,RSethumadhavan.SolarcookerswithandwithoutthermalstorageAreview.RenewableandSustainableEnergyReviews (14)2010.13PersonalcommunicationwithSaileshRaoofClimateHealers.

  • 7/29/2019 Solar Cookstove Final Report

    5/53

    wouldhaveaninvestedinteresthavingconstructedthestovethemselvesandbemorelikelytobeabletofixabrokenstove.ThisaddressestheneedofstakeholdersFESandtheIndiangovernmentsuchthattheycouldusecookstovemanufacturingasaprojectfortheNationalRuralEmploymentGuarantee.ThiswouldalsoaidtheinhabitantsofKarechas

    theywouldbemorefamiliarwiththecookstovesincreasingtheirabilitytofixanyproblemsthatarise.

    Cookingoftraditionalmeals:MealsinKarecharepreparedbythewomenandinvolverotiadrydoughofflourandwaterthatpuffsuponfryingathighheatforseveralminutes,dahllentilsthatareaddedtoboilingwaterandthensimmeredforroughly20minutes,andteawhichalsorequiresboilingwater.Amealconsistsofroughly2rotiforeachmemberafamilyof5-6plusdahlandtea.Whenaskediftheywoulduseasolarstove,inhabitantsofKarechclaimedthatifClimateHealerscouldshowthehowtocookroti,theywouldusethesolarcookstove.Wethereforebasedourdesignconstraintsoncookingrotiasdescribedinsection4.Thisagainaddressestheneedoftheprimarystakeholders:thepeopleofKarech.

    Small-scaleenergystorageforthermalapplicationssuchascookingisadifficultandunsolvedproblem.Theadditionoflocalmanufacturingandresourcesaddsanextralayerofcomplexity.

  • 7/29/2019 Solar Cookstove Final Report

    6/53

    2.PreliminaryDesign:BrainstormingandResearch

    Wepurposefullyincludedallbrainstormingideasinthisreporteventhewildandcrazyideasasthesemayproveinspirationalinthefuture.Inthespiritofbrainstorming,wedidnotwanttonarrow,discourage,orjudge;howeverinthis

    sectionwedooffertheprosandconsofeachpotentialsolution.

    2.1Thermalenergybasedideas

    2.1.1Collection

    Inthissectionapproachestocollecttheradiatedsunlightandtransportittothestorageunitwillbediscussed.Allapproachesincludeacylindricalparabolicmirrorasfirstreflector,asshowninFigure2.1.ThiscollectiondesignwasusedforbrainstormingasitisthecurrentcollectiondesignproposedbyClimateHealers.

    Directcollection:Thisisthesimplestoption.Reflectedlightisdirectlystoredina

    suitablestoragemediuminsideanevacuatedglasstubeplacedinthefocuspointoftheparabolicmirror.(SetupsimilartoFig.2.1,buttheevacuatedtubewouldcontainthestoragemediumwithoutanexternalstoragesystem.)

    Opticalcollection:Opticalcollectionrequiresatleastoneadditionalmirrortotransportthereflectedlighttothestorageunit.

    Heatpipe:Thereflectedlightwillbeconcentratedonanevacuatedglasstubecontainingaheatpipe,whichtransportstheenergytoastorageunit(fig.2.1).

    Fig.2.1:Heatpipecollectionsystem.

    Theheatpipesystemhasthefollowingadvantages:

    Itiswellknownforrooftopsolarthermalwaterheatingsystems, theevacuatedheatpipesareavailableinChina, theseparationofcollectionandstorage,and

  • 7/29/2019 Solar Cookstove Final Report

    7/53

    abiggerstoragevolumeispossible.Anddisadvantages:

    theseparationofcollectionandstoragemakesthesystembigger.

    2.1.2Storage

    Storageofthermalenergyincludestwooptions:sensibleheatstorageandlatentheatstorage.Theseoptionsaredescribedinfurtherdetailinsection4.1.Desiredcharacteristicsofthestoragematerialare:

    Highspecificheatcapacity, longtermstabilityunderthermalcycling, compatibilitywithitscontainment,and lowcost.

    Sensibleheatstorage:Sensibleheatstorage(SHS)occursbyaddingenergyinformofheattoastoragemediumandincreasingitstemperaturewithoutchangingitsphase(fig.2.2).

    Fig.2.2:Sensibleheatstorage.

    Possiblestoragemediaareliquidslikewater,saltywater,moltensalts,andoilsandsolidslikerocks,sand,buildingfabric,andmetals.

    Waterwouldbemostdesired,sinceithasthehighestheatcapacityofallstoragemedia,butithasalowtemperatureofevaporationsothatSHSaboveatemperatureof100degreeCelsiuswouldrequireputtingthesystemunderpressuretopreventvaporization.

    Oilsandmoltensaltshaveabout25-40%oftheheatcapacityofwaterbuthavealowervaporpressure,sothattheycanoperateathighertemperaturesof300degreeCelsiusandabove.

  • 7/29/2019 Solar Cookstove Final Report

    8/53

  • 7/29/2019 Solar Cookstove Final Report

    9/53

    Fig.2.3:Latentheatstorage.

    Advantagesoflatentheatstorageinclude

    lowweightandvolumeofthestorageunit, energystorageanddeliveryatconstanttemperature,and thatthewholestoragevolumecanbereachedeasilyduetoahigh

    thermalconductivity.

    DisadvantagesofLHSsare: DegradationofthePCMovertime, safetyissuesduetoPCMandpotentiallyhigherpressure complexdesign,and highcost.

    Ataer15andHasnain14providemoreinformationaboutsensibleandlatentheat

    storagesystems.

    2.1.3Delivery

    Heatdeliverysystemshavethefunctionoftransportingtheheatfromthestorageunittotheburneratacertaintemperatureandpower.Inordertovarytemperatureandpoweradevicetocontrolthoseshouldbeincluded.

    Heatpipe/thermosyphon:

    HeatpipesandthermosyphonsuseliquidtogasPCMsasheattransfermedium.Twodifferentpossiblesystemsarepicturedinfigure2.4.

    Thebottompartoftheheatpipeisinsidethehotstorageunitsothattheliquidwillevaporate,flowuptotheheatsink,condense,andflowdownagain.Thedifferencebetweenaheatpipeandathermosyphonisthatheatpipescontainawickfixedtotheinsidesurfacesothatinadditiontogravity,capillaryforcesreturnthecondensatetotheevaporator.

