Sol-Gel Nanoporous Alumina Membrane Alumina Sol...

6
96 Korean Chem. Eng. Res., Vol. 42, No. 1, February, 2004, pp. 96-101 Sol-Gel Nanoporous Alumina Membrane Alumina Sol * * 320-711 26 * 305-343 71-2 (2003 9 22 , 2003 12 12 ) Preparation of Alumina Sol for Nanoporous Alumina Membrane by Sol-Gel Method Ja-Lyong Park, Tae-Hwan Kim*, Jae-Suk Sung* and Ki-Chang Song Department of Chemical Engineering, Konyang University, 26, Nae-dong, Nonsan, Chungnam 320-711, Korea *Energy System Division, Korea Institute of Energy Research, 71-2, Jang-dong, Yuseong-gu, Daejeon 305-343, Korea (Received 22 September 2003; accepted 12 December 2003) Sol-Gel aluminum isopropoxide(AIP) , alumina(boehmite) . , . 100 o C boehmite , 500 o C γ-alumina . HCl/AIP=0.10 600 o C 4 nm . HCl . Abstract - Alumina (boehmite) sol was prepared by the sol-gel method from aluminum isopropoxide (AIP) through hydrol- ysis and peptization processes. Powders were obtained by drying the sol in drying oven, and the powder properties, such as crystalline phase composition and pore structure, were studied as a function of heat-treatment temperatures. The powders showed boehmite phase at 100 o C, and transformed to γ-alumina at 500 o C. The powders, heat-treated at 600 o C after being peptized at HCl/AIP=0.10, had 4 nm in average pore diameter. The average pore diameter of the powders decreased with increasing HCl concentrations added during peptization process, but increased with increasing heat-treatment temperatures. Key words: γ-Alumina, Alumina Sol, Aluminum Isopropoxide, Boehmite, Hydrolysis, Pore Diameter, Peptization, Sol-Gel Method 1. , , ( ), , , , [1-3]. , , . , Knudsen , [4]. . [4]. . [4]. (CVD)[5], (electroless plating)[6], (spray pyrolysis)[7], Sol-Gel [3] . Sol-Gel , . Sol-Gel To whom correspondence should be addressed. E-mail: [email protected]

Transcript of Sol-Gel Nanoporous Alumina Membrane Alumina Sol...

Page 1: Sol-Gel Nanoporous Alumina Membrane Alumina Sol ...cheric.org/PDF/HHKH/HK42/HK42-1-0096.pdfPreparation of Alumina Sol for Nanoporous Alumina Membrane by Sol-Gel Method Ja-Lyong Park,

Korean Chem. Eng. Res., Vol. 42, No. 1, February, 2004, pp. 96-101

Sol-Gel�� �� Nanoporous Alumina Membrane� Alumina Sol ��

�������*��*��� †

����� �����320-711 �� �� 26

*���������� ��� �����305-343 �� ��� � 71-2

(2003! 9" 22# $%, 2003! 12" 12# &')

Preparation of Alumina Sol for Nanoporous Alumina Membrane by Sol-Gel Method

Ja-Lyong Park, Tae-Hwan Kim*, Jae-Suk Sung* and Ki-Chang Song†

Department of Chemical Engineering, Konyang University, 26, Nae-dong, Nonsan, Chungnam 320-711, Korea*Energy System Division, Korea Institute of Energy Research, 71-2, Jang-dong, Yuseong-gu, Daejeon 305-343, Korea

(Received 22 September 2003; accepted 12 December 2003)

� �

Sol-Gel�� �� ���� aluminum isopropoxide(AIP) �� �, ���� � ����� �� alumina(boehmite)

�� �� ��. �� �� !�"#�$ !�%&, �'� ��� ( )*+,-� ./ �' 0�1� �2� 345

2� �� ��. 100oC�$ )*+ � ��6 �'7 boehmite1� 89:;<8, 500oC�$ γ-alumina 1= >;�.

HCl/AIP=0.10� �!< ��6 ( 600oC )*+6 �'7 4 nm� ?@34 A3 89:;�. �� ��% B�6

HClC D�E� .F 34� A3G HI� JK )*+ ,-� D�E� .F ?@34� A3G D� ��.

