Solar Car Pwr Monitoring System

download Solar Car Pwr Monitoring System

of 92

Transcript of Solar Car Pwr Monitoring System

  • 8/6/2019 Solar Car Pwr Monitoring System

    1/92

    Solar Car

    Pow er Monitor ing SystemFinal Technical Report

    Submitted by: Team 4431

    Timothy BaumgartnerMartin Bouvet Bours

    Jessica FalkBenjamin Rawlins

    Michael Sunday

    Submitted to:

    Mentor: Clayton GranthamSponsors: Sean Martinez, Wei Ren Ng

    UA Solar Racing Team

    Submitted on:

    April 29, 2010

    Interdisciplinary Engineering Design Program

    University of Arizona

  • 8/6/2019 Solar Car Pwr Monitoring System

    2/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page ii

    RevB April29,2010

    Team 4431Solar Car Power Monitoring System

    Pictured from left to right:

    Martin Bouvet Bours, Mechanical Engineer,

    Benjamin Rawlins, Mechanical Engineer,

    Jessica Falk, Electrical Engineer,Michael Sunday, Systems Engineer,

    Timothy Baumgartner, Computer Engineer

  • 8/6/2019 Solar Car Pwr Monitoring System

    3/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page iii

    RevB April29,2010

    Abstract

    ThisreportdetailstheeffortsoftheSolarCarPowerMonitoringSystemSeniorDesign

    Teamtodesign,build,testanddeliveraworkingprototypepowermonitoringsystemfortheUA

    Solar Racing Team. Included in this document are the details of the design process, from

    concept to analysis, development to build, and finally, to test the components and overallsystem. This engineering challenge was proposed by the UA Solar Racing Team to provide a

    meansofanalyzingtheirsolarvehicleduringthebuildandoperationalphasesofthevehiclefor

    thepurposeofmaximizingefficiencytomeettheobjectiveofvarioussolarraces. Theprocess

    of creating such a system was to discover requirements from customer attributes, develop

    concretefunctionalrequirementstosatisfyeachcustomerneed,designhardwareandsoftware

    solutionstomeettherequirementsandtotesteachcomponentaswellastheoverallsystemto

    validatethatoursystemmeetsorexceedsthecustomerneeds. Thoughthedevelopmentphase

    of the project, validation and verification methods were noted to ensure each system

    component could be individually tested for performance and compliance to the overall

    requirements. The system as a whole was tested to ensure each component was compatible

    and worked asdesigned when fully integrated intothevehicle. Througha series of analyses,

    comparisons and testing with known data elements, each part of the system was verified to

    meet the lower level requirements as well as validated to ensure the solution satisfied the

    intended use of the product. The overall results of this team effort are a power monitoring

    system design with working components that create a system that can evaluate vehicle

    performance,bothmechanicalandelectrical,overawiderangeofparameterstobeusedinUA

    SolarRacingTeamprojects. Twostandalonesystemsweredeveloped: Analignmentfixtureto

    evaluatethemechanicalaspectofrollingresistancethroughmeansofwheelalignment,andan

    electricalmonitoringsystemtoevaluatethepowersystemofthevehicle. TheUASolarRacing

    Teamnowhasthemeanstoevaluatetheirvehiclesbothmechanicallyandelectricallytomeet

    thegoalsandobjectivesofeachracetheyenter.

  • 8/6/2019 Solar Car Pwr Monitoring System

    4/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page iv

    RevB April29,2010

    TableofContents1 Introduction.......................................................................................................................................... 9

    1.1 SponsorandMentor..................................................................................................................... 9

    1.2 CustomerBackground................................................................................................................... 9

    1.3 MeetingtheCustomerNeed........................................................................................................ 9

    2 SystemRequirements......................................................................................................................... 10

    2.1 DiscoveringRequirements.......................................................................................................... 10

    2.2 CustomerAttributes................................................................................................................... 10

    2.3 FunctionalRequirements............................................................................................................ 10

    2.4 Constraints.................................................................................................................................. 15

    2.5 RequirementsSummary............................................................................................................. 16

    3 PreliminaryDesignsandSelectingaFinalDesign............................................................................... 17

    3.1 Developingafinaldesign............................................................................................................ 17

    3.2 IdealFinalResult......................................................................................................................... 17

    3.3 PreliminaryDesigns..................................................................................................................... 18

    3.4 PreliminaryDesignScoringandSelection................................................................................... 19

    3.5 FinalDesign................................................................................................................................. 20

    4 FinalDesign......................................................................................................................................... 21

    4.1 SystemArchitecture.................................................................................................................... 21

    4.2 SensorsandProcessing............................................................................................................... 24

    4.3 Telemetry.................................................................................................................................... 52

    4.4 Software...................................................................................................................................... 53

    4.5 Mechanical.................................................................................................................................. 55

    4.6 Analysis....................................................................................................................................... 62

    4.7 FMEA........................................................................................................................................... 66

    4.8 Risk.............................................................................................................................................. 68

    5 SystemBuild........................................................................................................................................ 70

    5.1 V/ISensor.................................................................................................................................... 70

    5.2 SpeedSensor............................................................................................................................... 70

    5.3 TiltSensor/Accelerometer.......................................................................................................... 70

    5.4 SensorHub.................................................................................................................................. 71

  • 8/6/2019 Solar Car Pwr Monitoring System

    5/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page v

    RevB April29,2010

    5.5 CommunicationsHub.................................................................................................................. 71

    5.6 Telemetry.................................................................................................................................... 72

    5.7 LabViewSoftware....................................................................................................................... 72

    5.8 Mechanical.................................................................................................................................. 73

    5.9 Analysis....................................................................................................................................... 75

    6 ResultsfromTestPlan........................................................................................................................ 79

    6.1 ProjectData................................................................................................................................ 79

    6.2 Purpose....................................................................................................................................... 79

    6.3 VerificationofFunctionalRequirements.................................................................................... 79

    6.4 ValidationoftheSolarCarPowerMonitoringSystem............................................................... 80

    6.5 VerificationandValidationSummary......................................................................................... 82

    7 BudgetandScheduleDocumentation................................................................................................ 84

    7.1 Budget......................................................................................................................................... 84

    7.2 Schedule...................................................................................................................................... 84

    8 Conclusion........................................................................................................................................... 86

    9 Acknowledgement.............................................................................................................................. 87

    10 References...................................................................................................................................... 88

    11 TeamContribution.......................................................................................................................... 89

    12 Appendix......................................................................................................................................... 91

  • 8/6/2019 Solar Car Pwr Monitoring System

    6/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page vi

    RevB April29,2010

    TableofEquationsEquation1:PreAmplifierGain................................................................................................................... 28

    Equation2PreAmplifierResistorSelection............................................................................................... 28

    Equation3:CurrentthroughDiodes........................................................................................................... 29

    Equation4:CurrentthroughDiodesinTermsofR..................................................................................... 29

    Equation5:PassiveFilterTransferFunction............................................................................................... 30

    Equation6:PassiveFilterAngularFrequency............................................................................................. 31

    Equation7:PassiveFilterTransferFunction............................................................................................... 31

    Equation8:PassiveFilterAngularFrequency............................................................................................. 31

    Equation9:TransferFunctionCombinedEffects....................................................................................... 31

    Equation10:MagnitudeofCombinedEffects............................................................................................ 31

    Equation11:CutoffFrequency................................................................................................................... 32

    Equation12:BiasResistor........................................................................................................................... 34

    Equation13:VoltageDivider...................................................................................................................... 34

    Equation14:VoltageDividerResistance.................................................................................................... 35

    Equation15:BufferInputProtection.......................................................................................................... 36

    Equation16:LowPassFilterCutoffFrequency.......................................................................................... 36

    Equation17:LowPassFilterCutoffFrequencyintermsofR..................................................................... 37

    Equation18Safetyfactorduetostaticloading.......................................................................................... 55

    Equation19FrictionalForce....................................................................................................................... 58

    Equation20MaximumShearStressDuetoBending................................................................................. 59

    Equation21:GearRatio.............................................................................................................................. 62

    Equation22:DrivenWheelPower,Pengine.............................................................................................. 62

    Equation23:Frolling.................................................................................................................................. 62

    Equation24:AerodynamicDrag................................................................................................................. 62

    Equation25:Force...................................................................................................................................... 63

    Equation26:Torque................................................................................................................................... 63

    Equation27:MassFactor........................................................................................................................... 63

    Equation28:DragCoefficient..................................................................................................................... 64

    Equation29:CarvelocityfromfinaldriveshaftRPM.................................................................................. 76

    Equation30:RPMofnextshaft,usinggearratio....................................................................................... 76

  • 8/6/2019 Solar Car Pwr Monitoring System

    7/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page vii

    RevB April29,2010

    TableofFiguresFigure1:FunctionalDecompositionofCA1.............................................................................................. 11

    Figure2:FunctionalDecompositionofCA2.............................................................................................. 12

    Figure3:FunctionaldecompositionofCA3............................................................................................... 13

    Figure4:IdealFinalResult.......................................................................................................................... 17

    Figure5:PreliminaryDesigns...................................................................................................................... 18

    Figure6:PughChart.................................................................................................................................... 19

    Figure7:FinalDesign.................................................................................................................................. 20

    Figure8:DataLoggingArchitecture........................................................................................................... 22

    Figure9:Voltage/CurrentSensorHighSideShunt..................................................................................... 25

    Figure10:V/ISensorSchematic................................................................................................................. 26

    Figure11:IS1101SingleChannelSensorwithDigitalOutput.................................................................... 45

    Figure12:OverallConnectionforAccelerometer...................................................................................... 46

    Figure13:SensorHubSchematic............................................................................................................... 47

    Figure14:CommunicationHubSchematic................................................................................................. 50

    Figure15:SystemBlockDiagramforTelemetry......................................................................................... 52

    Figure16:ModuleAssemblyfromtheProductManual............................................................................. 52

    Figure17:VisualizationSoftware............................................................................................................... 53

    Figure18:FinalDigitalAlignmentToolDesign........................................................................................... 55

    Figure19Wheelalignmentbottomarms................................................................................................... 56

    Figure20:ToparmforDigitalTool............................................................................................................. 57

    Figure21WheelAlignmentBeam.............................................................................................................. 59

    Figure22:Componentcase........................................................................................................................ 61

    Figure23:RollingResistance...................................................................................................................... 64

    Figure24:CoastdownTest.......................................................................................................................... 65

    Figure25:RiskPlot...................................................................................................................................... 69

    Figure26:ElectricMotorGraph(xaxisisTorqueininlb)......................................................................... 78

    Figure27:V/ISensorPrintedCircuitBoard................................................................................................ 91

    Figure28:CommunicationsHubPrintedCircuitBoard.............................................................................. 92