    15Ataer,O.E.:Storageofthermalenergy.inEnergyStorageSystems,EditedbyY.A.Gogus,inEncyclopediaofLifeSupportSystems(EOLSS),EolssPublishers,Oxford,UK,2006.

  • 7/29/2019 Solar Cookstove Final Report

    10/53

    Fig.2.4.Heatpipes/thermosyphons.

    Heatpipes/thermosyphonshavetheadvantagesof ahighthermalconductivity, heattransferbetweenplacesofdifferenttemperatureispossible, theheatfluxiseasilytunablewithavalve,and itispossibletotransporttheenergyfromoutdoors(collection)toindoors(traditionalcookinglocation)withatubethroughthewall.

    Anddisadvantagesof; youhavetofindasuitablePCMforthetemperaturerange, therearesafetyissueswhenthesystemisunderpressure, thePCMisdegradingovertime, thecostishigh, thedesignverycomplex, thesystemnotveryrobustsothatlongtimetestingisnecessary,and maintenancemightbedifficultbecauseofthecomplexityofthesystemsothatitmightbehardtofindthereasonoffailure.

    MoreinformationaboutheatpipesandthermosyphonsinHeatPipesbyReayand

    Kew16.

    16Reay,D.A.andP.A.Kew:HeatPipes-Theory,DesignandApplications.Butterworth-Heinemann,Oxford,5thedition,2006.

  • 7/29/2019 Solar Cookstove Final Report

    11/53

    Conductiveheattransport:

    Heatcanalsobetransportedbyconductionthroughmetalonly.Oneormoremetalrodsconnectthestorageunitwiththehotplate.

    Advantagesofthisdesignare: thesimplicityindesign, thelowcost, thelonglifetime,and thereasonoffailureisobvioussothatmaintenanceiseasy.

    Issueswithaconductiveheattransportsystemmightbe: findingawaytocontroltemperatureandpower, thecompatibilitywithothermaterials(rustmightbeanissue),and thelowerconductanceofmetalcomparedwithaheatpipesystem.

    Advancedheatexchanger:

    Inanadvancedheatpipesystematwofluidheatexchangerisimprovedwithsmallheatpipesconnectingthetwochannels(fig.2.5).

    Fig.2.5:Advancedheatexchanger.

    Advantagesare: Goodheattransfer, separationofstorageunitandburner,and transportofenergyintothehouseispossible.

    Disadvantagesinclude: Theintegrationofatwofluidheatexchangerintothestorageunit, itmightoccupyabiggerspace, andthehighercosts.

  • 7/29/2019 Solar Cookstove Final Report

    12/53

    Modularcooking:

    Theideaistostoreenergyinsmallseparatemodulesduringthedayandbringthemintothehousetocookonthemduringthenight.

    Advantages: aneasyconcept,and youcookinsidethehousewithoutputtingaholeinthewall,

    Disadvantages: theachievablepowermightnotbehighenough, lossestotheenvironmentmightbehigher,and peoplehavetobearoundtoexchangethemoduleswhilecharging.

    2.1.4Completesolutions

    Heatpumpsystem:

    Aheatpumpisasystemwhereafluidisheatedattheheatsource(solarcollection),ispumpedtotheheatsink(burner)whereitreleasesitsheatandthengetstransportedbacktothesource(fig.2.6).Thetubingoutsidethehouseislaidintothesurfaceoftheground.

    Fig.2.6:Heatpumpsystem.

    Advantagesofthistechnologyare: Itsprovenforheatingandcooling, cookinginsidethehouseispossible,and

  • 7/29/2019 Solar Cookstove Final Report

    13/53

    itssimplesinceitonlyusespipesandapump.Ontheotherhandpossibleissuesmightbe

    thatithasnotbeenusedforcookingyet, thatthepumpandthetubingisexpensive,

    thattheenergystoredinthepipesisnotenough,and thelossesmightbetoohigh.

    Pizzaoven:

    ThepizzaovenideaistouseThiscouldbeaccomplishedbyThiscouldbeintegratedwiththemodularcookingideadescribedearlierorusedtocookrotithroughouttheday.

    Advantages: Thistechnologyhasbeenusedextensively Anddoesnotrequireattendanceduringtheday.

    Disadvantages:

    Solarovensarenotcompatiblewith

    Cookingslowlyovertheday:

    Therearealreadyalotofideasforcookingslowlyoverthedayoutthere.ForexampletheHotPot17,aspecialpanelcooker,whichhasadarkpotsuspendedinsideaclearpotorboxcookers.Alternatively,apizzaovendesignwouldrequireaninsulatedcubeofsandwithaslitinsidetobaketheroti.Anotheroptionincludesan

    insulatedbulkofsandinthegroundwithawindowontopwherethesolarradiationcomesinsideandheatsthesand.

    Advantagesofslowlycookingoverthedayincludes: Itischeap, simple,and alreadyproven

    Disadvantagesare: Somebodyhastoobservethefoodtoavoidburning traditionalcookingofroti,whichrequireshighheatforseveralminutesonly.

    Eitherway,slowcookingrequiresachangeintraditionalhabits.

    17http://www.she-inc.org/cooking.php

  • 7/29/2019 Solar Cookstove Final Report

    14/53

    Hybridstoragesystem:

    Inahybridsystemtwoormoresolarcookingsystemsarecombined.InthiscaseweimagineawaterstoragetankcombinedwithinsulatedcavityandaHotPot.The

    HotPotwillcookDahlslowlyovertheday,theinsulatedcavitywillbaketheRotiandthewatertankpreheatswaterforcookingteaandDahlandcanalsobeusedforotherpurposessuchasbathing.

    Fig.2.7:Hybridsystem.

    Advantagesofahybridsystemare: Hotwaterasextraservice(luxuryitem)andpreheatingforcooking, waterstoragesystemeasyandwellknown, HotPotcommerciallyavailableoreasyandcheaptobuild, sandstorageeasy(holeinground,insulator,absorberandglassplate),

    lessstorageforeachsystem,and highreliability.

    Disadvantagesmightbe thatitismorecomplicatedtousethreedifferentsystems,and thatachangeinhabitsisnecessarytocookRotiintheinsulatedcavity

  • 7/29/2019 Solar Cookstove Final Report

    15/53

    2.2Electricalenergybasedideas

    Analternativetothermalsolarenergystorage,transport,andcookingistogenerateelectricity,storetheelectricityinbatteriesanduseanelectricalstoveforcooking.