Abstract − Alumina (boehmite) sol was prepared by the sol-gel method from aluminum isopropoxide (AIP) through hydrol-

ysis and peptization processes. Powders were obtained by drying the sol in drying oven, and the powder properties, such as

crystalline phase composition and pore structure, were studied as a function of heat-treatment temperatures. The powders

showed boehmite phase at 100oC, and transformed to γ-alumina at 500oC. The powders, heat-treated at 600oC after being

peptized at HCl/AIP=0.10, had 4 nm in average pore diameter. The average pore diameter of the powders decreased with

increasing HCl concentrations added during peptization process, but increased with increasing heat-treatment temperatures.

Key words: γ-Alumina, Alumina Sol, Aluminum Isopropoxide, Boehmite, Hydrolysis, Pore Diameter, Peptization, Sol-Gel Method

1. � �

���� ���� �� ��� ���� �� ���� �

��� ��� ���� !"#$%, &�' �(� )* ��+ �

� ,�-. /01, $2 ��+ �3 4 ��� 56(7� 89), :

;, <6 )* => ?@ A�� 4�B $C.DE� FGHIJ

K� L� � MNO$ P.Q $* R�3 ST LU, AVU,

WXU MNO$ Y.1Z FG HIJ [ (A�� � ��J \]

� ^$ _`-� �a[1-3]. Ab* ��� � (A�c de a�O

�, fa�O�, =g�0� 1h i �a. a�O�c jCk1, a�

O �� )G lc ���0� $ m�� n� Knudsen :; A��

*9 AbJ $o�E� pqI� rst �+u� *9� RN-1,

�+u$ fv Ab* m ��IJ wt x -� r�$ �a[4].

fa�O�c yz{G l$ Ab �+J |H}+ ~$� �+���

4G � �Rg�� ��0� Ab� ���� �$a. $ �c pq

IJ �0E� �sI* Ab� x���� ~8-1 a�O��

f9 FGHIJ ���e P.D� r�$ �a[4]. � =g�c a

�O�3 DDb� �� DDb* A� ~$� |HO�0� �� a

�OG fa�O* ��3 o�� �I� �� �$a. � pqIJ a

�O� Sa d� FGI� fa�O� Sa �)t �c ���$a

[4]. DDb �� (A�3 x��� ��0�� WX�6�(CVD)[5],

(?wI|�(electroless plating)[6], �( L�9�(spray pyrolysis)[7],

Sol-Gel�[3] )$ �a. $ � Sol-Gel�c x��IJ K� x���

$ f�U �r�Z, �� A�* �3 x�� i �� $�$ �.

^c ��J _`-. /a.

Sol-Gel�c �* i WXU ��OG �oO ��� �W �O

� �* �c  ¡O )3 $8¢0�£ D|¤D ~8-. � �¥¦

�N�� §A .¨© aª "z« � x�� i �� J¬O3 �†To whom correspondence should be addressed.E-mail: [email protected]

96

Page 2: Sol-Gel Nanoporous Alumina Membrane Alumina Sol ...cheric.org/PDF/HHKH/HK42/HK42-1-0096.pdfPreparation of Alumina Sol for Nanoporous Alumina Membrane by Sol-Gel Method Ja-Lyong Park,

Sol-Gel�� �� Alumina Sol �� 97

,

� �a[8-10]. Sol-Gel�� * alumina�* x�� �sI, ��O,

��gO )* ��$ �0Z �t nanoporous �* gO$ J¬�

E� �� $ �­* ��J ®¯t _`-� �a. Nanoporous�c 1

°k± dA* A�3 JD� a�O �3 ² a[11]. $ �c �A/(

A 1°=g�³� ´2 µ �A ��+* 56 � d�¶·�¥¸�

$8 �� )* ¹�Uº ¡8O µ»� ^c ��J $C.Q /a.

IUPAC(international union of pure and applied chemistry)* N*� ¼

½¾ a�O ��c A�* dA� ¼z " JD� 1h i �a[12].

