SnapShot: Local Protein Translation in Dendrites · 2019-09-16 · Microtubule RER Spine apparatus...

2
Somatic synthesis Dendritic synthesis Spatiotemporal constraints Growth cone Neuron Local synthesis Replenishment of distal synapses LTP Input specificity Synaptic protein turnover and plasticity Microtubule RER Spine apparatus Polysome RNP Kinesin Protein synthesis machinery mRNA transport Turnover and modification of the synaptic proteome The local transcriptome and the synaptic translation machinery Direct capture and synaptic tagging Synthesis (tag) Capture Stoichiometries in the postsynapse and impact of local protein synthesis Impact of protein × synthesis Low High Neuron size and the benefits of local translation Analysis Sample preparation Methods Activity-dependent regulation Signal transduction Control of synaptic strength Plasticity (LTP, LTD) BDNF LTP dopamine acetylcholine glutamate LTD high-frequency stimulation theta frequency stimulation GPCR activation CamK2a BDNF FMRP Arc GluA1 APP PDS95 Shank Homer CaMK2 PI3K Erk Akt Calcineurin PP2A Mek p70-S6K KIF5 4E-BP eIF4E CPEB1 CPEB1 KIF3 KIF17 Myosin Va Staufen EF2 S6 ZBP1 Akt Pumilio FMRP FMRP microRNAs MARTA Cyfip mRNA transport mRNA translation mRNAs coding for: • ion channels • neurotransmitter receptors • adhesion molecules • scaffolding proteins • signaling molecules • cytoskeleton • translation and degradation machinery Mechanical isolation • tissue microdissection (CA1 neuropil) • compartmentalized cultures (porous membranes, Campenot chambers, microfluidic devices) Genetic targeting • conditional mRNA and protein labeling • gain and loss of functions • 3’UTR-based reporters Imaging • time-lapse imaging • ultrastructural analysis • high-resolution FISH • FUNCAT Biochemistry • immunoaffinity • BONCAT High-throughput technologies • mass spectroscopy (SILAC, BONCAT) • mRNA deep sequencing • nanostring Synaptic input patterns Control of protein translation Protein synthesis, delivery, and modification of synaptic properties Dendritic compartmentalization (e.g., HCN1 and AMPA receptor gradients) t 0 t 1 Synthesis and capture Ion channels (GluA1, GluN1) Scaffolding and signaling (PSD95, CaMKII) mTOR SnapShot: Local Protein Translation in Dendrites Susanne tom Dieck, Cyril Hanus, and Erin M. Schuman Max Planck Institute for Brain Research, Frankfurt, Germany See online version for legends and references. 958 Neuron 81, February 19, 2014 ©2014 Elsevier Inc. DOI http://dx.doi.org/10.1016/j.neuron.2014.02.009

Transcript of SnapShot: Local Protein Translation in Dendrites · 2019-09-16 · Microtubule RER Spine apparatus...

Page 1: SnapShot: Local Protein Translation in Dendrites · 2019-09-16 · Microtubule RER Spine apparatus Polysome RNP Kinesin Protein synthesis machinery mRNA transport Turnover and modification

Somatic synthesis

Dendritic synthesis

Spatiotemporal constraints

Growth cone

Neuron

Localsynthesis

Replenishment ofdistal synapses

LTP

Input specificity

Synaptic protein turnover and plasticity

Microtubule

RER

Spineapparatus

Polysome

RNPKinesin

Protein synthesis machinery

mRNA transport

Turnover and modificationof the synaptic proteome

The local transcriptome andthe synaptic translation machinery

Direct capture andsynaptic tagging

Synthesis(tag)

Capture

Stoichiometries in thepostsynapse and impactof local protein synthesis

Impact ofprotein ×synthesis

Low High

Neuron size and the benefits of local translation

AnalysisSample preparation

Methods

Activity-dependent regulation

Signal transduction

Control of synaptic strengthPlasticity (LTP, LTD)