    2.2.1Generation

    Solarphotovoltaics(PV):

    UsingsolarPVpanelswouldbeadirectmethodtogenerateelectricityfromsolarradiation.

    Theadvantagesofthisgenerationmethodare thatthelossesaresmallthroughdirectgenerationofsolartoelectricalenergy

    theenergycanbedirectlystoredintoachemicalstorageunit, itisaproventechnology,and itisquiet.

    Disadvantagesare: PVmodulesarequiteexpensive lossesuponconversionbacktothermalfordeliveryarepotentiallyhigh,and

    anenginehastoconnectthePVmoduleswiththemechanicalorgravitationalstoragemechanism.

    Thermoelectricdevice:

    AthermoelectricdeviceusesthetemperaturedifferencebetweenconcentratedsolarradiationandtheenvironmenttogenerateelectricitybyaphenomenoncalledtheSeebeckeffect.

    Advantagesare thedirecttransformationtoelectricalenergywithoutthermalenergy, thedirectconnectiontoachemicalstorageunit,and thatitisquiet.

    Disadvantagesinclude highcost, thelowvoltage,and thatitcannotbedirectlyconnectedtoamechanicalorgravitationalstoragemechanism.

  • 7/29/2019 Solar Cookstove Final Report

    16/53

  • 7/29/2019 Solar Cookstove Final Report

    17/53

    Fig.2.9:PVandhydrogencombinedsystem.

    2.3Mechanicalenergybasedideas

    2.3.1Generation

    Stirlingengine:

    AStirlingengineusesairorothergasasworkingfluid,whichundergoescycliccompressionandexpansionbypushingthegasalternatingfromtheheatsourcetotheheatsink.Thetranslatorymovementofthepistongetstransformedintoarotatingmovementofthecrankshaftwhichcanbeconnectedtotheshaftofageneratorordirectlytoapump,flywheel,etc.,whichwillstoretheenergy.

    AdvantagesoftheStirlingengineare thatitcanbedirectlyconnectedtothemechanicalorgravitationalstoragemechanism,

    itisaproventechnology,and itiscommercialavailable.

    IssueswithaStirlingenginemightbe thatitisexpensive, noisy,and itcontainsmovingpartssothatmaintenanceismorefrequentlynecessary

  • 7/29/2019 Solar Cookstove Final Report

    18/53

  • 7/29/2019 Solar Cookstove Final Report

    19/53

  • 7/29/2019 Solar Cookstove Final Report

    20/53

  • 7/29/2019 Solar Cookstove Final Report

    21/53

    3.Collaboration:IntroductiontotheHawkeyeCookerand

    designtrade-offs

    3.1HawkeyeCooker:descriptionanddesigntrade-offs

    ClimateHealersfounderSaileshRaotoldusinourfirstmeetingthataclassofabout30undergraduatestudentsattheUniversityofIowa18isworkingondesigningthestored solarcookstoveaswell and that theyare concentratingoncollectionandstorage.UntilourfirstSkypemeetingwithIowa,whichtookplaceinthebeginningofMarch,wehadnotplannedtocollaborateonaprototype.Iowapresentedustheirapproach,showninFigure3.1Acylindricalparabolicmirrorconcentratesthesolarradiationona second V-shapedmirror in the focalpointwhich reflects the lightdownthroughinsulatedglasstoanabsorberplateinthestorageunit.Thestorageunit consists of sand and aluminum cans arranged in an array to maximizeconductionthroughouttheunit.Thesandunitiskepttogetherbycementboards,which are surrounded by rice husks that insulate the storage unit from the

    environment.Thecookingsurfaceisthermallyconnectedwiththestorageunitbyaheatdeliverysystem.TheHawkeyesolarcookerincludestwoseparatestorageunitsforeveningandmorningcooking.Eachunitismountedoncastersandrailssothatitcanberolledintothehouseforcooking19.

    Fig.3.1:HawkeyeCooker20.

    18http://www.uiowa.edu/19Iowaclasspresentationslidesandpersonalcommunication20Iowaclasspresentationslides

  • 7/29/2019 Solar Cookstove Final Report

    22/53

    The Iowa teamaimed touse localmaterials resulting ina designusing sandandaluminiumcansforenergystorage.Thisisasensibleheatstoragesystem,whichisbig insize(storagesizealone:6 feetx 3 feetand~500lbs)andcannot storeanddeliverheatataconstanttemperature.Thecircumstancemakesthedesignofaheatdeliverysystemmorecomplexandthelosseshigher.19

    OurfirstmeetingwithIowaoccurredafteralreadybrainstormingdesignideasandresearchingstorageoptionsandmaterialoptions.Severalofourideasoverlappedwiththeirssuchastheuseoflocalmaterials,sand,andaluminumasheatstorageandtheneedtobreakdownthedesignintosolarcollection,heatstorage,andheatdelivery.TheIowateamhadplansanddesignsinprogressforallelementsofthestored energy solarcookstoveexcept the heatdelivery.Wetherefore tookonthetaskofdesigningaheatdeliverysystemthatcouldintegratewiththeIowateamsdevelopingstoragedesignforsuccessfulcookingofroti.

    3.2Designconstraintsforheatdelivery

    Iowasdesignapproachandfirstsimulationsetsomedesignconstraintsforus.Thefactthattheyuseasensibleheatstoragesystemwithvariablestoragetemperaturerequiresatemperaturecontrolunitinourheatdeliverysystem.Anotherconstraintisthetemperatureavailableinthestoragetankduringcooking.Iowastemperaturesimulation predicts storage temperatures of 90 to 200 degrees Celsius for themorning cooking and 250 to400 degree Celsius temperature ranges for eveningcookingtimes.19

    3.3RedefinitionofBerkeleyteamgoals

    Our overall team goals remain as originally defined: to preserve the forests ofRajasthan and improve the standard of living and quality of life in Karech. Toaccomplishthisweoriginallydefinedbothoptimalandminimalgoalsasfollows:

    Optimal:Designastoredenergysolarcookstovethatcansuccessfullycookrotiintheeveningandthenextmorning.

    o Minimal:Designastoredenergysolarcookstovethatcansuccessfullycookrotiintheevening.

    Optimal:Usealllocalmaterials.o Minimal:Uselocalmaterialsasmuchaspossible.