¿� micropore� A�* Àm$ 2 nm$�$�, ÁÂ� mesopore� A

�* dAJ 2-50 nm$Z, ¶D�0� macropore� 50 nm$� dA*

Ã�� �� A�3 1ÄÅa. 1 nm�� 100 nm~$* A�dA� J

D� nanopore� A�* Àm ƾ�� S¾ micropore, mesopore ��

� macropore� ÇÈ É¢ a. � U0� mesoporous��c ?ÊU

º nanoporous��$a. �� ;�U0� (A �� � ��* Ë�

O$ �È-� ���, nanoporous �c � �ÌD Íf �/A, �/Î

* �� ) Ïm, ¦Ð�­ Ñ !Òz Ó ¡ ) NÔWX ;�* Í

��I ®8Õ i �a.

Ö ����� aluminum isopropoxide(AIP)� ׯ��� �B $�

�Øi� Ji�9 � �Nª* Ù;(HCl)3 J9 9��Ú,

nanoporous�0� ~8Õ i �� FÛ�� MN alumina�3 x�

�Üa. D|¤D ^c ��+2$ Sol-Gel�3 $8�B alumina��

~8-� alumina�3 ݯ�Üa� ¯Þ�ÜD´ gOGN � HCl/

AIP* ßf àWJ x�á �* A� �O� k�� âã3 äåSD

æ�Üa. ¼z� Ö ç»��� Sol-Gel�3 $8�B x� alumina

�* ;ª� ¼è A� dA � fÞ¾U àWé lc A� �O3 ä

åSêa.

2. � �

Ö ����� ׯ ��� aluminum isopropoxide(AIP, 98%, Al

(OC3H7)3, Aldrich)� ~8�Ü0Z 9���� Ù;(35.0%, HCl,

Dongyang Chemical)3 ~8�Üa.  ¡A ë� Uìu* �Øi(H2O/

AIP* ßf 100)� íJ�� heating mantle3 ~8�B �I(90oC)�

�N�e �D�î �,  ¡�º AIP� íJ�B 1�� oM � �Ú

Ji�9  ¡3 _`�ïa. $µ  ¡0� ðOá ñ¯O ��* �

¯� º ò&3 �A ��B ¡óA� �6�ïa. � � jô~$õ

� � Ù;* ßf� �ö�B $ 8Î� íJ � 90oC�� 24�

� oM � 3 VH�B �* 9�J T?t �.1I� �B alumina

�3 x��Üa. $÷e x�á �3 80oC* ø� �ù�� 48��o

M ø��Ú �bW�Ü�, $ �b �³� �+~¯3 $8�B �²

��� ´2úa. 7 ø� �²3 Bû �I(100-600oC)�� 1��

oM �Í�B \ü alumina�²3 x��Üa. $µ Lý� �øc

2 oC/min* HI� þ��Ü0Z, 5oC/min* HI� ÿ��Üa. $�*

&�ö�� Fig. 1� 1Äëúa. � � x�á alumina�²* �O3

XRD(D/Max-IIIC, Rigaku), BET(ASAP 2400, Micromeritics), FT-IR(FTS155

Bio-Rad), TEM(CM30, Philips), TG-DTA(THERMOFLEX, Rigaku) )*

��AA� $8�B �~�Üa.