  • 8/6/2019 Solar Car Pwr Monitoring System

    8/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page viii

    RevB April29,2010

    TableofTablesTable1:SystemFunctionalRequirements................................................................................................. 14

    Table2:Constraints.................................................................................................................................... 15

    Table3:V/ISensorInput/OutputRatings................................................................................................... 27

    Table4:V/ISensorShuntResistor.............................................................................................................. 28

    Table5:PreAmplifierResistorSelection................................................................................................... 29

    Table6:ResistorSelection.......................................................................................................................... 30

    Table7:ResistorandCapacitorSelection................................................................................................... 33

    Table8:ResistorandDiodeSelection......................................................................................................... 34

    Table9:ResistorSelection.......................................................................................................................... 35

    Table10:ResistorSelection........................................................................................................................ 36

    Table11:ResistorandCapacitorSelection................................................................................................. 37

    Table12:CapacitorSelection..................................................................................................................... 37

    Table13:ResistorandCapacitorSelection................................................................................................. 38

    Table14:CapacitorSelection..................................................................................................................... 38

    Table15:ResistorSelection........................................................................................................................ 39

    Table16:ResistorSelection........................................................................................................................ 39

    Table17:ResistorSelection........................................................................................................................ 39

    Table18:CapacitorSelection..................................................................................................................... 40

    Table19:CapacitorSelection..................................................................................................................... 40

    Table20:Input/OutputRatings.................................................................................................................. 48

    Table21:RiskRegister................................................................................................................................ 68

    Table22:GearRatioCalculation................................................................................................................. 77

    Table23:FunctionalRequirements............................................................................................................ 80

    Table24:TestResultsSummary................................................................................................................. 83

    Table25:Budget......................................................................................................................................... 84

    Table26:Ganttchart.................................................................................................................................. 85

  • 8/6/2019 Solar Car Pwr Monitoring System

    9/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 9

    RevB April29,2010

    1 Introduction1.1 SponsorandMentor

    TheUniversityofArizonaSolarRacingteamhasproposedaseniordesignprojectto

    designasolarvehiclepowermonitoringsystemforuseontheirsolarracevehicle. Team4431,

    SolarPowerMonitoringSystem,hasacceptedthechallengetodesignandbuildsuchasystem.

    Thedesignprojectwillbeguidedthroughoursponsors:SeanMartinez,amechanical

    engineerandgraduatestudent,andWeiRenNg,anelectricalengineerandgraduatestudent.

    Additionallywehaveafacultymentor,ClaytonGrantham,whowillhelpguideusthroughout

    thedesignprocess.

    1.2 CustomerBackgroundOurcustomer,theUniversityofArizonaSolarRacingTeam,hasbeencompetinginsolar

    vehicleeventssince1999. TheseeventsincludetheSunrayce,FormulaSun,NorthAmerican

    SolarChallengeandmostrecentlytheShellEcoMarathon. Eachoftheseraceshasaspecific

    goal. Thegoalsofeacheventcanbecategorizedintotwomaintypesofracing:mostefficient

    vehicleandquickestvehicletothefinishline. Inordertobestpreparefortheraces,theUA

    SolarRacingTeamdesirestoevaluatevehiclepowerandefficiencytobestconfigurethevehicle

    forthespecificeventtheyarecompetingin. Inordertoevaluatethevehicle,manyfactors

    mustbemonitoredandcharacterized.

    1.3 MeetingtheCustomerNeedInordertomeetthecustomersneeds,Team4431willdesignasystemtomonitorthe

    powerusageoftheUASolarCartosupportanefforttoimprovetheelectricalandmechanical

    efficiencyofthevehicle. Toaccomplishthismission,bothelectricalandmechanicalsystems

    willneedtobeanalyzed. Electricalsystemstobeconsideredarethesolararrays,batteries,

    motorperformancebothconsumingandregenerating,andonboardelectronics. Collectionof

    theelectricaldatawillbeachievedthrougharealtimetelemetrysystemwithagoalofminimal

    powerconsumptionduetothemonitoringsystemcomponentdraws. Mechanicalaspectsthat

    willbeconsideredarevehiclemechanicalefficiencyoftherollingresistancethroughevaluation

    ofalignment,appliedhorsepowerandtorquethoughevaluationofgearratiosandvehicle

    speedmonitoring.

  • 8/6/2019 Solar Car Pwr Monitoring System

    10/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 10

    RevB April29,2010

    2 SystemRequirements2.1 DiscoveringRequirements

    Therequirementsforthissystemwerederivedfromtheoriginalproposal,meetings

    withthecustomer,anddiscussionwithourmentor. Theprocessofgatheringrequirements

    beganwiththeinitialcustomerneedsstatementfortheprojectdescription. Theteammetand

    discussedtherequirementstoformquestionsforthesponsorsinanattempttodiscover

    additionalrequirementsthatmaynothavebeenspecifiedinitially. Oncethequestionswere

    addressedbythesponsorstheteambegangenerationofthefunctionalrequirements. The

    functionalrequirementswerereviewedwiththesponsorandscoredtoestablishahierarchyof

    importance. Functionalrequirementswerefurtherbrokendownintosubrequirementsand

    finallyintodesignparameterstodefinethesubsystems.

    2.2 CustomerAttributesCustomerattributesarethestartofrequirementsdefinitionfortheproject. Each

    customerattributeisdevelopedintofunctionalrequirementstobetterdescribehowthe

    systemshallfunctionallymeetthecustomerneeds.

    CustomerattributeCA1,MonitorSolarVehiclePower,isastatedrequirementfromthe

    sponsorsdefiningmuchofthescopeoftheproject.

    CustomerAttributeCA2,DataAcquisitionSystemwithTelemetry,isastatedrequirementfrom

    thesponsorswhichaddstothescopeofCA1.

    CustomerAttributeCA3,EvaluateMechanicalAttributes,isadiscoveredrequirementfromthecustomerthatwasformedaftermeetingwiththecustomerandlearningaboutthemechanical

    capabilitiesofourteam.

    Customerattributesandtheirdecompositionintofunctionalrequirementsareillustratedin

    Figure1,Figure2,andFigure3.

    2.3 FunctionalRequirementsFunctionalrequirementsarederivedfromcustomerattributes. Thefunctional

    requirementsareusedtodefinesubrequirements,knownasdesignparameters,forwhich

    eachofthesubsystemdesignsaredevelopedtocompletetheoveralldesignintent. Fromthefunctionalrequirements,preliminarydesignsaredevelopedinanattempttosatisfythe

    customerneeds. Fromallofthepreliminarydesignideas,anidealfinalresultisformed.

    Functionalrequirementsarederivedfromcustomerattributes. Thesummaryofderived

    functionalrequirementsisillustratedinTable1.

  • 8/6/2019 Solar Car Pwr Monitoring System

    11/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 11

    RevB April29,2010

    Figure 1: FunctionalDecomposition ofCA 1

  • 8/6/2019 Solar Car Pwr Monitoring System

    12/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 12

    RevB April29,2010

    Figure 2: FunctionalDecomposition ofCA 2

  • 8/6/2019 Solar Car Pwr Monitoring System

    13/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 13

    RevB April29,2010

    Figure 3: Functionaldecomposition ofCA 3

  • 8/6/2019 Solar Car Pwr Monitoring System

    14/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 14

    RevB April29,2010

    Table 1: SystemFunctionalRequirements

    FunctionalRequirement

    CustomerImportance

    CTQ(metric) TargetValue

    Monitorelectrical

    subsystems

    10 Voltage,Amperageand

    Power

    95%accuracy(minimum)

    Measuredata

    withaminimum

    accuracyof95%

    9 MeasurementAccuracy 95%accuracy(minimum)

    Recordand

    accessremote,

    digitaltelemetryinrealtime

    8 Datarecording

    Datatransmission

    MeetsRequirementCriteria

    MonitorSolarCar

    speed

    7 Groundspeed 95%accuracy(minimum)

    Beportable

    betweenvarious

    platforms

    7 Portability FunctionproperlywithinSolarCar

    andbeyond

    Willnotdegradeelectrical

    performanceof

    SolarCar

    6 Powerconsumption Minimalpowerlossduetomonitoring

    Calculate

    equivalentmpgs

    basedonenergy

    used

    5 CalculationAccuracy 95%accuracy(minimum)

    EvaluateGear

    RatioandWheel

    alignment

    5 Torque,Wheelangle 95%accuracy(minimum)

  • 8/6/2019 Solar Car Pwr Monitoring System

    15/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 15

    RevB April29,2010

    2.4 ConstraintsConstraintsaretheenvelopeinwhichthesystemmustoperate. Throughthe

    developmentofthefunctionalrequirements,constraintsbecomeapparent. Constraintscanbe

    handeddownbythecustomer,bylaw,regulation,orsimplycommonsense. Theseconstraints

    typicallyarecategorized(butarenotlimitedto)asperformance,materials,safetyorbudget.

    Constraintsdiscoveredthroughoutthedevelopmentofthefunctionalrequirements

    wereacombinationofcustomerdrivenandcommonsense. Alistingofspecificconstraintscan

    befoundinTable2.

    Table 2: Constraints

    Constraints PartsoftheDesignAffected

    Materials

    Weightshouldbelessthan1%oftotal

    carweight(~8lbs)

    Shouldconsumelessthan1cubicfootof

    space

    Weight:Entiresystem(sensors,wiring,communicationsbox,antenna)

    Size:Maincommunicationsbox

    Performance

    Rangeofsignaltransmissionshouldbe

    atleast1.5miles

    Systemwillbeselfpowered

    Thesystemshouldbeoperableover

    Arizonaseasonaltemperature

    Range:Transceiver

    Power:Entiresystem

    Temperature:Entiresystem

    Safety

    Willnotinterferewithsafeoperationof

    vehicle

    Power:voltage,currentlevels

    Budget

    Willbedevelopedforunder$2000

    Cost:Entiresystem

  • 8/6/2019 Solar Car Pwr Monitoring System

    16/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 16

    RevB April29,2010

    2.5 RequirementsSummaryTheoverallsystemdefinitioncanbedescribedthroughthefunctionalrequirementsand

    constraints. (TeoriyaResheniyaIzobretatelskikhZadatch)orTRIZisoftenusedtoensuredesignparametersmeetfunctionalrequirements

    howeverwefeltthiswasnotnecessaryduetotheclearbreakdownofcustomerattributesthroughtofunctionalrequirementsanddowntolowerleveldesignparameters.