    Optimal:Designsuchthatmaterialcostsarelessthan$50.o Minimal:Design such that material costs are less than $100. (Both

    recommendationsfromClimateHealers.)

    Oncewedecided to collaboratewith Iowa,our goals changed to reflect this newfocus:

  • 7/29/2019 Solar Cookstove Final Report

    23/53

  • 7/29/2019 Solar Cookstove Final Report

    24/53

    4.CalculationsandExperimentsLeadingtoDesign

    Constraints

    Inthefirsthalfofthesemester,ourgroupworkedtobuildpartnerships,evaluatepotentialdesigns,andconductexperimentsaimedatdevelopingdesignconstraints.WehavemetseveraltimeswithSaileshRaooftheClimateHealersparentproject,maintainingcontactthroughemailandmeetingsinperson.WehavemetweekywiththeIowaundergraduateclassworkingonthisprojectinparallel.WehaveattendedtheirdesignpresentationsviaSkype,offeringfeedback,learningabouttheiraspectsoftheproject,andworkingtowardeventualintegration.Inaddition,wehavemetwithlocalcontactstosuccessfullysecurefabricationfacilities,andwehaveinitiatedcontactwithheattransferexpertstohelpaddresstechnicalquestions.

    4.1StorageMediaConsiderationsPriortomeetingwithIowaandlearningabouttheirdesign,weevaluatedseveralpotentialoptionsforsolarcollectionandthermalstorage,aswellasheatdelivery.Aprincipleconsiderationforthermalstoragewaswhetherenergywouldbestoredinheatcapacity(temperaturechange)orlatentheat(phasechange).Storingenergyinaphasechangeofferstheadvantagethatthetemperatureremainsconstant;allenergyisthereforeequallycapableofdoingwork.Incontrast,storingenergyintemperaturechangerequiresahighinitialtemperature.Asstoredenergyisusedorlost,thetemperatureofthestoragemediafalls.Sincethepoweravailableisdependentonthetemperaturedifference,decreasingtemperaturesmeanadecreasingmaximumavailablepower.Whilethephasechangesystemoffersadvantages,itrequiresamaterialwithaphasetransitionwithinaspecifictemperaturerange,inadditiontorequirementsbasedonenergycapacity,safety,affordability,andpreferenceforlocalmaterials.

    Forthethermalstoragematerialsearch,weconsideredmetals,waxes,moltensalts,glasses,andsand(seeAppendixA).Ofelementalmetals,onlyBi,Cd,In,Li,Pb,Po,Sn,andThhadmeltingpointsinafeasiblerange(150400C).Unfortunately,Cd,Pb,andThhavetoxicityconcerns;Poisradioactive;Inisprohibitivelyexpensive;andLiburnsincontactwithwater.BiandSnaresubstantiallycheaper,butnotsufficientlysogiventherequiredquantities.Thoughlowmeltingtemperaturealloysarealsoavailable,mostrelyonthesamemetalsandsufferfromrelated

    problems.

    Fortypicalwaxes,themeltingpointsaretoolow,thoughhighheatcapacitysuggeststheymightbeusableintemperaturechangeconfigurations.Unfortunately,theliquidwaxeswillflashattemperaturesabove200-250C.Specialtywaxescanreachhighertemperatures,butaresubstantiallymoreexpensive.Saltsgenerallymeltmuchhigherthanourdesiredtemperatures,andslurrieswilllosetheirwaterabove100C.Finally,glassestransitionatarangeoftemperaturesbutduetotheir

  • 7/29/2019 Solar Cookstove Final Report

    25/53

    uniquephasechange,lacklatentheatoffusion.Othermaterialsthatweresuggestedbutnotexploredincludenitrates,hydroxides,andrubber.

    Withoutagoodphasechangematerial,fewfeasiblematerialsoutperformsandforstoringenergyintemperaturechange.Giventheadvantagesincostandlocalavailability,thislookedthemostpromising.Foragivenenergystorage

    requirement,thevolumeofsandcanbefound:

    !!"#$ =!!"#$%!"&

    !!"#$!!!

    Inourcase(Erequired=4kWhrs,T=150K,targetsprovidedbyClimateHealers),thisgaveVsand0.06m3,farmorethancouldfitatthefocusoftheparabolicmirrorasinitiallyenvisionedbyClimateHealers.

    WhenwemetwiththeIowateam,wediscoveredthattheyhadcometothesameconclusions,withregardtobothusingsandandseparatingthestoragefromthecollector.Withinitialinformationontheirdesignandagreaterunderstandingof

    ourexpectedrole,webeganexperimentsaimedatdevelopingdesignspecificationsfortheheattransfermechanism.

    4.2Experiment1:Canhotsandalonecookroti?

    PreparingrotihadprovedthemostdemandingoftheKarechcooktasks,requiringthehighesttemperaturesandthemostpower.Ourfirstexperimentinvolveddeterminingifthethermalconductivitythroughablockofsandcouldprovideenoughpowertocookarotiplacedonthetop.Forthis,wecalculatedtheamountofsandrequiredbasedoninitialestimatesforenergyandtemperature,heatedthesandinakitchenoven,andmonitoredtherisewiththermometry.Attemperature,thesandwasremovedandpouredintoashallowglasstray.Aluminumfoilwasplacedontop,followedbyrotidough.Theresultwasvirtuallynochangeinthedoughsimpleconductionwasinsufficient.

    Inadditiontothelimitedconductivityofdrysand,severalotherfactorsmayhavecontributedtothefailure.First,onethermometermaxedoutbeforereachingourtargettemperature,wecannotbesuretheinteriorsandreachedfulltemperature.Second,heatmayhavebeenlostwhenthesandwastransferredfromthepottothetray.Finally,theshallowtraymayhavecreatedaworst-casescenariowithregardtothermalconduction.Whiletheseeffectsmayhaveimpactedperformance,itseemsunlikelytheycouldaccountforthefullfailure.Thatis,evenifthesefactors

    weremitigated,weexpectthepowerdeliveredwouldstillproveinsufficient.

    4.3Experiment2:Powerandtemperaturerequiredforroti

    Thesecondexperimentaimedtoquantifythetemperatureandpowerrequirementsformakingaroti.Forthistest,wecookedthirteenrotisunderdifferentconditionsonagasstove,varyinginputpowerandinitialpantemperature.Pantemperature

  • 7/29/2019 Solar Cookstove Final Report

    26/53

  • 7/29/2019 Solar Cookstove Final Report

    27/53

    requiredheatwhenthestoragemediawasatlowtemperaturesandavoidwastewhenthemediawashot.