3. �� �

3-1. FT-IR ��

HCl/AIP=0.10* �ø0� 9�á alumina�* TEM��� Fig. 2�

1Äëúa. � ë* �+� ��Ǫ$Z � 40 nmNI* dA� 1

Äëú0Z �+2$ �� ¡,-D �� �;-. �� MN �*

Ê�� 1Äëúa. $� 9�� íJá HCl�* H+ $�$ �+* Þ

¾� 56-. �+��* N?AU  ¯3 ¥�A µ»0� ~³

áa[13-14]. x�á �3 80oC* ø��ù�� ø��Ú �²W �

Bû �I�� Lý��Üa. $µ §._ �²2* WX ��� Lý

��IJ k�� âã3 äåSA �9 Fig. 3� FT-IR �� RG� 1

Äëúa. 100oCé 300oC�� �4U0� ¯�-� 3,200-3,600 cm−1

* �� �c 5i�� H2O �+* OH �ó_o� �V-� �$

�, 1,640 cm−1 �]��* 5i¸d� H-O-H ��_o� * �$Z,

1,070 cm−1é 770 cm−1 �]��* 5i ¸d� boehmiteRNë* Al-

OH* �� _o� * �0� ~³áa[15-16]. $ ��0��±

100oCé 300oC* �²2c boehmite��� S�3 j i �a.  ¾

500oC $�0� Lý�á �²* FT-IR RG� S¾ 100oCé 300oC

�� 1Ä1� H2O �+� * 3,200-3,600 cm−1é 1,640 cm−1* 5

i�J �Í�Z boehmiteRN ë* Al-OH* ��_o� * 1,070

cm−1é 770 cm−1* 5i� ¸dJ ~z�3 j i ��� $�c Fig.

6* XRD���� :º� i ��$ γ-alumina* ðO µ»0� ~³

áa.

Fig. 1. Flow diagram for preparation of alumina powder. Fig. 2. TEM photomicrograph of alumina sol (HCl/AIP=0.10).

Korean Chem. Eng. Res., Vol. 42, No. 1, February, 2004

Page 3: Sol-Gel Nanoporous Alumina Membrane Alumina Sol ...cheric.org/PDF/HHKH/HK42/HK42-1-0096.pdfPreparation of Alumina Sol for Nanoporous Alumina Membrane by Sol-Gel Method Ja-Lyong Park,

98 ���� ������

Fig. 4� 9� � HCl* ª3 @��B gOá �3 80oC�� 48�

� oM ø��î � � �³� a� 600oC�� 1�� oM �Í�B

x�á �²* FT-IR �� RG$a. $ ����� Ç� m� �.

3,200-3,600 cm−1é 1,640 cm−1* H2O 5i�J de �Í�Ü0Z 1,070

cm−1é 770 cm−1* Al-OH 5i�J ~z�3 � i �úa. $�0� Fig. 3

* 100oCé 300oC* m�� boehmiteRN$ 1Äë� 5i�* ̧ dJ

Fig. 4��� 1Ä1D �0E�, 600oC� Lý�� m� HCl íJu

� ���$ γ-alumina�* �?$J �.��3 �Æ� i �a.

3-2. TG-DTA ��

Fig. 5� HCl/AIP=0.10* �ø0� x�á �* L�� RG$a. TG

p0��± ���* (e�uc ���� 450oC¤D* �IÃ��

� !}t 1Ä"  ¾ 450oC$���� (e* �ÍJ #* �.1

D ��3 j i �0Z 450oC¤D* (e�uc 25% NI$a. DTA

p�� 100oC�]* 5L ¸d� � ë 56i* �¯� *9� �

.1Z � 400oC��* 5L ¸d� boehmite� ë* ��iJ P.

Q 1J¾� γ-alumina� �?$ $� *9 ¯ð-� �0� %Náa.

3-3. XRD ��

Fig. 6c 9�� HCl* íJu3 HCl/AIP=0.100� �N�B �3

x� � 80oC�� 48�� oM ø��Ú x� �²3 a� 100oC,

300oC, 500oC, 600oC�� 1��& Lý� �²* XRD �� RG

$a. BA�� 100oC�� Lý�á �²* RN��� fN�*

Al(OH)3(k� bayerite, gibbsite � pseudo-boehmite RN$ '�¢)

z� ~³-Z, 2θ=14o, 28o, 38o, 49o��* ¸d� S! boehmite�$

ðOá �3 j i �a[17]. 300oC� Lý�á �²��� boehmite

¸d2$ ��t �9DZ, 500oC$��� Lý�á m��

boehmite��� 1Ä1� ¸d2$ ~zDZ, 2θ=45o, 68o�� γ-alumina

�* ̧ d� SB γ-alumina�0� �?$J �.��c j i �a[18].

$�* RG� Fig. 3, 4* FT-IRRGé ( ��$3 j i �a.

Fig. 7c 9�GN� ;ª3 àW�Ú x�á �3 80oC�� 48��

oM ø��Ú x� � a� 600oC�� 1�� oM Lý��B ;

ª$ �* RN��� k�� âã3 j!Ö XRD ��RG$a. 9�

� íJ-� ;ª$ �* RN��� âã3 nD� æ)0Z 2θ=45o,

68o�� �4* ¸dJ 1Ä" �0� S! ÇÈ γ-alumina�$ 1Ä"

�3 j i �a.