    Insummary,thesystemshall:

    Monitorelectricalsubsystemsandvehiclespeedwithinanaccuracyof95%oftheactual

    values,recordandaccessremotedigitaltelemetryinrealtime,beportablebetween

    variousplatformsandwillnotdegradetheelectricalperformanceofthevehiclein

    whichitisinstalled

    Readoutdateonaremotecomputergroundstationwiththecapabilityofanalyzingthe

    acquireddataforequivalentmilespergallon(MPG)perShellEcoMarathonmethods Evaluatevehiclealignment,horsepower,torqueandgearratio

    Thesystemshallmeettheaboverequirementswithoutviolatingthefollowingconstraints:

    Nottoexceed1%ofthevehicleweight(~8lbs),inlessthan1cubicfootofphysicalspace

    Telemetryshallhavearangeofatleast1.5miles

    OperateoverArizonaseasonaltemperature(20120degreesFahrenheit)

    Willnotinterferewithsafevehicleoperation

    Bedesignedandimplementedfor$2000orless

  • 8/6/2019 Solar Car Pwr Monitoring System

    17/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 17

    RevB April29,2010

    3 PreliminaryDesignsandSelectingaFinalDesign3.1 Developingafinaldesign

    Developmentofthefinaldesignbeganwithensuringeachdesignmetthefunctional

    requirements. Theteamreviewedtherequirementsandensuredthateachdesignsatisfiedthe

    functionalrequirements.

    Inordertodecideonafinaldesign,theteamwentthroughaselectionprocessinvolving

    bothcustomersandmentor. Tostart,wecameupwithanidealfinalresult(IFR)comprisedof

    theelectricalandmechanicalnecessitiesaswellassomenicetohavefeatures. Wereviewed

    theIFRwiththecustomerandrecordedtheirrecommendationsandtradeoffideas. Wealso

    consultedourmentorforhisinputfromanelectricaldesignaspect. Afterreviewingwithboth

    customerandmentor,theIFRwasdevelopedasshowninFigure4.

    3.2 IdealFinalResult

    Figure 4: IdealFinalResult

  • 8/6/2019 Solar Car Pwr Monitoring System

    18/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 18

    RevB April29,2010

    3.3 PreliminaryDesignsPreliminarydesignsweredevelopedtomeettherequirementsandwerepresentedat

    thePreliminaryDesignReview(PDR). AsummaryofthosedesignsisshowninFigure5. For

    additionaldetailsofallaspectsofeachpreliminarydesign,pleaseseethePDRpresentationin

    theEngineeringNotebookontheSeniorDesignWebsite:http://proj498.web.arizona.edu/sites/default/files/498PDR%20Final.pptx

    Figure 5: PreliminaryDesigns

    http://proj498.web.arizona.edu/sites/default/files/498PDR%20Final.pptxhttp://proj498.web.arizona.edu/sites/default/files/498PDR%20Final.pptx
  • 8/6/2019 Solar Car Pwr Monitoring System

    19/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 19

    RevB April29,2010

    3.4 PreliminaryDesignScoringandSelectionAPughchartwasdevelopedtoassistinselectingthefinaldesign. Uponreviewingthe

    designs,complexityandinnovationofthedesigns,andbudget,thescoreswererecordedand

    areshowninFigure6:

    Weight Design1 Design2 Design3SensorDesign 10 0 +

    Telemetry 8 + + 0

    Software 7 0 + 0

    Alignment 6 0 + +

    Total+ 8 31 6

    Total0 23 0 15

    Total 0 0 10

    OverallScore 8 31 4

    Figure 6: PughChart

    ThePughchartwasdevelopedusingaworsethan/equalto/betterthanapproach,

    resultinginweightedscoresacrossasimple /0/+scorewhichwastotaledtodeterminethe

    bestattributesofeachdesign. Ratherthanselectingonedesigninitsentirety,eachaspectof

    thedesignswereevaluatedindividuallytoallowthepotentialforahybridsystemusingpartsof

    eachindividualdesign. Uponfinalreviewofthebestdesignattributescombinedwithavailable

    budget,wearrivedatafinaldesign.

  • 8/6/2019 Solar Car Pwr Monitoring System

    20/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 20

    RevB April29,2010

    3.5 FinalDesign

    Figure 7: FinalDesign

    Thefinaldesignmeetsorexceedsallofthecustomerrequirementshoweveritdoesnotinclude

    theinvehicledisplay.

  • 8/6/2019 Solar Car Pwr Monitoring System

    21/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 21

    RevB April29,2010

    4 FinalDesign4.1 SystemArchitecture4.1.1 Overview

    Dataisfirstgatheredbysensors(somepreexistingwithinthevehicle,somesuppliedbytheproject)andsenttothesensorhub. Thesensorhubaggregatesthissensordataand

    outputstheaggregateddatatoagroundstationcomputer,viaeitherwired(fortestbench

    testing)orwireless(forinvehicletesting)telemetry. Thegroundstationcomputerrecordsthe

    informationandprovidesarealtimevisualizationofthedata. Datapostanalysiscanthenbe

    performeddirectlyonthegroundstationoronaseparatecomputer.

    Theactualdatacollectedbythesensorswerechosentofacilitatetheanalysisand

    optimizationofthesolarcarvehicle. Thesesensorsaredescribed,atahighlevel,below.

    AgraphicalrepresentationofthesystemarchitectureisshowninFigure8:

  • 8/6/2019 Solar Car Pwr Monitoring System

    22/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnical

    Page 22

    RevB

    Figure8: Data LoggingArchitecture

  • 8/6/2019 Solar Car Pwr Monitoring System

    23/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 23

    RevB April29,2010

    4.1.2 SensorsDataiscollectedfromavarietyofsensorswithdifferentinterfaces. Someofthese

    sensorsarebuiltintothevehicle;othersareprovidedbyourproject.

    4.1.2.1 V/ISensorsVoltage/Current(V/I)sensorssampleinstantaneousvoltageandcurrentandarea

    customdesignbyourteam. Fromthevoltageandcurrentmeasurements,instantaneous

    powercanbedetermined( IV=P ),aswellastotalenergyusage( Pdt=W ). Thesesensors

    communicatewiththesensorhubviatheCAN(controllerareanetwork)2.0Abus.

    Fourofthesedeviceswerecreated:

    1. Motorpowerlinesensor

    2. 12Vsubsystemsensor

    3. 24Vsubsystemsensor

    4. Sparesensor

    4.1.2.2 SpeedSensorThespeedsensorsamplestheinstantaneousspeedofthevehicle. Thissensoris

    providedbyourteam. ThespeedsensorcommunicateswiththesensorhubviatheCANbus.

    4.1.2.3 TiltSensorThetiltsensorsamplesthetiltofthevehicleinorderto;forexample,provide

    informationonthegradeofaninclinethevehicleistraversing. Thissensorisprovidedbyour

    teamandcommunicatesovertheCANbus.

    4.1.2.4 MPPTsThemaximumpowerpointtrackers(MPPTs)arealreadyexistentwithinthevehicleand

    areusedtoprovidethemaximumpoweroutputfromsolarpanelsubarrays. TheMPPTs

    providevoltageandcurrentmeasurementsfromthesolarsubarraysandcommunicatethis

    informationtothesensorhubviatheCANbus.

    4.1.2.5 BPSThebatteryprotectionsystem(BPS)isalsoalreadyexistentwithinthevehicleandis

    usedtoprotectthevehiclesbatterycellsfromadverseconditionssuchasoverheating,short

    circuiting,andundervoltage. TheBPSmeasurestotalbatterycurrent,individualcellvoltages,

    andtemperatureatseverallocationswithinthebatterycompartment. Thisinformationis

    communicatedtothesensorhubviaanRS232seriallink.

  • 8/6/2019 Solar Car Pwr Monitoring System

    24/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 24

    RevB April29,2010

    4.1.3 SensorHubThesensorhubprovidesaninterfacetothevarioussensorsandaggregatestheirdata.

    Thisaggregateddataisthensentouttothegroundstationcomputerinaserialstream. The

    serialstreammustefficientlypackdataintothefewestbitspossibletobecompatiblewithslow

    serialbaudrates(suchas9600Baud/s)thatmayberequiredbythetelemetryhardware.

    Forwiredtelemetry,thesensorhubmaybedirectlyconnectedtothegroundstation

    computerviaaserialcable. Forwirelesstelemetry,aradiomodemmaybeconnectedtothe

    sensorhubandanotherradiomodemconnectedtothegroundstationcomputer. These

    modemsactto"tunnel"serialdatabetweenthesensorhubandgroundstationcomputer

    nodes.

    ThesensorhubhastheabilitytointerfacewithoneRS232serialdevice(e.g.theBPS)

    andupto13CANbusequippeddevices(thisdevicelimitationisduetothenumberofphysical

    connectors). Thesensorhubwillalsoprovidepowertoallsensorsdesignedorsuppliedbythe

    project.

    4.1.4 GroundStationComputerThegroundstationcomputer(GSC)isageneralpurposecomputer(e.g.aPC)running

    datacaptureandvisualizationsoftware. TheGSCcollectstheserialdatastreamsentbythe

    sensorhub(eitherviawiredorwirelesstelemetry),parsesthestreamforsensordata,records

    thedata,anddisplaystheinformationontheuserinterfaceinrealtime.

    TherecordeddatacanbesavedtobeanalyzedlaterontheGSCoronadifferent

    computer.Theseanalysescanthenbeusedtoperformoptimizationsontheactualsolarcar

    vehicle.

    4.2 SensorsandProcessing4.2.1 V/ISensorCircuitryDescriptionSensorblockdiagramisshowninFigure9:

    SensorschematicisshowninFigure10:

  • 8/6/2019 Solar Car Pwr Monitoring System

    25/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnical

    Page 25

    RevB

    Figure9: Voltage/CurrentSensorHighSideShunt

  • 8/6/2019 Solar Car Pwr Monitoring System

    26/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnical

    Page 26

    RevB

    Figure10 :V/ ISensorSchematic

  • 8/6/2019 Solar Car Pwr Monitoring System

    27/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 27

    RevB April29,2010

    4.2.1.1 I/ORatingsTable 3: V/ISensorInput/OutputRatings

    LineIn Positivecurrentinputfromhighsideline( V1500 , A100 )

    LineOut Positivecurrentoutputfromhighsideline( V1500 , A100 )

    CANH,CANL CANbuscommunicationslines( V50 nominal, V36 maximum

    continuous)

    VBAT Powersource( V305.8 ,reversebiasprotectedupto 30V)

    4.2.1.2 OverviewTheVoltage/Current(V/I)sensorisneededtomeasureinstantaneousvoltageand

    currentvaluesfrompowerlineswithinavehicle. Fromthesevoltageandcurrentsamples,

    instantaneouspowerdeliveredbythelinecanbecalculated. Thecalculatedpower

    measurementtotalerrormustbelessthan5%. Toachievethis,thevoltageandcurrent

    measurementsthatmakeupthisfiguremusthaveanevenlowerpercentageerror.

    Additionally,theV/Isensormustbeportableacrossmanydifferentvehicletypesso

    assumptionsaboutthephysicallayoutofthevehicleandvehiclewiringmustbeminimized.