    4.4ThermalConductionCalculations

    Wefirstconsideredheatdeliverythroughthermalconduction.Conductiveheatflowisdescribedby

    !!= !"

    !"

    !"

    wherePispower,kisthermalconductivity[power/length/degree],Aiscross-sectionalarea,xisflowdirection,andTistemperature.Wefoundthatmeetingourspecificationswitha30CtemperaturedropandphysicaldimensionsgivenbytheIowateamrequiredverylargecross-sections:6.7inchdiameterinCuor8.4inchdiameterinAl.Asidefromthetechnicaldifficultiesofdesigningamechanismtograduallybringthatmuchsurfaceareaintothermalcontact,therequiredmetal

    prices(est.$125forAl,$900forCu)putthissolutionoutsideofClimateHealersper-stovebudget.Aworksheetforthisanalysiscanbefoundinourteambinder:ConductorbasedDeliveryAnalysisv3.xlsx;ConductorEstimates.

  • 7/29/2019 Solar Cookstove Final Report

    28/53

    5.HeatSiphonDesignandFabrication

    Wenextconsideredenergydeliverythroughaheatsiphon.Inaheatsiphon,liquidatalowerhotreservoirisevaporatesandrisesashotgas.Thisgascondensesatthecoldertopandflowsdownviagravity.Whilethereisextensiveliteratureonheat

    pipeandheatsiphondesign,verylittlefocusesondesigninginourtemperatureandpowerregimes.Wethereforeapproachedmanyofthedesignconsiderationsfromfirstprinciples.Thephase-changefluidswereevaluatedbasedonvaporpressureandcriticalpoint.Energytransfercapabilitieswereevaluatedforconductionthroughthepipewall(1),atthephasechange(2),throughfluidflow(3),andthroughradialconductionattheburner(4).Additionalconsiderationsincludedthermalexpansionatbimetaljointsandoptimizingthefilllevel.

    5.1PhaseChangeFluidConsiderations

    Becausethefluidisheatedwhilecaptiveinthesealedtube,pressureposesaserioussafetyconcern.VaporpressurecanbedeterminedbyintegratingtheClausius-Clapeyron(CC)relation:

    !"

    !"=

    !!

    !!

    wherepispressure,Tistemperature,Leisthelatentheatofevaporation[energy/mass]attheoperatingtemperature,andVisthechangeinvolumebetweenthestates.Forexample,at350C,waterhasavaporpressureof~16MPa(158atm).Ethyleneglycol,amajorconstituentinantifreeze,provedtohavethelowestpressuresofreadilyavailableandaffordablefluidsexamined.Bycomparison,ithasavaporpressureofonly1.6MPa(16atm)at350C.Thoughwehopetooperatethesiphonbetween170and230C,thestoragesystemisdesignedtopeakat350C.Further,ifthestoveisnotused,excessheatcanbuildupinthemedia.TheIowamodelingteamprovided550Casaconservativeworst-casetemperatureforthemedia.

    PressuresestimationsviaCCarevalidonlywhilebothphasesexistandwhilethetemperatureandpressureremainbelowthefluidscriticalpoint.Abovethispoint,theboundarybetweenphasesislostandthefluidbeginstobehavemorelikeagas.

    Figure5.1Diagramshowingenergyflowinaheatsiphon.

  • 7/29/2019 Solar Cookstove Final Report

    29/53

  • 7/29/2019 Solar Cookstove Final Report

    30/53

    AppendixC?.WorksheetsusingthoseequationsforlinearandhyperbolicprofilescanbefoundinHeatSiphonCalculationsv4.xlsx;PlateConduction.

    5.3OtherConsiderations.

    GiventhatanAlburnerwouldbematedtoastainlesssteeltubeandfittings,weconsidereddifferentialthermalexpansion.Usinglinearapproximationsandaconservativeuppertemperatureof350C,wefoundradialchanges~50mandsocketdepthchanges~125m.Basedonthesevalues,wechoseataperedpipethread(NPT)andteflontapefortheconnection.Aworksheetforthesecalculationscanbefoundinourteambinder:HeatSiphonCalculationsv4.xlsx;ThermalExpansion.

    Finally,wemustconsidertheoptimalfillvolume.Iftoolittleethyleneglycolisincluded,alltheliquidwillvaporizeasthesiphonisheated.Onceallliquidisgone,theevaporation-condensationheattransferwillbecomeineffective.Iftoomuch

    fluidisadded,thevolumefractionofliquidwillincrease(liquiddensitiesfallastemperaturesrise)untilittakesupmostofthevolume.Again,thiswillleadtoinefficientheattransfer.Additionally,behaviorabovethecriticalpointapproachesthatofgasses,sopressureatveryhightemperaturesisdependentonthetotalamountofethyleneglycolincluded.Thisparameterhasnotyetbeenaddressedandshouldbeevaluatedbeforetesting,especiallyathightemperatures.

    5.4Fabrication

    Giventhehighpressuresinvolved(estimated16.8MPaat550Cforethyleneglycol),weacquiredmostpartsfromvendorswithpublisheddataonworkingpressures.Thepipe,end-capsandNPTadapterwerepurchasedfromSwagelok.Ofthoseparts,thepipewasmostvulnerabletofailurethroughinternalpressure,withaworkingpressureratingof21.5MPa.Theburner,however,requiredcustomfabrication,andwascompletedintheUCBerkeleyEtcheverryshop.ShopexpertsMickandGordonbothgavecrucialadviceonhowtomachineforsuchhighpressureapplications.ImagesofthecustompieceandofthecompletedheatsiphonareavailableinAppendixD.

  • 7/29/2019 Solar Cookstove Final Report

    31/53

    6.AnAlternativeFluidDesign6.1IntroductionAs noted in our revised team goals, we think that it will be useful to present some

    further design concepts which reflect the scope of the stored solar cook stoveproblem.

    The figure below encapsulates the input/output relationship for our stored thermal

    energy problem. The Sun and roti dough (timedelayed) are inputs to the system.

    arm roti is the output, with required heat transfer characteristics specified by our

    arlier experiments.

    W

    e

    Figure 6.1. Input/Output Relationship of Stored Thermal Stove

    The design discussed in this section is conceptual, and as such we do not providedetailed physical models or specifications. Rather, it is intended as a possible

    direction for further development.