3-4. ����

Fig. 8c 9�� HCl* íJu3 @��B x�á �23 �²W

Fig. 3. FT-IR spectra of alumina powders heat-treated at different tem-peratures.

Fig. 4. FT-IR spectra of alumina powders heat-treated at 600oC afterbeing peptized at different HCl concentrations.

Fig. 5. TG-DTA curves of alumina powder peptizied at HCl/AIP=0.10condition.

Fig. 6. X-ray diffraction patterns of alumina powders heat-treated atdifferent temperatures after being peptized at HCl/AIP=0.10condition.

���� �42� �1� 2004� 2�

Page 4: Sol-Gel Nanoporous Alumina Membrane Alumina Sol ...cheric.org/PDF/HHKH/HK42/HK42-1-0096.pdfPreparation of Alumina Sol for Nanoporous Alumina Membrane by Sol-Gel Method Ja-Lyong Park,

Sol-Gel�� �� Alumina Sol �� 99

� 600oC�� 1�� oM Lý�á �²2* N2 56-<6 )�p2$

a. $ )�p2c BDDT[19]J �Ø 5JD* �ÞUº 56 )�p

� mesopore �O3 1Äë� type** )�p�3 j i �a. 7

$ )�p2c de Bore[20]J xM hysteresis p � type Aé �~

Ê�� JDE�, A�c ‘+,(bottleneck)’ Ê�º �0� %N-Z

r�;(monodisperse)�* -c A� dA �� J�3 j i �a

. � U0� .c �+2$ �;-. �� �$ /ó$� ¼z �

+2 ~$* ¡,$ �.1 �$ ÊO-E� ¡,bë* .c A�G

¡,b ~$* #� A�2� º�B ‘bimodal’Ê* A��É� ���

i �01, &xU0�� ø�é Lý� GN�� Ç"� 0� *�

B $ #� A�2$ 1.DE� r�;Ê* A��É� J_a� j

¨Q �a[17]. íJá HCl* ª$ J� Uc HCl/AIP=0.05 �ø �²

* 56u$ J� ^ê0Z HCl$ J� ^$ íJá HCl/AIP=0.15 �

ø�� x�á �²* 56u$ J� Uúa.

Fig. 9� )�p* <6 p0��± � A�dA �É2$a. ;ª

$ J� Uc HCl/AIP=0.05* �ø0� x�á �²* A�2c � 45-

47 ÅNI* A�dA� JD� �a. �û1 ;ª$ ̂ $ íJÕi� A

�* dA� .!DZ �t HCl/AIP=0.15* �ø0� x���� A�

$ 33-40 Å* �É� $C� �a. $ RG��± alumina�3 x��

µ 9��� íJ-� ;ª� ¼z� A�dA* �ö$ J¬�Z, Sol-

Gel�� *9 nanoporous A�* ÊO$ J¬¢3 j i �a.

Fig. 10c 600oC� 1�� Lý�á �²* ;ª� ¼è fÞ¾U à

W� 1ÄÅ RG� �* x�� íJá ;ª$ �J¢� ¼z� fÞ

¾U$ �Í¢3 j i �a.

Fig. 7. X-ray diffraction patterns of alumina powders heat-treated at600oC after being peptized at different HCl/AIP conditions.

Fig. 8. Adsorption-desorption isotherms of N2 of alumina powders heat-treated at 600oC.

Fig. 9. Pore size distributions of alumina powders heat-treated at 600oCafter being peptized at different concentrations of HCl.

Fig. 10. Specific surface areas of alumina powders heat-treated at 600oCafter being peptized at different concentrations of HCl.

Fig. 11. Adsorption-desorption isotherms of N2 of alumina powders heat-treated at different temperatures after being peptized at differ-ent concentrations of HCl.