BDNFLTP

dopamine

acetylcholineglutamate

LTDhigh-frequency stimulation

theta frequency stimulationGPCR activation

CamK2a BDNF

FMRPArcGluA1

APPPDS95 Shank

Homer

CaMK2

PI3K

Erk

AktCalcineurinPP2A

Mek p70-S6K

KIF54E-BP

eIF4E

CPEB1CPEB1KIF3 KIF17

Myosin Va

Staufen EF2S6

ZBP1

Akt

PumilioFMRPFMRPmicroRNAsMARTA

Cyfip

mRNA transport mRNA translation

mRNAs coding for:• ion channels• neurotransmitter receptors• adhesion molecules• scaffolding proteins• signaling molecules• cytoskeleton• translation and degradation machinery

Mechanical isolation• tissue microdissection (CA1 neuropil)• compartmentalized cultures (porous membranes, Campenot chambers, microfluidic devices)

Genetic targeting• conditional mRNA and protein labeling• gain and loss of functions• 3’UTR-based reporters

Imaging• time-lapse imaging• ultrastructural analysis• high-resolution FISH• FUNCAT

Biochemistry• immunoaffinity• BONCAT

High-throughput technologies• mass spectroscopy (SILAC, BONCAT)• mRNA deep sequencing• nanostring

Synaptic inputpatterns

Control ofprotein translation

Protein synthesis,delivery, andmodification ofsynaptic properties

Dendritic compartmentalization(e.g., HCN1 and AMPA

receptor gradients)

t0 t1

Synthesisand capture

Ion channels(GluA1, GluN1)

Scaffolding and signaling(PSD95, CaMKII)

mTOR

SnapShot: Local Protein Translationin DendritesSusanne tom Dieck, Cyril Hanus, and Erin M. SchumanMax Planck Institute for Brain Research, Frankfurt, Germany

See online version for legends and references.958 Neuron 81, February 19, 2014 ©2014 Elsevier Inc. DOI http://dx.doi.org/10.1016/j.neuron.2014.02.009

Page 2: SnapShot: Local Protein Translation in Dendrites · 2019-09-16 · Microtubule RER Spine apparatus Polysome RNP Kinesin Protein synthesis machinery mRNA transport Turnover and modification

958.e1 Neuron 81, February 19, 2014 ©2014 Elsevier Inc. DOI http://dx.doi.org/10.1016/j.neuron.2014.02.009

SnapShot: Local Protein Translation in DendritesSusanne tom Dieck, Cyril Hanus, and Erin M. SchumanMax Planck Institute for Brain Research, Frankfurt, Germany

mRNA localization and regulated translation provide an efficient means to spatially and temporally control gene expression in polarized cells. This is all the more important in neurons where local and timely changes of the proteome in growth cones and synapses, located up to hundreds of microns from the cell body, are required during brain devel-opment and plasticity.

The identity and distribution of dendritic mRNAs, transport mechanisms, and translational regulation during synaptic plasticity in normal and diseased neurons have been a major focus of investigation. It is now clear that local protein synthesis is a major regulator of input-specific and long-lasting changes in synaptic transmission. Yet, its more general role in neuron proteostasis is still poorly understood.

Here we highlight a number of key aspects of local protein translation in dendrites, with an emphasis on synaptic turnover and plasticity, neuronal size and morphological complexity, activity-dependent regulation, and the ideal toolbox that is needed to study these processes.

Protein Turnover and Synaptic PlasticityDendrites contain virtually all the cellular machinery required to synthesize proteins. Together with the intrinsic turnover of synaptic proteins, the control of mRNA transport,

localization, and translation is a key determinant of local synaptic composition and function.Initially thought to contain only a handful of transcripts, dendrites and axons are now known to include thousands of mRNA species representing most protein families, sug-

gesting that local translation is the rule rather than the exception.Due to the layered organization of the synapse, local translation may change synaptic composition, for example, by changing the population of receptors (direct synthesis

and stabilization) or receptor binding proteins, allowing the recruitment of receptors taken from a more diffuse pool (synaptic tagging and capture).The copy numbers of proteins at an individual synapse vary from tens of molecules up to hundreds, with binding stoichiometries that differ greatly between distinct classes

of synaptic proteins. This implies that, all things being equal (e.g., protein stability and local turnover), the local production and recruitment of proteins with more binding slots and binding partners can have a magnified impact on synaptic composition. The local translation of just a few master proteins may thus have a more profound impact on synaptic properties than adding receptors “one by one.”