    6.2AMoreFluidApproachHere we consider a design in which three fluids perform the roles of thermal

    collection, storage, and delivery. They are denoted as FC, FS, and FD, respectively

    nd have temperatures of vaporization of TC, TS, and TD.a

    Before presenting the proposed concept, we discuss heatexchangers, importantsubcomponents of this design. Heat exchangers are modular components designed

    to transfer heat from one liquid to another. Kakac and Liu21 note that the fluids can

    be allowed to mixed or physically separated, as will be the case with those that we

    21 Sadik Kaka and Hongtan Liu (2002). Heat Exchangers: Selection, Rating and Thermal

    Design (2nd ed.). CRC Press.

  • 7/29/2019 Solar Cookstove Final Report

    32/53

    consider here. Heat exchangers can transfer thermal energy between fluids of the

    same phase or used to evaporate or condense fluids, also. As far as building

    prototypes is concerned, an advantage of using heat exchangers is that they are

    commonly used in industrial applications such as car radiators and can therefore be

    purchased offtheshelf.

    The below figure is a diagram of a shellandtube heat exchanger, in which a tubeside fluid is to be heated or cooled. The shellside fluid passes over the tubes,

    absorbing or transferring respectively its energy to the tube side fluid.22

    Figure 6.2. Shell and Tube Heat Exchanger, image taken from wikimedia 23In short, a heat exchanger is a device with through which two fluids pass (with two

    nputs and two outputs). One fluid is cooled, transferring its heat to the other fluid.i

    6.3ADesignConceptThe figure below presents a systemlevel overview of the allfluid concept.

    22 [W] http://en.wikipedia.org/wiki/Heat_exchanger23 [W] http://en.wikipedia.org/wiki/Heat_exchanger

  • 7/29/2019 Solar Cookstove Final Report

    33/53

    Figure 6.3. AllFluid Design.

    The process can be decomposed as follows:

    A tube containing FC runs along the line defining the focus of theparabolic collector.

    Reflected solar energy vaporizes the FC. FC gas enters the FC/FS heat exchanger, where it condenses, returning as

    a liquid to the parabolic collector. When the sun sets, a valve can be shut

    off to prevent energy loss.

    The heat exchanger absorbs the condensation energy of FC, heating FS.Until cooking begins, FS is stored at a temperature higher than TD (and

    lower than TS).

    To cook, the user turns on a valve regulating FD. FD liquid enters theFS/FD heat exchanger, where it is heated and exits as a vapor.

    Conceptually similar to our current design, the FD vapor condensesagainst the stove, releasing heat and cooking the roti before returning to

    the second heat exchanger.

  • 7/29/2019 Solar Cookstove Final Report

    34/53

    Selection of the working fluids will inform the hardware design. Fluids should meet

    the following criteria:

    TC should be fairly high and must be larger than TD so that the finalphase change can take place.

    TS should be higher than TC, as vapor in the storage container may createunsafe pressure. TD should be a little higher than the temperature required to cook the

    roti so that the temperature transfer to the stove

    ronmental impact. Fluids should be nontoxic.Safety and evi Affordability.

    For example, candidates for FC, FS, and FD respectively are glycerine (290 C),

    mineral oil (330 C) and propelyne glycol (187 C), with boiling points

    arenthesized.p

    24

    6.4PotentialBenefitsandRisksComparedtotheCurrentDesignGenerally speaking, the design process for this project was complicated by the many

    interactions and tradeoffs between various system components. A considerable

    benefit of an allfluid design is that heat exchangers simplify specifications of the

    interfaces between collection, storage, and delivery processes. This should improve

    the modularity, making it easier to design and test a particular subsystem without

    completely redesigning the others, as well as easing the integration of outdoor solar

    collection and indoor cooking.

    A specific concern with the current design is the interface between the paraboliccollector and the sand storage unit. As the sun sets, the ambient temperature cools

    and if left open, the temperature of the sand will decrease. Therefore, just as the

    sand reaches its peak temperature, the aperture should close. This presents

    numerous challenges. In particular, it is difficult to size the aperture and time its

    closing. If not properly controlled, an open aperture will leak energy from the

    thermal storage unit. Closing the aperture manually requires additional human

    interaction while shuttering it automatically adds much greater design complexity.

    Such concerns might be lessened with the allfluid design. The use of wellinsulated

    offtheshelf pipes (e.g. evacuated tubes) should reduce potential energy losses

    compared with the current design. Furthermore, when the sun sets, it is simpler to

    turn a valve to stop fluid flow than actuate the aperture shutter mechanism.As well as the solar collection problem, sand as a thermal storage medium presents

    challenges in delivering heat for cooking. The primary advantage of sand is that it

    can reach high temperatures, has a fairly high specific heat, and is dirt cheap.

    However, it is a formidable challenge to design a robust conductive pathway

    th hermosyphon. An advantage of using fluid to storeroughout the sand into the t24www.engineeringtoolbox.com

    http://www.engineeringtoolbox.com/http://www.engineeringtoolbox.com/http://www.engineeringtoolbox.com/http://www.engineeringtoolbox.com/http://www.engineeringtoolbox.com/http://www.engineeringtoolbox.com/http://www.engineeringtoolbox.com/http://www.engineeringtoolbox.com/http://www.engineeringtoolbox.com/
  • 7/29/2019 Solar Cookstove Final Report

    35/53

    thermal energy is that convection can be employed to our advantage, whereas doing

    so with sand is more of a challenge.

    Another problem with the current design is the large mass of sand required to store

    the required cooking energy. Here too, fluids should perform better: the specific

    heat of sand is approximately .8 kJ/kg K, while that of mineral oil, a storage fluid

    candidate is 1.67 kJ/kg K. (For reference that of water is 4.19.)25

    While there are some potential benefits, a number of risks are associated with the

    three fluid design:

    Repeated heating and cooling of the fluids may break them down,particularly organic oils.

    Safety measures should be taken to ensure that pressures are kept at safelevels for each fluid container. This may add additional significant

    complexity and be expensive.

    Heat exchangers are expensive components, being complex to bothdesign and manufacture. While they can be bought offtheshelf, thereare many design parameters that determine its performance, such as

    yout of the tubes.material, diameter, thickness, length, and la

    Fluid storage containers may be expensive. As with the previous design, insulation of the fluid at high temperatures

    for several hours is a challenge.