    4.2.1.3 ConnectorsThepoweranddataconnector( 1JP)suppliespowertotheV/Isensorandalsoprovides

    accesstothetwoCANcommunicationlines(CANHandCANL). TheconnectorisanRJ45

    connectorastheintendedcablingisCAT5UTPpatchcable.Thecablingwaschosento

    accommodatethesuggested 120 characteristicimpedanceoftheCANbuslinesandasthe

    twistedpairdesignofCAT5cablingmaximizesthenoisecancelingcapabilityoftheCANbus

    differentialsignalcommunications.CAT5UTPcableisreadilyavailableduetoitsuseas

    Ethernetpatchcabling. TheISPconnector( 2JP)allowsforinsystemprogrammingofthe

    ATtiny261Amicrocontroller(MCU).

    4.2.1.4 GeneralVoltageRegulationArawbatteryinputvoltage(5.8 to V30 )isregulatedto V5 withthe 6U linear

    regulator.2

    D ispresenttoprotectthecircuitryagainstnegativevoltagesofupto V30 . This

    negativevoltagecouldbecaused,forexample,byabatterybeingconnectedwithareversed

    polarity.

    Ashuntregulator(toproduceafloatingground)andaninverterarealsousedwithinthe

    circuitbutaredirectlyrelatedtothecurrentsensingcircuitryandarethusdescribedinthe

    CurrentSensingCircuitrysection.

  • 8/6/2019 Solar Car Pwr Monitoring System

    28/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 28

    RevB April29,2010

    4.2.1.5 V/ISensorComponentSizing4.2.1.5.1CurrentMeasureShuntResistor

    shuntR wassizedassmallaspossibletominimizepowerdissipationfromthelinebeing

    measured. Fromreadilyavailablesuppliers, m=Rshunt

    0.2 wasthesmallestresistoravailable.

    Thisresultsinarespectivefullscalevoltageof mV20 ( iR=v )acrosstheresistoratthepeak

    currentof A100 .Atthispeakcurrent, shuntR willdissipate W2 ( Ri=P2 ).

    Table 4: V/ISensorShuntResistor

    Component Value ToleranceR

    s h u n t 0 .2 m 1%

    4.2.1.5.2 1U Pre AmplifierGainDuetocomponenttolerances(mainlythe5%toleranceofzener 1D )andasafety

    margin,thecurrentsensingcircuitryisdesignedtooperatewithafloatingground(FGND)with

    aminimumvoltageof V3 belowtheLINE_INvoltage. Afullscaleinputof A100 throughthe

    m0.2 shuntR willproduce mV20 acrosstheresistor. Astheoutputissplitbyanoffset

    betweentherails(toallowforbidirectionalcurrentsensing),the mV20 signalmustbe

    amplifiedto V1.5 tospanacrosstheminimum( V3 )voltagerangeoftheFGNDcircuitry. In

    ordertodothis,thedesiredgainof 1U wascalculated: VV=mV

    V=G 7520

    1.5.

    ThegainoftheINA326/7amplifier( 1U )isgivenby:

    1

    22I

    I

    R

    R=G

    Equation 1: Pre AmplifierGain

    TheINA326/7datasheetsuggeststhat 1IR bevaluednolessthan k2 andbesizedbasedon

    theequation(personalizedtotheschematic):

    A

    V=R

    maxRshunt

    I12.5

    _

    1

    Equation 2Pre AmplifierResistorSelection

  • 8/6/2019 Solar Car Pwr Monitoring System

    29/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 29

    RevB April29,2010

    With VR s h u n t _ma x= 20 m V (thefullscalevoltageacross shuntR at A100 ),Equation2produces

    k=RI 1.61 . Asthisvalueislessthantheminimumsuggestedvalueof k2 ,thefinalvalueof

    1IR issetto k=RI 21 .

    RearrangingEquation1,itcanbedeterminedthat k=RI 752 producesthedesiredgainof

    VV=G 75 .

    Table5: Pre AmplifierResistorSelection

    Component Value ToleranceR

    I1 2 k 0.1%

    RI2

    75 k 0.1%

    4.2.1.5.3Solid StateRelayControlLineResistors7R and 8R limitthecurrentsuppliedtothe 12U and 13U AQW610EHsolidstaterelays

    (SSRs). TheAQW610EHdatasheetspecifiesaminimumof mA3 isrequiredforthecontrolLEDs

    (ontheIC)toensuretheswitchingoftherelay. TheseLEDshaveamaximumvoltagedropof

    V1.5 . AlthoughtheLEDwilldroplessthanthisvoltageatlowercurrents( V1.14 typicalwitha

    diodecurrentof mA5 ),this V1.5 valueisusedtoprovideasafetymargin.

    ThecontrollinesaredesignedsothatasingleresistorisinserieswithtwocontrolLEDs.

    PuttingtwoLEDsinseriessavesoncurrentconsumptionfromthecontrolline(whichisdriven

    byanMCUthatcandriveamaximumof mA20 fromaGPIOpin).

    Thecurrentthroughthediodescanbemodeledbythefollowingequation( 8R canbe

    substitutedfor 7R ):

    7

    _ 1.52

    R

    V)(V=i

    INVI

    d

    Equation 3: CurrentthroughDiodes

    RearrangingEquation3:

    d

    INVI

    i

    V)(V=R=R

    1.52_87

    Equation 4: Currentthrough DiodesinTermsofR

  • 8/6/2019 Solar Car Pwr Monitoring System

    30/92

  • 8/6/2019 Solar Car Pwr Monitoring System

    31/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 31

    RevB April29,2010

    and3dBcutoffangularfrequency:

    11

    1

    1

    CR=o

    Equation 6: Passive FilterAngularFrequency

    4.2.1.5.4.1.2PassiveFilter2

    Similarly, 2IR and 2IC formapassive,singlepoleLPFwithtransferfunction:

    sCR+=(s)H

    II 22

    21

    1

    Equation 7: PassiveFilterTransferFunction

    and3dBcutoffangularfrequency:

    22

    2

    1

    II

    oCR

    =

    Equation 8: Passive FilterAngularFrequency

    4.2.1.5.4.1.3CombinedEffects

    The design of the instrumentation amplifier (INA326/7) combines these two LPFs into an

    equivalentLPFwithtransferfunction:

    s)CR+s)(CR+(=(s)(s)HH=H(s)

    II 2211

    2111

    1

    Equation 9: TransferFunctionCombinedEffects

    ThetwopolesofH(s resideinthelefthalfplane,sowecansafelyset j=s . Theresulting

    magnitudeequationis:

    2

    1122

    22

    21211

    1=)(

    )CR+C(R+)CCRR(

    |jH|

    IIII

    Equation 10: MagnitudeofCombinedEffects

    Tofindthe3dBcutofffrequency( o ),set2

    1=|)H(j| o andsolvetoget:

  • 8/6/2019 Solar Car Pwr Monitoring System

    32/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 32

    RevB April29,2010

    2

    2121

    2

    22

    2

    11

    2

    2121

    4

    22

    4

    11

    2

    6

    )CCR(R

    )C(R)C(R)CCR(R+)C(R+)C(R=

    II

    IIIIII

    o

    Equation 11 :CutoffFrequency

    4.2.1.5.4.2 Component Value Determination

    The12bitADC( 2U)willsampletheoutputofthe 1U INAat250SPS. Toprevent

    aliasing,thelowpassfilterontheoutputoftheINAshouldfilteroutanyfrequenciesaboveat

    least Hz=1252

    250(seetheNyquistShannonsamplingtheorem). Asasafetyfactor,aslightly

    lowercutofffrequencyof Hz=fo 100 ( s)rad(=f= oo 10022 )isdesiredforthefilter.

    Thevalueof 2IR isdeterminedbythedesiredgainoftheamplifier,andistherefore

    knownpriortothesizingoftheothercomponentspresentinthefilter.

    Todeterminethevaluesof 1R , 1C ,and 2IC :

    1. Makeaneducatedguess(basedontheINA326/7datasheet)andlet F=C 11

    2. Assume 21 oo = andassume(fornow)that 21 IR=R (pretendingthevalueof 2IR is

    unknown)andthat 21 IC=C

    3. With s)rad(=o 1002 (i.e.100Hz),thedesiredcutofffrequency,and F=C=C I 121 ,plugintoEquation11andsolvefor 1R :

    4. UsingEquation6,wecandetermine s)rad(o 159.154921

    5. Since k=RI 752 (chosentoobtaindesiredgainoftheamplifier)and 21 oo = (ideally),

    wecandetermine 2IC byusingEquation8:

    6. Usingthesefinalvaluesfor 1R , 2IR , 1C ,and 2IC (seeTable7)andEquation11,the

    k=RRvalueNearest

    11024.3 15%

    1

    nF=CnFC IvalueavailableNearest

    I 1313.3 2

    2

  • 8/6/2019 Solar Car Pwr Monitoring System

    33/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 33

    RevB April29,2010

    actual3dBcutofffrequencyoftheoverallLPFcanbeestimated(assumingideal

    components)at:

    Table 7: ResistorandCapacitorSelectionComponent Value ToleranceR

    1 1 k 5%

    RI2 75 k 0.1%

    C1 1 F 10%

    CI2 13 n F 10%

    4.2.1.5.5FloatingGroundRegulatorZenerDiodeandBiasResistorThetwocomponentsofthefloatingground(FGND)regulatorthatcanbesizedare:the

    zenerdiode, 1D ,andthebiasresistor, biasR .

    4.2.1.5.5.1 Zener Diode

    Thezenerdiode, 1D ,wassizedtohaveazenervoltageof V3.9 ;whenreversebiased,

    thediodewillhaveanominalvoltageof V3.9 acrosstheterminals. Thisvoltagewaschosenso

    that,whenconsideredwiththeestimated VV QBE 0.63_ ,FGNDwillsitapproximately V3.3

    belowthevoltageofLINE_IN.AllICsonFGNDarecompatiblewiththis V3.3 supply.

    AnadditionalconcernwiththesizingofthiszenerdiodeisuncoveredwhentheLINE_IN

    voltageislow. Currentmeasurementmustfunctionproperlyonlinevoltagesdownto V0 so

    the V5 supplywasintroduced. 2Q sitsbetweenthediodeandthe V5 supplyandis

    desiredtomaintainoperationintheactiveregion. ThevoltagedropcausedbytheseBJTscan

    beaminimumof VV SatQCE 0.32__ . The V0.3 minimumcollectoremittervoltageof 2Q plus

    the V3.9 dropacrossthezenerdioderequireatleast V4.2 ,leavinganextra V0.8 between

    the V0 LINE_INandthe V5 supplyforcomponenttolerancesandasasafetymargin.