Neuron Size and the Benefits of Local TranslationAlthough the definition of the minimal functional unit of synaptic integration—the individual synapse, a dendritic branchlet—is still debated, it is clear that the composition

and properties of this unit can be adjusted in an input- or dendrite-specific manner. Together with the size and morphological complexity of neurons, this functional compart-mentalization sets unique spatiotemporal constraints on cellular metabolism.

Above a certain axonal and dendritic arbor size and complexity, the soma may not be sufficient to provide enough proteins for the entire cell. This may be due to “natural” limits of the biosynthetic capacity of the soma, which may need additional synthesis sites. As protein lifetime may be on the order of several days, protein synthesized locally may accumulate over time throughout the entire neuron. In addition, local sites of protein synthesis may be required to ensure that essential proteins with shorter lifetimes are available within adequate time frames, to avoid degradation or capture en route from the soma to distal targets.

It is expected that the potential impact of local protein synthesis will be determined by local mRNA levels and their actual translation and, once proteins are made, their lifespan and local retention. Yet, it is still not clear how these parameters are adjusted to change protein composition on different spatial scales (e.g., a single synapse or dendritic segment).

Activity-Dependent RegulationAlthough signaling cascades regulating local translation are emerging, a more global understanding of proteostasis in neurons is lacking. It is now clear that synaptic

activity regulates protein translation at multiple levels (mRNA transport and stability, generic and mRNA-group specific regulation), through intermingled signaling pathways. Although candidate approaches may be useful to implicate a specific signaling molecule in an experimentally defined context, it is unlikely that any behaviorally relevant activity-dependent translational program will be adequately described by adjustments of a few molecules or simple linear signaling cascades. At the two extremes, minor (and most likely overlooked) changes in the recent activity history of a neuron may set a different context and hence a completely different outcome for apparently similar stimula-tion paradigms, whereas synaptic plasticity induction protocols thought to be clearly distinct may converge on the same signaling pathways. This question is particularly important in genetic diseases where mutations in proteins involved in multiple aspects of mRNA trafficking and translation (e.g., FRMP) may perturb the homeostatic baseline of the synapse.

Experimental ProceduresOwing to the complexity of underlying signaling cascades, the multiple orders of magnitude of spatial scales to be considered (e.g., the individual synapse versus the entire

dendritic tree) and the multiple neuron types that are involved, the ideal toolbox to study dendritic translation should include both high-resolution (e.g., single-protein tracking, in situ hybridization, etc.) and high-throughput (e.g., deep sequencing, mass spectrometry, etc.) methods, as well as genetic (e.g., genome engineering) and anatomical (e.g., brain slices, microdissections) means to reduce sample complexity by focusing selectively on specific cell types and subcellular compartments.

RefeRences

Bassell, G.J., and Warren, S.T. (2008). Neuron 60, 201–214.

Cajigas, I.J., Tushev, G., Will, T.J., tom Dieck, S., Fuerst, N., and Schuman, E.M. (2012). Neuron 74, 453–466.

Fiala, J.C., and Harris, K.M. (1999). Dendrite Structure (Oxford, UK: Dendrites Oxford University Press).

Frey, U., and Morris, R.G. (1997). Nature 385, 533–536.

Hanus, C., and Schuman, E.M. (2013). Nat. Rev. Neurosci. 14, 638–648.

Richter, J.D., and Klann, E. (2009). Genes Dev. 23, 1–11.

Sheng, M., and Hoogenraad, C.C. (2007). Annu. Rev. Biochem. 76, 823–847.

Shigeoka, T., Lu, B., and Holt, C.E. (2013). J. Cell Biol. 202, 991–999.

Sutton, M.A., and Schuman, E.M. (2006). Cell 127, 49–58.

Ule, J., and Darnell, R.B. (2006). Curr. Opin. Neurobiol. 16, 102–110.