Korean Chem. Eng. Res., Vol. 42, No. 1, February, 2004

Page 5: Sol-Gel Nanoporous Alumina Membrane Alumina Sol ...cheric.org/PDF/HHKH/HK42/HK42-1-0096.pdfPreparation of Alumina Sol for Nanoporous Alumina Membrane by Sol-Gel Method Ja-Lyong Park,

100 ���� ������

f

act

es,

-

u-

J.,

i-

hi,

p-

d

or

Gel

e-

Fig. 11c HCl/AIP=0.10* �ø0� 9�á �3 80oC�� 48��

ø��î � a� 100oC, 300oC, 600oC* �I�� �� 1��& L

ý�� �²* �Í 56-<6 )�p2$a. 100oCé 300oC��

Lý�� �²2c <6 p�� <6u* !} �ÍJ �.1�

0(P/P0)$ fv�E� A�* dA� fv¢3 j i �a. �û1

600oC�� Lý� �²* <6 p3 S¾ <6u$ !} �Í�

�02� 0$ 3 �! 3 [ A�dA� S�3 j i �a. $�

XRD �� RG�� � i ��$ 600oC��� γ-alumina* RN$ ð

O-ú0E� 100oC, 300oC* boehmite�� Sa 3 [ A� dA�

J_a� %N� i �a.

Fig. 12� )�p* <6 p0��± � A�dA �É ��$a.

100oCé 300oC��* 4�A� dA� � 35 Å$1 600oC� Lý�

á �²* 4�A� dA� � 40 ÅNI� 1Äë� �a. $�

boehmite* O��� γ-alumina� �?$�¾� A�* dAJ 5D�

�3 *k a.

Fig. 13c HCl/AIP=0.10� 9�á �²* Lý� �I� ¼è fÞ¾

U RG� 100oC�� 330 m2/g* fÞ¾U$ Lý� �IJ �J¢�

¼z �Í�B, 600oC��� 240 m2/g* fÞ¾U3 1Ä63 j i

�a.

4. � �

Aluminum isopropoxide(AIP)� ׯ��� �B �� Ji�9 �

HCl� 9��� Sol-Gel�3 $8�B nanoporous A�3 ��

alumina�3 x��Üa. $÷e x�á �3 80oC�� 48�� ø��

Ú �²W�� Bû �I�� Lý�á �²3 FT-IR, XRD, TEM, BET

)* ��AA� ~8�B a�G lc R73 §3 i �úa.

(1) HCl/AIP=0.10* ßf� 9�á alumina�3 TEM3 $8�B �

Æ RG � ë* �+� ��Ǫ$Z 40 nmNI* dA� 1Äëúa.

(2) ø� �²* Lý� �I� ¼è aluminaRN �* àW� äå

Ö RG 100oC, 300oC�� Lý�á �²��� boehmite�$ 1Ä1

�, 500oC $��� Lý�á �²c γ-alumina�3 1Äëúa.

(3) 9�� ;ª$ Uc HCl/AIP=0.05* �ø�� x�á alumina�

* A�2c � 45-47 ÅNI* A�dA� JD� �a. �û1 ;ª

$ ��U0� ^c HCl/AIP=0.15* �ø�� x�á �c A�* dA

J .!Q 33-40 Å* A�dA� 1Äëúa. $� � x�� 9�GN

� íJ-� ;ª� *9 A�* dA� �ö� i ��3 *k a.

$ ��� GXA8� D�0� i`�� 21"A 97:. ~�($;

W;Í �� � ý� A8ݯ)* �Ï0� i`-ú<Òa.

���

1. Pierson, H. O., “World-Wide Applications and Market Overview o

Sol-Gel,” Presented at Assessing and Quantifying the Market Imp

Sol-Gel Production of High Performance Ceramics and Glass

December 10-12, Micro Island, Florida(1989).

2. Uhlhorn, R. J. R., Huis In’t Veld, M. H. B. J., Keizer, K. and Burg

graaf, A. J., “Gas and Surface Diffusion in Modifide γ-Alumina Sys-

tem,”J. Member. Sci., 46(2/3), 225-241(1989).

3. Hsieh, H. P., Bhave, R. R. and Fleming, H. L., “Microporous Al

mina Membrane,” J. Membr. Sci., 39(3), 221-241(1988).