    4.2.1.5.5.2 Bias Resistor

    Thezenerdiodeproducesa V3.9 zenervoltagewhenreversebiasedat A250 . To

    accountforcurrentpulledinthroughthebaseof 3Q (approximately A50 peak)andto

    provideasafetymargin,thecurrentmirrorbiasingthezenerdiodewasdesiredtopullabout

    Hz=s)rad(o 102.43102.432

  • 8/6/2019 Solar Car Pwr Monitoring System

    34/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 34

    RevB April29,2010

    A350 . Thevalueof biasR controlstheamountofcurrentdrawnthroughthemirrorandthis

    currentisapproximatedby:

    bias

    QBE

    bias

    i

    VV)(V=R

    1_50

    Equation 12: BiasResistor

    Thisequationignoresthe 1Q and 2Q basecurrents.

    Assuming V=V QBE 0.71_ (inreality,thisvaluewilllikelybeslightlysmaller),

    k=Rbias 12 producesan Aibias 358.3 andisacceptableasaresistorwith5%tolerance(

    biasi willdroptonolowerthan A341.2 ).

    Table 8: ResistorandDiodeSelection

    Component Value ToleranceD

    1 3 .9 V 5%

    Rbi as 12 k 5%

    4.2.1.5.6VoltageSensingInputResistorsTheinputofthevoltagesensingcircuitrycontainsthreeresistors: 1VR , 2VR ,and 2R .

    4.2.1.5.6.1 Voltage Divider

    1VR and 2VR formavoltagedividertodividethe V1500 inputlinevoltage(LINE_IN)

    downtothe V50 levelofthevoltagebuffer( 5U )andMCUwithADC( 7U ). Duetopower

    supplytolerances,the V5 powersupplymayhaveaminimumvoltageof V4.9 (2%error).

    Additionally,theOPA340buffer( 5U )canbeexpectedtooutputamaximumof mV50 below

    thesupplyrail.Thus,wemustdividea V150 signaldownto V4.85 . Thisvoltagedivider

    equationis:

    V

    V=

    R+R

    R

    VV

    V

    150

    4.85

    21

    1

    Equation 13:VoltageDivider

    k=RkA

    VV=R bias

    valueNearest

    bias 1212.286350

    0.75 5%

  • 8/6/2019 Solar Car Pwr Monitoring System

    35/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 35

    RevB April29,2010

    Itisalsodesiredtohaveatotalvoltagedividerresistanceofabout 1 . Thisvalueis

    largeenoughtolimitcurrentdrawfromLINE_INto A150 andsmallenoughtolimitelectrical

    noiseproducedthebydividerresistors.

    M=R+R VV 121 Equation 14:VoltageDividerResistance

    SolvingEquation13andEquation14simultaneously,wefind:

    However,pluggingtheresultsin:

    wefindthesizingtoproduceanoutputvoltagegreaterthanmaximum V4.85 withaninputof

    V150 . Tofixthis, 2VR isbumpeduptothenext0.1%resistorvalue: k=RV2 976 .Tryingagain:

    Thisislessthanthe V4.85 maximum(evenwhen0.1%tolerancesareincluded),sothevalueof

    k=RV2 976 isthefinalvaluefortheresistor.

    Table 9: ResistorSelection

    Component Value ToleranceR

    V1 32 .4 k 0.1%

    RV2 976 k 0.1%

    k=RkR VvalueNearest

    V 32.432.333 10.1%

    1

    k=RkR VvalueNearest

    V 965967.667 20.1%

    2

    Vk+k

    k=

    R+R

    R

    VV

    V 4.8796532.4

    32.4V150V150

    21

    1

    Vk+k

    k=

    R+R

    R

    VV

    V 4.8297632.4

    32.4V150V150

    21

    1

  • 8/6/2019 Solar Car Pwr Monitoring System

    36/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 36

    RevB April29,2010

    4.2.1.5.6.2 Buffer Input Protection

    2R protectsthe(noninverting)inputofthe 5U bufferfromhighvoltagetransients.

    k=R 5.12 waschosenbasedupontherecommendationoftheOPA340datasheet. Whilethe

    datasheetspecifiesa k5 value, k5.1 isthenearest5%resistorvalue.

    The 5U (OPA340)inputsarediodeclampedtothepowersupplyrailsandanyvoltageof

    500 mV abovetherail(i.e. V5.5 )mustbecurrentlimitedto mA10 .

    V+)mA)(R(=Vmax 5.510 2

    Equation 15: BufferInputProtection

    FromEquation15, k=R 5.12 protectstheinputofthe 5U bufferfromvoltagesupto

    V=Vmax 56.5 .Dividingthisresultbytheattenuationfactorprovidedbythevoltagedivider 1VR

    and RV2 ,themaximumLINE_INvoltagethe 5U buffercanhandleiscalculated:

    Table 10:ResistorSelection

    Component Value ToleranceR

    2 5.1 k 5%

    4.2.1.5.7One PoleLow PassFilteron 5U (OPA340)OutputFollowingthereasoninginsection4.2.1.5.4.2,thelowpassfilterontheoutputofthe

    5U voltagebufferhasadesiredcutofffrequencyof s)rad(=o 1002 .

    ThefilterisasimplepassiveRClowpassfilterwithcutofffrequencygivenby:

    63

    1

    CR=o

    Equation 16:LowPassFilterCutoffFrequency

    Duetothemediuminputresistance(tensof k )oftheADCinput,thevalueof 3R is

    desiredtobesmalltomitigatethevoltagedividereffectof 3R inserieswiththeADCsinput

    kVk

    k+kV=V maxmaxINLINE 1.7585

    32.4

    97632.4__

  • 8/6/2019 Solar Car Pwr Monitoring System

    37/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 37

    RevB April29,2010

    resistance. AsshownbyEquation16,alargervalued 6C resultsinalowervalued 3R forthe

    same o . Thesizeof 6C issomewhatarbitrarilylimitedtoamaximumof F10 inorderto

    limitthephysicalcapacitorsizeandtolimitcapacitorparasiticsthatlimitthecapacitors

    responseathigherfrequencies(e.g.equivalentseriesinductance,ESL).

    RearrangingEquation16:

    oC=R

    6

    3

    1

    Equation 17: LowPass FilterCutoffFrequencyin termsofR

    UsingEquation17with s)rad(=o 1002 andC

    6= 10 F :

    Table 11:ResistorandCapacitorSelection

    Component Value ToleranceR

    3 160 5%

    C1 10 F 10%

    4.2.1.5.8 V5 VoltageRegulatorExternalComponents4.2.1.5.8.1 Decoupling Capacitors

    RIC smoothestheinputvoltagerippleandissetto F=CRI 1 ,thevalue

    recommendedbytheLP2950datasheet. ROC smoothestheoutput(regulated)voltageripple

    andisrecommendedtobeaminimumof F1 forloadsdrawing mA100 . Theloadofthe

    circuitisaexpectedtodrawmuchlesscurrent,sotheminimumvalueofthecapacitorcanbe

    reduced. Still,tolimitthenumberofcapacitorvaluesused, F=CRO 1 aswell.

    Table 12:CapacitorSelection

    Component Value ToleranceC

    R I 1 F 10%CRO 1 F 10%

    4.2.1.5.8.2 LED Resistor

    PWRR limitsthecurrentrunningthroughthepoweronLED, PWRD . About mA10 of

    current(estimatedasagoodbalancebetweenluminanceandpowerconsumption)isdesired

  • 8/6/2019 Solar Car Pwr Monitoring System

    38/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 38

    RevB April29,2010

    throughtheLED. TheLEDshoulddropabout V1.4 whenforwardbiased.Thevalueof PWRR is

    calculatedusing:

    However,as =R=R 39087 ,thenumberofdifferentvaluedresistorsusedinthe

    designcanbereducedbyincreasing PWRR to 390 . Withthisvalue,thecurrentthroughthe

    LEDcanbecalculated:

    Witha5%resistortolerance, mAiDPWR 8.791 istheminimumLEDcurrentthatcanbe

    expected.Thesecurrentsareacceptableso =RPWR 390 .

    Table 13:ResistorandCapacitorSelection

    Component Value ToleranceR

    PW R 390 5%

    CR I 1 F 10%

    CRO 1 F 10%

    4.2.1.5.9 4U InverterCapacitorsThecapacitors NIC (inputvoltageripple), NOC (outputvoltageripple),and NFLYC

    (flyingcapacitor)forthe 4U inverterareallsizedto F1 baseduponthegeneraluse

    recommendationsoftheTPS60400datasheet.

    Table 14:CapacitorSelection

    Component Value ToleranceC

    I 1 F 10%

    CO 1 F 10%

    CN F LY 1 F 10%

    4.2.1.5.10 GeneralPull upResistors4.2.1.5.10.1 CI2 Resistors

    The CI2 linesarepulledhigh(asisspecifiedbytheprotocol)by ASDAR , ASCLR , BSDAR ,

    and BSCLR ,allvaluedat k10 . The CI2 communicationwillbeconductedatlowbusspeeds

    sothemaximumrecommendedvalueof k10 isused(athigherbusspeeds,theRCtime

    =

    mA

    VV=RPWR 360

    10

    1.45

    mA

    VV=iDPWR 9.231

    390

    1.45

  • 8/6/2019 Solar Car Pwr Monitoring System

    39/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 39

    RevB April29,2010

    constantofthelinemaylimitdatarates). Theuseofthislargevalueforthepullupresistors

    reducespowerconsumptionofthe CI2 busversussmallervaluedresistors.

    Table 15:ResistorSelection

    Component Value ToleranceR

    A S D A 10 k 5%

    RAS C L 10 k 5%

    RBS D A 10 k 5%

    R B S C L 10 k 5%

    4.2.1.5.10.2 Reset Resistor

    TheRESETline(activelow)isheldhighby 6R . TheRESETlineisusedbothtoresetthe

    7U microcontrollerandtodebugtheMCUviadebugWIRE. FromtheATtiny261Adatasheet,

    therecommendedpullupresistorontheRESETlinewhenusingdebugWIREisbetween k10

    and k20 . Asthe CI2 linesalreadyuse k10 pullups, k=R 106 waschosentolimitthe

    numberofresistorvaluesusedinthedesign.

    Table 16:ResistorSelection

    Component Value ToleranceR

    6 10 k 5%

    4.2.1.5.10.3 PreAmplifier Enable Resistor

    4R pullsthe 1U preamplifierenablelinehighduringnormaloperations. Thislineis

    pulledlowbythealertpinofthe 2U ADCtodisable 1U inordertoconservepowerbetween

    ADCsampling. Asallotherpullupresistorsarevaluedat k10 , k=R 104 wasalsochosento

    limitthenumberofresistorvaluesusedinthedesign. 4R willdrawabout A330 whenthe

    enablelineispulledlow.