    25www.engineeringtoolbox.com

    http://www.engineeringtoolbox.com/http://www.engineeringtoolbox.com/http://www.engineeringtoolbox.com/http://www.engineeringtoolbox.com/http://www.engineeringtoolbox.com/http://www.engineeringtoolbox.com/http://www.engineeringtoolbox.com/http://www.engineeringtoolbox.com/
  • 7/29/2019 Solar Cookstove Final Report

    36/53

  • 7/29/2019 Solar Cookstove Final Report

    37/53

    provideavenueforfeedbackandtrouble-shootingwhilepotentiallyraisingmoneyforfurtherdevelopmentandsubsidizingofstovedistributioninimpoverishedvillages.4

    7.2DesirabilityOveralldesirabilityofastoredenergysolarcookstoveremainshighasthevillageofKarechiswellawareoftheneedtodecreasewoodusage,asdiscussedinsection1.Timesavednotcollectingwoodmaybespentcraftingproductsforsale(forexamplecurrentlyvillagersfashionplatesoutofleaves)orstudying.5Furthermore,FESworkscloselywiththevillagetoemphasizetheneedforchangetosavetheforest.Finally,ifthestovesaremanufacturedinthevillage,thevillagerswillhaveanadditionalinvestmentofpride.

    Thecurrentprototypehasseveralundesirablefactorsthatshouldbefixedbeforeintroductiontothevillage:

    Convenience.Thecurrentprototypeistoolargeandwillbeunstableonthehillyterrainofthevillage.Furthermore,itistooheavytobemovedtoandfromthehouseforcookingassuggestedandadjustmentofcollectoronadailybasisisnotoptimal.Amodulardesignhasbeensuggestedtohelpaddresstheseissues.

    Safety.Thecurrentdesignrequiresbuildingtoextremetemperatureandpressurerequirements,whichwillalwayspresentasafetyissueaslongasthepotentialforthestoragereaching550Cremains.PrototypesmustcertainlybetestedextensivelybeforebeingbroughttoIndiaandwerecommendamechanismforheatdissipation.Alternativelyanon-fluid

    designorbetterheattransferefficiencyallowingforloweroveralltemperatureswouldaddressthisissue.

    TheseissueswillcertainlybeaddressedinfutureiterationsandwenotethatthecurrentprototypedoesmeetthemainconcernoftheoriginalNamasteprototypeinthatitallowscookingwhensunlightisnotavailable.

    7.3TechnicalFeasibility

    Theoreticalcalculationssuggestthatthecurrentdesigniscapableofcookingrotiandexperimentshaveconfirmedthateveningcookingispossible.Energystorageto

    allowcookingofrotiinthemorningremainsaverydifficultproblemandmayeitherbeachievedinfutureiterationsor,alternatively,amoreefficientstovemaybeusedinthemorningasanalternativetoa3-stonefire.Asecondtechnicalhurdleremainsintheabilitytomanufacturethestoveinthevillageoutoflocalmaterials.Full

    4ImplementationstrategyideasweredevelopedinbrainstormingwithSusanAddy,ECARProjectLead,2011.5PersonalcommunicationwithSaileshRaoofClimateHealers.

  • 7/29/2019 Solar Cookstove Final Report

    38/53

  • 7/29/2019 Solar Cookstove Final Report

    39/53

    8.ConcludingRemarks

    Ultimately,adefiningfeatureofourworkwasthechallengeofdesigningasinglecomponentinisolationfromtherestofthesystem.Insomerespects,thiswasbeneficialbecauseitfocusedourenergy(nopunintended)--makingusthink

    deeplyabouttheheattransferprinciplesandmanydesigntradeoffswithinasinglemodule.

    Yet,wealsocametoappreciatethatanysuccessfuldesignrequiresaholisticplan.Thecomplexinterfacesbetweenthethermalcollection,storage,anddeliverycomponentsofthesolarcookerdemonstratetheneedforamoremodularstrategy.Althoughanynumberofconceptsappearfeasible,weexpectthatthethree-fluidapproachwillbebothmodularandaffordable.Wehavenotyetundertakenacomprehensiveanalysisofit,andassuchweareunabletosaywithcertaintythatsuchanapproachisevenviable.However,wedothinkthatitwarrantsfurtherconsiderationbyfutureengineeringteamswhoconsiderthisworthyyetchallengingproblemofdesigningastoredsolarenergycookstove.

  • 7/29/2019 Solar Cookstove Final Report

    40/53

    Appendices

    AppendixA.Potentialmaterialsforthermalstorage

    Material Tm

    (C)

    Lf

    (kJ/kg)

    cp

    (kJ/kgK)

    Safety Cost

    ($/kg)

    Puremetalsa

    Bismuth 271.40 Xc(54.1) 0.122 Xc(~22)

    Cadmium 321.07 213 0.232 X(toxic)

    Indium 156.60 28.6 0.233 X(~4,500)

    Lead 327.46 23.0 0.129 X(toxic)

    Litium 180.5 432 3.582 X(combustible)

    Polonium 254 - - X(radioactive) Thallium 304 20.3 0.129 X(toxic)

    Tin 231.93 Xc(59.2) 0.228 Xc(~11)

    Fusablealloysb

    5:3Bi:Sn 202 Xc Xc

    1:1Bi:Sn 286 Xc Xc

    Waxes

    Typical 60-70 2.14-2.9 Xd

    (combustible) Paraffin 47-64 2.9 Xd(combustible)

    Beeswax 62-64 3.4 Xd(combustible)

    Specialty upto180 X

    Salt X(~800) 0.88-0.92

    Glasses X(~0) 0.5-0.9

    Rubbers

    Typical 2.0 IndiaRubber 1.13-4.1

    Sand 0.8

    TableA1:Potentialphasechangeandtemperaturechangematerials.Xsindicateincompatibilitywithourdesign.a:Forpuremetals,onlythosewithphasechangesbetween

  • 7/29/2019 Solar Cookstove Final Report

    41/53

    150-400Cshown;physicalpropertiesarefromCRC.b:Alloysincludeonlythosewithoutcadmiumorleadfortoxicityissues,orindiumforcost.Dataisfrom

    http://www.gizmology.net/fusiblemetals.htm.c:Bismuth,tin,andtheiralloysarecheaperthanmost,butstillcost-prohibitivewhencombinedwiththeirspecificheatcapacities.d:Liquidwaxeswouldbepromisingastemperature-changematerials,exceptthattheyflashat200-250C.Dataforwaxes,rubber,glassfromhttp://www.engineeringtoolbox.com/specific-heat-solids-d_154.html.