4. Uhlhorn, R. J. R., Zaspalis, V. T., Keizer, K. and Burggraaf, A.

“Synthesis of Ceramic Membranes. Part II Modification of Alum

num Thin Film: Reservoir Method,” J. Mat. Sci., 27, 538-552(1992).

5. Gavalas, G. R., Megiris, C. E. and Nam, S. W., “Deposition of H2-Permse-

lective SiO2 Films,” Chem. Eng. Sci., 44(9), 1928-1835(1989).

6. Uemiya, S., Sato, N., Ando, H., Kude, Y., Masuda, T. and Kikuc

E., “Hydrogen Permeable Palladium-Silver Alloy Memberane Su

ported on Porous Ceramic,” J. Memb. Sci., 56(3), 315-325(1991).

7. Li, Z. Y., Maeda, H., Kusakabe, K., Morooka, S., Anzai, H. an

Akiyama, S., “Preparation of Palladium-Silver Alloy Membranes f

Hydrogen Separation by the Spray Pyrolysis Method,” J. Membr.

Sci., 78(3), 247-254(1993).

8. Johnson, D. W., “Sol-Gel Processing of Ceramics and Glass,” Am.

Ceram. Soc. Bull., 54, 286-289(1975).

9. Brinker, J. C. and Scherer, G. W., Sol-Gel Science, The Physics and

Chemistry of Sol-Gel Processing, Academic Press(1990).

10. Park, H. J., “Alumina Coatings on Stainless Steel by the Sol-

Method,” M. A. Thesis, Yonsei University, Seoul(1987).

11. Park, S. E., Kim, D. S. and Hwang, Y. K., “Nanofabrication of Mat

rials via Microwave,” Prospectives of Industrial Chemistry, 4(6), 10-

Fig. 12. Pore size distributions of alumina powders heat-treated at dif-ferent temperatures after being peptized at different concentra-tions of HCl.

Fig. 13. Specific surface areas of alumina powders heat-treated at dif-ferent temperatures after being peptized at HCl/AIP=0.10 con-dition.

���� �42� �1� 2004� 2�

Page 6: Sol-Gel Nanoporous Alumina Membrane Alumina Sol ...cheric.org/PDF/HHKH/HK42/HK42-1-0096.pdfPreparation of Alumina Sol for Nanoporous Alumina Membrane by Sol-Gel Method Ja-Lyong Park,

Sol-Gel�� �� Alumina Sol �� 101

rared

of

up-

a

ials,

17(2001).

12. http://www.IUPAC.org/goldbook/M03853.pdf.

13. Song, K. C. and Chung, I. J., “Rheological Properties of Aluminum

Hydroxide Sols during Sol-Gel Transition,” J. Non-Cryst. Solids.,

107(2), 193-198(1989).

14. Song, K. C. and Chung, I. J., “The Structure Formations of Alumi-

num Hydroxide Gels under HCl and NH4OH Conditions,” J. Non-

Cryst. Solids, 108(1), 37-44(1989).

15. Gadsden, J. A., Infrared Spectra of Minerals and Related Inorganic

Compounds, Batterworths, Reading, Mass(1975).

16. Nakamoto, K., Infrared and Raman Spectra of Inorganic and Coor-

dination Compounds, Wiley, New York(1978).

17. Pecharroman, C., Gonzalez-Carreno, T. and Iglesias, J. E., “The Inf

Dielectric Properties of η-Al2O3,” J. Mater. Res., 11(1), 127-133(1996).

18. Uhlhorn, R. J. R., Keizer, K. and Burggraaf, A. J., “Synthesis

Ceramic Membranes; Part I. Synthesis of Non-supported and S

ported γ-Alumina Membranes Without Defect,” J. Mat. Sci., 27, 527-

537(1992).

19. Brunauer, S., Deming, L. S., Deming, W. S. and Teller, E., “On

Theory of the van Der Waals Adsorption of Gases,” J. Am. Chem. Soc.,

62, 1723-1727(1940).

20. de Boer, J. H., The Structure and Properties of Porous Mater

Butterworths, Reading, Mass(1975).

Korean Chem. Eng. Res., Vol. 42, No. 1, February, 2004