    Table 17:ResistorSelection

    Component Value ToleranceR

    4 10 k 5%

    4.2.1.5.11 ICSupplyDecouplingCapacitorsDecouplingcapacitorsareplacedacrossthepowernetsofmostintegratedcircuits(ICs)

    presentinthedesigninordertosmoothoutpowerlinenoiseandensureproperoperationof

    theICs. ThesecapacitorsmustbeplacednearpowerpinsofeachICtobeeffective;non

  • 8/6/2019 Solar Car Pwr Monitoring System

    40/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 40

    RevB April29,2010

    idealitiesoftracesonaphysicalcircuitboardnegatetheeffectsofthesecapacitorsifplacedfar

    away. Asaruleofthumb,thesecapacitorsarevaluedat F0.1 . TheICswithsuggested

    decouplingcapacitorsarenodifferent;thedatasheetsspecify F0.1 capacitors. Hence,

    F=C=C=C=C=C=C=C=C 0.1109875432 .

    Table 18:CapacitorSelection

    Component Value ToleranceC

    2 0 .1 F 10%

    C3 0 .1 F 10%

    C4 0 .1 F 10%

    C5 0 .1 F 10%

    C7 0 .1 F 10%

    C8 0 .1 F 10%

    C9 0 .1 F 10%C

    10 0 .1 F 10%

    4.2.1.5.12 CrystalOscillatorCapacitorsTheMCP2510datasheetindicatestheplacementof 11C and 12C betweenthecrystal

    pinsandground. However,thisdatasheetdoesnotrecommendanysizesforthesecapacitors.

    SizinginformationisprovidedwithintheATtiny261Adatasheet,however,recommendsthat

    thesecapacitorbebetween pF12 and pF22 . pF=C=C 201211 waschosensincethecrystal

    usedinthedesigniscompatiblewiththisvalueforthecapacitors.

    Table 19:CapacitorSelection

    Component Value ToleranceC

    11 20 p F 10%

    C12 20 p F 10%

    4.2.1.6 SensorDesign4.2.1.6.1CurrentSensingCircuitry4.2.1.6.1.1

    Current Sensing MethodologiesFourgeneralconceptswereconsideredforthecurrentmeasuringaspectofthesensor.

    Theseconceptsconsistedof:highsideshunt,lowsideshunt,highsideHalleffect,andlowside

    Halleffect. Highsidereferstothemeasurementtakingplaceonthelinebetweenthepower

    sourceandtheload;lowsidereferstothemeasurementtakingplaceonthelinebetweenthe

    loadandground. Shuntcurrentmeasurementworksbypassingcurrentthroughalowvalue

    resistorandbydeterminingthecurrentflowingthroughtheresistorbasedonthevoltage

  • 8/6/2019 Solar Car Pwr Monitoring System

    41/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 41

    RevB April29,2010

    acrosstheresistor,usingOhmsLaw( Rv=i ). Halleffectcurrentmeasurementutilizesthe

    effectsofapermanentmagnetinteractingwiththemagneticfieldofcurrentflowingthrougha

    conductortocreateavoltagewhichisproportionaltotheamountofcurrentflowingthrough

    theconductor.

    Tomeasurevoltageontheline,thesensormustbeconnectedonthehighsideoftheload(theloadvalueisnotknown). Thislowerstheattractivenessofthelowsidecurrent

    measurementoptionasthelowsideoptionwouldrequireonelowsidelinein,onelowside

    lineout,andalinetappingintothehighsidecabling. Thisextralinefromthehighsidecabling

    tothesensordecreasestheeaseofinstallationofthesensorandmaynotbepracticalifthe

    lowsideandhighsidelinesarenotincloseproximity. Thehighsidecurrentmeasuringoption

    doesnothavethisproblemandrequiresonlyonehighsidelineinandonehighsidelineout.

    Fewerassumptionsaboutthewiringofthevehicleareneededthanwiththelowsidecurrent

    measuringoption.

    Halleffectsensorsthatwereresearchedandthatmettherequirementsofthe

    100 A rangeoflinecurrentwerelimitedtoanerrorof 5 %overoperatingconditions,

    meaningthevoltagemeasurementwouldhavetobe100%accurateforthedevicetomeetthe

    functionalrequirementsofthedesign. Shuntcurrentmeasurement,however,canmeasure

    currentwithatotalerroroflessthan1%.

    Fromtheseobservations,thehighsideshuntcurrentmeasurementconceptwaschosenfor

    theV/Isensordesign.

    4.2.1.6.1.2 Current Sensing Design

    Thecurrentmeasurementcircuitryresidesonafloatingground(FGND),whichis

    approximately VV 3.33.2 belowthevoltageofLINE_INatalltimes,duetolimitationsofthe

    commonmodevoltagerangethatcanbesafelyhandledbyavailableinstrumentation

    amplifiers(INAs). NoreadilyavailableINAcouldhandlethe V150 commonmodelinevoltage

    foundintheapplication.

    shuntR isa m0.2 currentshuntresistorwithafullscalevoltage(at A100 )of mV20

    ( W2 ). Thevoltageacross shuntR isdifferentiallyamplifiedbyafactorof VV75 bytheINA

    preamplifier, 1U . Thegainof VV75 allowsforafloatinggroundtobeused(explained

    below)thatisaminimumof V3.0 belowlinelevel( V3.3 belowlinelevelisdesiredbutthis

    V3.0 takesintoaccountcomponenttolerances). Thisamplifiedsignalisaddedtoanoffset

    voltageof FGND)IN(LINE=Voff _2

    1fromthe 11U railsplitter. Thisbiasvoltageallows

    bidirectionalcurrentsensingfromtheINA. TheINAwaschosenasitcanhandleaninputof

    mV100 overthepositivesupplyvoltage,allowingittooperateonthefloatinggroundandstill

    handle"negative"current. Theamplifiedsignalsuperimposedonthebiasisthenfedintoa12

  • 8/6/2019 Solar Car Pwr Monitoring System

    42/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 42

    RevB April29,2010

    bitADCwithPGA( 2U ). ThePGAof 2U canamplifytheincomingsignalupto VV 16 ,

    allowingforagreaterdynamicresolutionofthecurrentsensor(i.e.thevoltagesproducedby

    smallercurrentscanbeamplifiedevenmore,resultinginagreaterresolutionatsmaller

    currents). AfterthePGA,thevoltagesignalisdigitizedby 2U s12bitADC.Asthemain

    microcontroller(thatcollectsthecurrentdata)ofthesensorisrunningatthe V50 level,the

    ADCs CI2 outputsignal(FGNDlevel)mustbepassedthroughanisolateddigitalcoupler,

    whichisolatestheFGNDcircuitryfromthe V50 circuitrywhilestillallowingthedigitaldata

    tobetransferred.

    Thecircuitryonthisfloatinggroundwilldrawanestimatedmaximumof mA10.5 from

    thelinewhichitismeasuring(LINE_IN). Amajorityofthiscurrent(about mA5.5 )isdrawnby

    the CI2 busandthe CI2 isolationcircuitry. Toconservepoweronthefloatinggroundline,

    theADCsalertpinispulledlow(drawingabout A330 )andtheINAisputintoa"sleep"

    mode,whereitdrawsatypicalcurrentof A2 versusthetypicalINAoperatingcurrentofmA2.4 .

    TodealwiththefactthatFGNDisnotastablereferenceandtoremovethebiaserrors

    associatedwithallofthecurrentmeasuringanalogfrontendcircuitry,solidstaterelays(SSRs),

    12U and 13U ,areusedtoallowtheinputsofthe 1U INAtobe"switched". Whenswitched,

    thenoninvertinginput(whichisnormallyconnectedtothe"top"of shuntR )isconnectedtothe

    "bottom"of shuntR andtheinvertinginput(whichisnormallyconnectedtothe"bottom"of

    shuntR )isconnectedtothe"top"of shuntR . Ameasurementoftheamplifiedvoltagewillbe

    takenwiththeinputs"normal"andthen,immediatelyafter,theinputstotheINAwillbe

    switchedandanothermeasurementwillbetaken. Fromthesetwomeasurements,thesignal

    offset(neededforthebidirectionalsensingcapability)thatispresentattheADCinputcanbe

    determinedandtheactualmeasurementvoltagecanbeproperlycalculated. Thecontrol

    signalsfortheseSSRscanbedirectlydrivenfromadigitaloutputpinoftheMCUduetothe

    electricalisolationbetweenthecontrolandswitchcircuitrywithintherelays. Thepinmust

    onlysource mA10.3 totherelaycontrolswhenthelineisraisedhighand A0 whenthe

    controllineislow.

    FGNDisgeneratedbyashuntregulatorcomprisedof1

    Q 3

    Q ,1

    D ,andbias

    R . The

    V3.9 zenerdiode, 1D ,"hangs"offoftheLINE_INline,providingareferencevoltageof V3.9

    belowthelinevoltage. Thebasiccurrentmirrorformedby 1Q 2Q and biasR generatesa

    currentofabout uA360 thatbiases 1D overtherangeoflinevoltages. Thegroundcurrentof

    thedevicesonthefloatinggroundisroutedthroughthecollectoremitterof 3Q sothatthe

  • 8/6/2019 Solar Car Pwr Monitoring System

    43/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 43

    RevB April29,2010

    majorityofthebiascurrentgoesthrough 1D (andnottheload). The BEV voltageof

    approximately V0.6 to V0.7 raisestheactualFGNDvaluetoabout V3.2 to V3.3 below

    theLINE_INlinevoltage.

    Tobias 1D ,asimplecurrentmirrorwaschosenoveramoreadvancedcurrentsource,

    suchasafullWilsoncurrentsource,asthe 12U and 13U SSRsolutionremovesanyoffset

    voltageerrorswithinthecurrentsensingcircuitryfromthefinaldata. Alargesourceofthis

    offseterroristhechangingofthevoltageacross 1D duetobiascurrentfluctuations,causedin

    partbychanginglinevoltagesandsecondorderbehaviorsoftheBJTs. Thesefluctuations

    impactthevalueofFGNDand,therefore,changethelinesplitoffsetvoltageoftheINA.Amore

    advancedcurrentsourcewouldreducethesefluctuationsbutnoteliminatethem,astheSSR

    solutiondoes. Therefore,asimplecurrentsourceisallthatisneededtobias 1D (withtheSSR

    solutioninuse).

    TheFGNDshuntregulatorisreferencedto V5 rathertheGNDtoaccommodatean

    FGNDbelow V0 . ThisscenariooccurswhentheLINE_INlinevoltagedropsbelow V3.2 or

    V3.3 andthepresenceofthe V5 referenceallowsthecurrentsensingcircuitrytooperate

    onLINE_INlinevoltagesdownto V0 . The V5 isgeneratedbytheinverter 4U .