  • 7/29/2019 Solar Cookstove Final Report

    42/53

    AppendixB.ConductiveRadialHeatFlow

    Thisseekstoderivetheequationsforradialheatflowoverafinitecirculardomain

    withno-flowboundariesattheouteredgeandanaxialsourceorsink.The

    mathematicsareexpectedtobeanalogoustogroundwaterflowthroughporous

    mediaaroundawellorinjectionsite.

    Ringshapedcontrolvolume,whereJoutisanylossuniformoverthediskwith

    dimensions[Energy/Area/Time]:

    Conservationofenergy:

    (1) ! ! + ! = ! ! + ! ! ! ! ! + ! ! !!"#!"#$!

    Rearranging,(Uenergydensity[Energy/Volume]):

    (2) !! ! + ! !" ! + ! ! + ! ! ! ! ! = !!"#2!"!!

    Dividingbyunit:

    (3)!

    !!"!!

    ! !!! !! !

    !+

    ! !!! !!! !

    !!"!!=

    !!!"#

    !

    Passtolimitsasr0,t0:

    (4)!"

    !"+

    !

    !!"!

    !"

    !"=

    !!!"#

    !

    Jout

    P r+rP(r)

    r

    h

    r

  • 7/29/2019 Solar Cookstove Final Report

    43/53

    Thermalenergy(density,heatcapacity,temperature,andvolume):

    (5) ! = !!!! = !!!!Powerthroughconduction(thermalconductivity,area)

    (6) ! = !" = !"!"

    !"= !2!"

    !"

    !"

    Combining(4),(5),and(6):

    (7)!

    !"!!!! +

    !

    !!"!

    !

    !"!2!"

    !"

    !"=

    !!!"#

    !

    Forconstantdensity,heatcapacity,height,anddelta,andforuniformthermal

    conductivity:

    (8) !!! !"!"

    !

    !

    !

    !"! !"

    !"= !

    !!"#

    !

    Wewillnowconsider2possibilities:(A)NooutsidelossesanduniformfallofT,(B)

    totallossesthroughJout=totalinputpower.

    (A9) !!!!"

    !"

    !

    !

    !

    !"!!"

    !"= 0

    Sototalpowerinattheinnerradiuswillcorrespondtoauniformtemperaturerise:

    (A10)!!"!#$

    = !!!"#

    !!!!

    !"

    !"

    Combining(A9)and(A10):

    (A11)!!"!#$

    !!!"#!!!

    =

    !

    !

    !

    !"!!"

    !"

    (A12)!!"!#$

    !!!"#!!!

    !"! = ! !!"

    !"

    Integrating(recallthatno-flowattheperimeter):

    (A13) !!"!#$!!!"#

    !!!!!"

    !

    !!"#

    = ! !!!!

    !"

    !

    !"

    !"

    !

    (A14)!!"!#$

    !!!!"#!!!

    !! !!"#

    != !

    !"

    !"

    (A15)!!"!#$

    !!!!

    !

    !!"#!

    !

    !

    =

    !"

    !"

  • 7/29/2019 Solar Cookstove Final Report

    44/53

    (A16)!!"!#$

    !!!!

    !

    !!"#!

    !

    !

    !"!!

    !!

    = !"!!

    !!

    (A17)!!"!#$

    !!!!

    !!!!!!

    !

    !!!"#! !"

    !!

    !!

    = !! !!

    (B9) !!"#!=

    !

    !

    !

    !"!!"

    !"

    Here,totalpowerwillbetheJoutovertheentiretoparea:

    (B10)!!"!#$ = !!"#!!!"#!Combining(B9)and(B10):

    (B11)!!"!#$

    !!!"#!!!

    =

    !

    !

    !

    !"!!"

    !"whichisidenticalto(A11)andsolutionfollowsfrom

    there

    ThisresultA/Bcanbeappliedtothesandmixturedeliveringheattothesiphonasit

    removesitfromthecenter.Italsoappliestoheatdistributiontotheedgesofthe

    burnerasitisdeliveredtothecenterbythesiphon.

    Inthecaseofaconductorwhereheightvarieswithr,theanalysisholdsuntil

    equation(7).Fromthere,itprogressesasfollows:

    (C8) !!!

    !"

    !"

    !

    !!

    !

    !"

    !!"

    !"

    =

    !!!"#

    !

    Fromhere,wetakethecasewhereJout=totalinputpower.

    (C9)!!"#

    !=

    !

    !!

    !

    !"!

    !"

    !"

    With(B10),wehave:

    (C11)!!"!#$

    !!!"#!!=

    !

    !

    !

    !"!

    !"

    !"

    (C12)!!"!#$

    !!!"#!! !"!

    = ! !

    !"

    !"

    (C13)!!"!#$

    !!!"#!!

    !!"!

    !!"#

    = ! !!!"!

    !"

    !!!"

    !"

    !

    (C14)!!"!#$

    !!!!"#!!

    !! !!"#

    != !

    !"

    !"

  • 7/29/2019 Solar Cookstove Final Report

    45/53

    (C15)!!"!#$

    !!!

    !

    !!"#!!

    !

    !!=

    !"

    !"

    (C16)!!"!#$

    !!!

    !

    !!"#!!

    !

    !!!"

    !!

    !!

    = !"!!

    !!

    Atthispoint,thespecificfunctionh(r)mustbeknown.Asanexample,wetakeh=a/rforuniform,constanta:

    (C17)!!"!#$

    !!!"

    !!!!!!

    !

    !!!"#! !! !! = !! !!

  • 7/29/2019 Solar Cookstove Final Report

    46/53

  • 7/29/2019 Solar Cookstove Final Report

    47/53

  • 7/29/2019 Solar Cookstove Final Report

    48/53

  • 7/29/2019 Solar Cookstove Final Report

    49/53

  • 7/29/2019 Solar Cookstove Final Report

    50/53

    AppendixD:Designdrawingsandprototypeimages

  • 7/29/2019 Solar Cookstove Final Report

    51/53

  • 7/29/2019 Solar Cookstove Final Report

    52/53

  • 7/29/2019 Solar Cookstove Final Report

    53/53