    4.2.1.6.2VoltageSensingCircuitryThevoltagesensingcircuitryisbaseduponasimplevoltagedivider( 1VR and 2VR )and

    unitygainvoltagebuffer( 5U ). Thevoltagedividerdividestheinputlinevoltage( V1500 )to

    therangeofapproximately V50 ,a 301 ratio. Theactualratioisabitlower(i.e.32.131 )tocompensateforcomponentnonidealities,suchasa2%errorinthe V5 voltage

    regulatorthatsuppliespowertothebufferandmicrocontroller. Currentdrawnthroughthe

    voltagedivideratthemaximumlinevoltageof V150 is uA149 . Asboth 1VR and 2VR will

    beconstructedusingthesametechnologiesandshouldhavesimilardevicecharacteristics

    (exceptforresistance),thetworesistorsshouldexperienceroughlythesametemperatureand

    anyeffectsoftemperatureshouldaffectbothresistorsinapproximatelythesameway. If,for

    example,temperaturechangescausethevalueof 1VR toincreaseby0.05%,thesame

    temperatureeffectsshouldalsocausethevalueof2V

    R toincreasebyabout0.05%. These

    changescanceleachotheroutwithinthevoltagedividerratio,causingtheratiotoremainthe

    same.

    2R protectsthe 5U opampfromvoltagespikesontheline.

    Thebufferedoutputofthedividedvoltagesignalisdigitizedbythe10bitADConboard

    theMCU( 7U ).

  • 8/6/2019 Solar Car Pwr Monitoring System

    44/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 44

    RevB April29,2010

    4.2.1.7 DigitalCircuitryThe CI2 currentdataandtheanalogvoltagedataistakenbytheMCU( 7U ),any

    calibrationdataisappliedtotherawvoltageandcurrentreadings,andthereadingsaresent

    outtotheCANbus. 8U istheCANcontrollerthattakestheMCUdataandformsaproperCAN

    message,whichissenttotheCANtransceiver( 10U ). TheCANtransceiverinterfaceswiththe

    physicalCANbusandconvertstheCANmessageintothepropervoltagesignalstosendover

    thebus.

    4.2.1.8 V/ISensorFirmwareTheV/ISensorcodeworksbyqueryingthevoltageandcurrentmeasurementanalogto

    digitalconverters(ADCs)forashortperiodoftime(about200 s),invertingtheinputsofthe

    currentsensecircuitry,collectingmorevoltageandcurrentsamples,convertingtheADC

    samplestovoltageandcurrentreadings,andthensendingthedataoutover5VlogicallevelRS

    232(ifthesensorisbeingusedindependentlyoftherestofthesystem)orovertheCANbustoanexternalcomputerfordataloggingandvisualization.Theinversionoftheinputstothe

    currentsensecircuitryallowsthecodetodeterminethe0Abiasvoltagethatispresentedtothe

    ADCateverymeasurement,eliminatingallbiasingerrors(e.g.temperaturedependentbiasing

    changes)intheanalogcurrentsensecircuitry. Specificscanbefoundintheheavily

    documentedcode,ontheenclosedCDintheFirmwarefolder.

  • 8/6/2019 Solar Car Pwr Monitoring System

    45/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 45

    RevB April29,2010

    4.2.2 SpeedSensorAHallEffectspeedsensorwasdeterminedtobethebestfitforthisproject. TheHall

    Effectsensorisplacedbetweenthegearteethoftheshaftandamagnet. Thesensormeasures

    thevariationinmagneticfieldbetweenthemagnetandthepassinggearteeth. Thechallenge

    thatwearefacedwithonthesolarcaristhegearteethontheshaftaremadeoutofaluminum

    soaregularHallEffectsensorwouldnotwork. ThatiswhyanIS1101SingleChannelSensor

    withDigitalOutputwasselected. TheIS1101isasinglechanneldifferentialinductivesensor

    suitableforcountingonperiodictargetslikegears,cogwheels,racks,slotteddiscs,PCBtargets

    andforedgedetectionofmetallicobjectswithlargerdimensions. Thetargetmaterialcanbe

    eitherferromagnetic(steel)orelectricallyconducting(aluminum,brass,andcopper).

    GeneralSpecifications:

    Countingfrequency 040kHz

    Airgap upto1.5mm

    Supply 5.00.5V,15mAtyp

    Temperature 0100C

    Outputformat digital

    Figure 11:IS1101Single ChannelSensorwithDigitalOutput

  • 8/6/2019 Solar Car Pwr Monitoring System

    46/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 46

    RevB April29,2010

    4.2.3 TiltSensor/AccelerometerThetripleaxisaccelerometerbreakout SCA3000waschosenforthefinaldesignforthe

    tiltsensorandaccelerationsensor. ItisalowpoweraccelerometerwithdigitalSPIinterface.

    Itssupplyvoltageneedstobebetween2.35V3.6VandthedigitalI/Ovoltageisbetween1.7

    V3.6V. Thisdevicealsohasa2gmeasurementrangewhichisallthatisneedbasedonthe

    informationthesponsorgavewhichwasthatthecarwillexperienceabout1ginacceleration

    and 2gwhenstopping.

    Anaccelerometermeasurestheamountofforceitexperienceswhenitismovedfrom

    itsoriginalpositionthereforethetiltcanbedeterminedfromtheforcethroughsome

    calculations,justlikehowtheaccelerationisfoundthroughcalculationsusingthe

    measurementsofforceaswell.

    TheaccelerometerconnectstothesensorhubviaCANbusshowninFigure12:

    Figure 12:OverallConnection forAccelerometer

  • 8/6/2019 Solar Car Pwr Monitoring System

    47/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnical

    Page 47

    RevB

    4.2.4 SensorHub4.2.4.1 SensorHubCircuitryDescription

    Figure13 :SensorHubSchematic

  • 8/6/2019 Solar Car Pwr Monitoring System

    48/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 48

    RevB April29,2010

    4.2.4.1.1I/ORatingsTable 20: Input/OutputRatings

    VBAT Powersource( V305.8 ,reversebiasprotectedupto 30V)

    CANH,CANL CANbuscommunicationslines( V50 nominal, V36 maximum

    continuous)

    Seriallines RS232levels( V30 maximum)

    4.2.4.1.2OverviewThesensorhubprovidesaninterfacetothevarioussensorsandaggregatestheirdata.

    Thisaggregateddataisthensentouttothegroundstationcomputerinaserialstream. The

    serialstreammustefficientlypackdataintothefewestbitspossibletobecompatiblewithslow

    serialbaudrates(suchas9600Baud/s)thatmayberequiredbythetelemetryhardware.Forwiredtelemetry,thesensorhubmaybedirectlyconnectedtothegroundstation

    computerviaaserialcable. Forwirelesstelemetry,aradiomodemmaybeconnectedtothe

    sensorhubandanotherradiomodemconnectedtothegroundstationcomputer. These

    modemsacttotunnelserialdatabetweenthesensorhubandgroundstationcomputer

    nodes.

    ThesensorhubhastheabilitytointerfacewithoneRS232serialdevice(e.g.theBPS)

    andupto13CANbusequippeddevices(thisdevicelimitationisduetothenumberofphysical

    connectors). Thesensorhubwillalsoprovidepowertoallsensorsdesignedorsuppliedbythe

    project.

    4.2.4.1.3ConnectorsThepowersourceconnector( 1JP)suppliespowertothesensorhub(andtoexternal

    sensors). TheconnectorisaDeansUltramaleplug,aconnectorthatiscompatiblewithmany

    batteriesusedforR/Capplications.

    Theoutputpoweranddataconnector( 2JP )suppliesunregulatedpowertoexternal

    customsensorsandalsoprovidesaccesstothetwoCANcommunicationlines(CANHand

    CANL). TheconnectorisanRJ45connectorastheintendedcablingisCAT5UTPpatchcable.

    Thecablingwaschosentoaccommodatethesuggested 120 characteristicimpedanceoftheCANbuslinesandasthetwistedpairdesignofCAT5cablingmaximizesthenoisecanceling

    capabilityoftheCANbusdifferentialsignalcommunications. CAT5UTPcableisreadily

    availableduetoitsuseasEthernetpatchcabling.

    TheISPconnector( 3JP )allowsforinsystemprogrammingoftheATmega162

    microcontroller(MCU).

  • 8/6/2019 Solar Car Pwr Monitoring System

    49/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 49

    RevB April29,2010

    ThetwoRS232seriallines(telemetryI/OandperipheralI/O)useDB9connectors( 3JP

    and 4JP )asthesearethemostcommonconnectorsusedforRS232communicationsandare

    abletointerfacewiththecurrenttelemetryandperipheralhardware.

    4.2.4.1.4DigitalCircuitry4.2.4.1.4.1 Microcontroller

    Thesensorhubmicrocontroller, 1U ,istaskedwithaggregatingdatafromvarious

    sensorsandoutputtingthisaggregateddataastelemetry. Thetelemetryispackedefficiently

    sothataminimumnumberofbitsareneededforthedata. Thisisimportantwhenusing

    slowertelemetrydevices,suchasa9600Baud/sradiomodem,sothatinformationcanbesent

    inatimelymannerandwithoutbacklog. The 1U isanAVRATmega162withenoughprocessing

    powerandmemorystoragetoaccomplishthistask(andmore,ifneeded). Additionally,the

    MCUfeaturesdualUARTs(universalasynchronousreceiver/transmitters). TheseUARTsarehardwarefeaturesthatallowforeasydualfullduplexserialcommunications. Thisallowsfor

    simultaneouscommunicationsbetweenthesensorhubandBPSandthesensorhubandground

    stationcomputer(viatelemetry).

    4.2.4.1.4.2 Serial Interface

    TwoRS232serialinterfacesexist:onefortelemetrycommunicationsandonefor

    peripheralsensorcommunications. Bothoftheseinterfacesarefullduplex,meaning

    informationcanbesentandreceivedsimultaneously. Althoughthisfeaturewillmostlikelynot

    beusedwiththecurrentsystemsetup,theabilitytoperformfullduplexserialcommunications

    isimportanttoavoidlimitingfutureapplicationsofthesensorhub.

    Whilethe 1U microcontrolleroperatesatthe V50 level,theRS232lineoperatesat

    V12 . Inordertointerfacethesetwovoltageslevels,the 2U TRS232ERS232driver/receiver

    isused. TheTRS232Esupportsdualfullduplexcommunicationsandispoweredbythe V5

    supply. ChargepumpsareusedtogeneratetheneededRS232voltageslevels.

    4.2.4.1.4.3 CAN Bus Interface

    MuchofthesensordataisretrievedfromtheCANbus(whichsupportsupto13

    sensors/devices).

    8U istheCANcontrollerthattakestheMCUdataandformsaproperCANmessage,

    whichissenttotheCANtransceiver( 10U ). TheCANtransceiverinterfaceswiththephysical

    CANbusandconvertstheCANmessageintothepropervoltagesignalstosendoverthebus.

    TheprocessworksinreverseforCANmessagesbeingreceived.

  • 8/6/2019 Solar Car Pwr Monitoring System

    50/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 50

    RevB April29,2010

    4.2.5 CommunicationsHubTheschematicforthecommunicationshubisshowninFigure14:

    Figure 14:Communication Hub Schematic

    4.2.5.1 CommunicationsHubDescriptionThepurposeofthecommunicationshubistolimittheconnectorstoexternalsensors

    onthesensorhubbyprovidinganauxiliarydedicatedconnectorboardforthesensorpower

    andCANcommunicationscabling. Thismakesiteasytoupdatethesystemtohandleadditional

    sensorsontheCANbus(eachofwhichrequirestheirownconnectortointerfacewiththebus):

    simplydaisychainanothercommunicationshubboardforadditionalconnections. The

    communicationshubcanalsolimittheamountofcablingusedtoconnectthesensorhubtothe

  • 8/6/2019 Solar Car Pwr Monitoring System

    51/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 51

    RevB April29,2010

    sensors. Forexample,ifhalfofthesensorsarephysicallynearthesensorhubandtheother

    halfareontheothersideofthevehicle,onecommunicationshubcouldbeusedtohandlethe

    nearsensorsandanotherthefarsensors. Thefarsensorscablingwouldonlyhavetoreachthe

    farcommunicationshub(whichisclosetothesefarsensors)andasinglecablefromthis

    communicationshub

    could

    be

    run

    to

    the

    other

    hub,

    which

    connects

    to

    the

    sensor

    hub,

    rather

    thanhavingallofthefarsensorcablesrunningbacktothesensorhub.

    ThecommunicationshubisasimpleboardconsistingofeightRJ45connectorswithall

    pin1sconnectedtogether,allpin2sconnectedtogether,etc.,uptothefourthpin. Pin1is

    VBAT(batterypositivevoltage);pin2isGND(systemground),pin3isCANH(CANbushigh

    line);andpin4isCANL(CANbuslowline). TheVBATandGNDwiressupplypowertocustom

    sensorsandtheCANHandCANLlinesprovideaCANbusconnectionusedbythemajorityofthe

    sensors(eventothosenotacquiringpowerfromthiscabling).

    Aspreviouslymentioned,acommunicationshubboardmaybedaisychainedwith

    another,expandingthenumberofsensorsthatcancommunicateovertheCANbus. Asthe

    designisrequiredtosupport13devicesontheCANbus,atotaloftwocommunicationshubs

    willbeused(daisychainedtogether)toprovideall13connectors.

  • 8/6/2019 Solar Car Pwr Monitoring System

    52/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 52

    RevB April29,2010

    4.3 TelemetryThetelemetrycomponentselectedforthefinaldesignistheXStreamOEMRFModule.

    Accordingtothedatasheet,thesedevicesarecapableofanoutdoorlineofsightrangeof7

    mileswhichexceedsourFRforthetelemetryrange. Thisdevicehasafrequencyof900MHz

    andreceiversensitivityof110dBm. Theonlyconcernwehaveisthatthethroughputdatarateof9,600bpsmaynotbeenoughforallofthedatawehavetotransmitbetweenthecarand

    computeoverthetelemetrysystem.

    ThesensorhubandthecomputerwillinterfacewiththeXStreamModulesasshowin

    thefollowingfigures. InFigure15thesensorhubishostAandthecomputerishostBbecause

    hostAisonthetransmissionsideandhostBisonthereceiverside. Figure16showsthecables

    thatwillbeusedtomaketheconnectionsshowninFigure15.

    Figure15:SystemBlockDiagramforTelemetry

    Figure16:ModuleAssemblyfromthe ProductManual

  • 8/6/2019 Solar Car Pwr Monitoring System

    53/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 53

    RevB April29,2010

    4.4 Software4.4.1 CaptureandVisualizationSoftwareDescription

    Figure 17:Visualization Software

    4.4.1.1 OverviewThecaptureandvisualizationsoftwareisusedtocapturetelemetrysentoutfromthe

    sensorhubandtoplotthecaptureddatainrealtimeorafteradatacapture. Thesoftwareis

    runonthegroundstationcomputer(GSC)andiswrittenusingLabView. TheLabViewenvironmentwaschosenforitseaseofuseincreatinggraphicaluserinterfaces(GUIs)andfor

    itsabilitytoeasilyinterfacewithexternaldevices.

    4.4.1.2 CaptureThesoftwarecapturesatelemetrystreamsentfromthesensorhubandparsesthis

    streamintomeasurementsfromdifferentsensors(e.g.voltage,current,tiltreadings). Thedata

    streamisaccessedfromasoftwareserialdevice. Anydevicewithasoftwaredevicedriver

    replicatingaserialport(e.g.aUSBtoserialadaptor)maybeusedtosendthetelemetry

    informationtothedevice. ThecurrentsetupinterfacesaradiomodemwithRS232outputto

    theGSCviaaUSBtoserialadapter.

    Oncethetelemetrydatastreamisparsed,thedataissavedtotexttabdelimitedfile. A

    tabdelimitedfileseparatesfields(columns)witha"tab"delimiterandseparatesentries(rows)

    bynewlines. Eachsensordatarecordisplacedinitsownfieldandeachcompletedataquery

    (i.e.datafromallsensorstakenatonetime)isplacedinitsownentry. Thistextformatwas

    chosenbecausetabdelimitedfilescanbereadbymanycommonapplications(e.g.Notepad,

  • 8/6/2019 Solar Car Pwr Monitoring System

    54/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 54

    RevB April29,2010

    Excel)andthedatacanbestoredinahumanreadableway. Thishelpstoensurethedatawill

    beabletobeaccessedinthefuture.

    4.4.1.3 VisualizationDataisplottedonaconfigurablecanvas. Alldatacanbedisplayedorthedisplaycanbe

    limitedtothelastnsecondsofdata(wherenisanarbitraryrealnumber)ifthedisplayeddata

    isfromarealtimesource.

    Thecanvasconsistsofoneormoreplots,whichcanbeaddedorremovedfromtheuser

    interface(UI). Eachplotcandisplaydatafromanysensororanycombinationofsensors,all

    configurablethroughLabViewutilities. Theplotscanberearrangedonthecanvasviatheup

    arrowanddownarrowbuttons. Fordatafromstored(nonrealtimesources),theplotswill

    havetheabilitytozoominondifferentportionsofthedata.

  • 8/6/2019 Solar Car Pwr Monitoring System

    55/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 55

    RevB April29,2010

    4.5 Mechanical4.5.1 WheelAlignmentTool

    Theteamchoseadigitalalignmenttooloutofthetwodesignsthatwerebeing

    considered. ThefinaldesignisasshowninFigure18:

    Figure 18:FinalDigitalAlignmentToolDesign

    4.5.1.1 TheArmsThetoolhasthreearmswhichareusedtoattachtothetiresofanycar

    4.5.1.1.1MaterialTheAluminumis6063T53metal.Thismetalwasthecheapestmetalwecouldfindtofit

    thedesignhopedfor,whichissquaretubing1/2thick. Althoughitwasthecheapest,itwas

    finefortheamountofworkwerequired. Themetalhasyieldstrengthof16,000psi. Thefactor

    ofsafetywasinthenumberofhundredsduetotheonlyweightbeingthedigitalprotractor. To

    findthissafetyfactor,thefollowingequationwasused:

    Equation 18 Safetyfactordueto static loading

    N=safetyfactorS=materialstrengthA=areaofloadingP=loadingforce

  • 8/6/2019 Solar Car Pwr Monitoring System

    56/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 56

    RevB April29,2010

    4.5.1.1.2DesignThetwobottomarmsconsistoffootlongaluminumsquaretubinghaving10holesfor

    configurationandabottomholetoattachtothedigitaltool. Theholesareinplaceevery.

    Thisnumberwaschosenbasedonthewheelsizesoftrailertiresthatthesolarcarteamwas

    using. Thedigitalprotractorwasgoingtobemostaestheticwhileplacedinthecenterofthe

    tire. Thusthearmsshouldbeapproximatelytheradiusofthetire. Usingthatasareference

    thearmswerepunchedalongthemostcommonradiioftrailertires. Theholeswereasizeof

    3/8touseahandscrewofsuchadiametertoattachtothetires. Theholesweretappedfor

    thehandscrewtoensuremostaccurateresults. Thefinalbottomholewasselectedtobe

    diametertobeusedwiththeotherhandscrewswhichattachedittothedigitalprotractor.

    Belowisaschematicofthisarm:

    Figure 19 Wheelalignmentbottomarms

  • 8/6/2019 Solar Car Pwr Monitoring System

    57/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 57

    RevB April29,2010

    Thetoparmspurposeistosolidifythetoolintoplace. Whilethetwobottomarms

    simplyrestonthebottomrim,thetopsecuresthetoolsoastonothaveitfalloffthetire.

    Thereforeitwaschosenthatthetoparmwouldhaveaventedcutalongthesamedistanceof

    theholes. Whilethetooldoeslookmostaestheticwhilebeingheldinthecenterofthetire,

    themeasurement

    will

    be

    the

    same

    wherever

    it

    is

    placed.

    As

    a

    result

    the

    tool

    was

    best

    held

    on

    byaslidehandscrewonthetoparm. Thisslidehandscrewwouldslidealongtotheverytopof

    therim,andscrewedintoplacethereforecreatingenoughfrictionalforcetonotallowthetool

    tofalloffthetire. Thethicknessofthisholeisthesameastheotherholestoallowformultiple

    ordersofthesamehandscrew. Thebottomholeonthisarmhoweverhadtomeetthe

    diameterofthescrewattachingtheprotractortothearms,andthereforewas3/8. Belowisa

    schematicofthearm:

    Figure 20:Top armforDigitalTool

  • 8/6/2019 Solar Car Pwr Monitoring System

    58/92

    Team4431SolarCarPowerMonitoringSystemFinalTechnicalReport

    Page 58

    RevB April29,2010

    4.5.1.2 HandScrewsThehandscrewswereselectedbasedonappropriatecompatiblesizing.

    4.5.1.2.110x1.5screwsTherearethree10x1.5handscrewsusedonthetool. Thesethreescrewsareusedto

    attachthetooltothetire. Theselectionwasbasedonthesideofthethreads. Usingathread

    countsmallerthan1.5mmallowedfor4ofthethreadstobeconnectedtothetirerimofthe

    currentcar. Whileonlyonethreadisrequiredtocreatethefrictionalforcerequiredahigher

    safetyfactorwasgoodtohavebasedonthefactthatsmallertirerimscouldbeusedinthe

    future. Theequationusedforfrictionalforceisbelow:

    Equation 19 FrictionalForce

    Ff=frictionalforce

    Thisscrewalsoworkedduetothelengthofthescrew. Itwasoneofthefewhand

    screwswecouldfindthatwasatleast2inchesinlength.