Slides PPD

17

Click here to load reader

description

Slides pour le Petit Pois Déridé 31, Grenoble

Transcript of Slides PPD

Page 1: Slides PPD

Perturbations environnementales

Quels impacts sur la diversité et la spécificité dans un

système hôte-pathogène ?

Timothée Poisot & Michael E HochbergUniversité Montpellier 2

Institut des Sciences de l’[email protected]

Page 2: Slides PPD

Gamme d’activités vs. performance

Biotique et abiotique

Jack of all trades is master of none ?

LA SPÉCIFICITÉ (IN A NUTSHELL)

Page 3: Slides PPD

Les interactions sont complexes

Faire des prédictions est difficile !

Spécificité

Compétition

RichesseSpéciation

Dynamique démographique

Modèle génétique

Coûts

Fitness

Page 4: Slides PPD

SPECIFICITY OF PHAGE-BACTERIA COEVOLUTION

Figure 4. Host range at the individual level. Frequency of phageisolates sampled from one coevolved and one evolved popula-tion, with a given infectivity range (number of coevolved bacterialcolonies that a phage isolate can infect) obtained from streakingassay. Only probabilities of infection above or equal to 66% areconsidered.

assays, phage isolates from a single population of the coevolutiontreatment at transfer 16 were not able to infect all the coevolvedbacterial colonies, confirming the existence of genetic specificitythrough resistance in the bacteria and/or counter-defenses in thephage. Coevolved phage isolates had a significantly broader hostrange than those from the evolved population (Fig. 4; mean ±SE: 4.46 ± 0.58 vs. 0.54 ± 0.16, Mann–Whitney W = 832,P < 0.001), confirming the results obtained at the populationlevel (Fig. 2). In addition, coevolved phage had a more diversehost range ranking (from 0 to 10) than did evolved phage (0 to 2)(Fig. 4; Kolmogorov–Smirnoff D = 0.67, P < 0.0001). This sug-gests that the coevolved population is composed of both general-

Table 1. Effects of replicate, phage isolate, bacterial colony, and their interaction on phage-imposed reduction in bacterial growth (RBGij)for coevolved and evolved phage (GLM on ranked data with replicate, phage isolate, bacterial colony as random factors).

Treatment Source of variation df SS MS F P

Coevolution Replicate 2 215,211 107,606 0.67 0.517Phage isolate 19 2,159,438 113,655 1.45 0.144Bacterial colony 14 23,934,138 1,709,581 11.88 <0.001Phage!Bacteria 266 12,293,285 46,215 1.52 <0.001Replicate!Phage 38 2,380,895 62,655 2.06 <0.001Replicate!Bacteria 28 3,587,198 128,114 4.21 <0.001Error 532 16,179,669 30,413Total 899 60,749,835

Evolution Replicate 2 745,514 372,757 3.16 0.058Phage isolate 19 1,599,062 84,161 1.23 0.284Bacterial colony 14 13,370,925 955,066 8.78 <0.001Phage!Bacteria 266 14,241,285 53,539 1.12 0.146Replicate!Phage 38 2,389,018 62,869 1.31 0.105Replicate!Bacteria 28 2,888,544 103,162 2.15 0.001Error 532 25,515,459 47,961Total 899 60,749,807

ists and specialists.Using the interaction matrix of infectivity, we found that

coevolved phage had a significantly nested pattern of infection(Fig. 1A, C; Monte Carlo test N = 188, P = 0.0017). This patternis consistent with a multilocus GFG model of interaction (Sasaki2000; Morgan et al. 2005). By contrast, evolved (i.e., control)phage showed a random pattern of infection (Fig. 2B, D; MonteCarlo test N = 11, P = 0.39).

For RBG assays, the effect of phage isolates on bacterialgrowth was not significant within both the evolved and the co-evolved populations (Table 1). Rather, a higher amount of thevariation was due to the effect of the bacterial colony and thereplicate. Nevertheless, we found a highly significant interactioneffect between phage isolate and bacterial colony in the coe-volved treatment (Table 1; GLM F266,899 = 1.52, P < 0.001),but not in the evolved one (GLM F266,899 = 1.12, P = 0.146). Themean variance in RBGij was significantly higher in the coevolvedthan in the evolved population (Fig. 5; Mann–Whitney W = 566,P < 0.001). This means that within-population diversity and as-sociated specificity in RBG emerged only when antagonistic co-evolution was permitted.

COST OF GENERALISM

Phage isolates issued from the same single population in the co-evolution treatment at transfer 16 show a cost of adaptation withincreasing host range (Fig. 6; linear regression R2 = 0.236, F1,17 =4.94, P = 0.041). The higher the host range, the lower the re-duction of the bacteria growth rate by the phage isolate. Thiscost at the genotypic level is consistent with a GFG model ofinteraction.

EVOLUTION JANUARY 2008 7

Poullain et al. 2008, Coberly et al. 2009

Coexistence!

UN TRAIT EN (CO)ÉVOLUTION

Page 5: Slides PPD

Wilson & Yoshimura, 1994

ET UN ENVIRONNEMENT QUI CHANGE

Page 6: Slides PPD

PerturbationMortalité Ressources

Intensité

Fréquence

Type

Dynamique

UNE PERTURBATION, C’EST…

Page 7: Slides PPD

A CHAQUE PERTURBATION

Populations Ressources

Perturbationmortalité de masse

retour des ressources

Différents tauxde mortalité

Page 8: Slides PPD

0 50 100 150 200 250 300

01

23

4

Temps

Condition

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

Hétérogénéité temporelle Hétérogénéité spatiale

DEUX TYPES D’HÉTÉROGÉNÉITÉ

Page 9: Slides PPD

SpécificitéCommunautés simples Complexité naturelle

Type de stratégies CoexistenceInvestissement

NOTRE QUESTION

Trois aspects considérés dans ce travail

Page 10: Slides PPD

Notre modèle couplela dynamique des

populationset

l’architecture génétique

L’hôte et le pathogène mutent et s’éteignent

Epistasie antagoniste (compromis)

Hôtes

Pathogènes

Ressources

Progénie

Entrée deressources

Sortie deressources

Co

mp

éti

tio

ne

tM

ort

ali

té d

e m

as

se

Page 11: Slides PPD

Spec. Adapt. Spec. Adapt.

Poisot & Hochberg (in prep.)

(en éliminant l’adaptation)MESURER LA SPÉCIFICITÉ

Un nouvel indicateur de spécificité basé sur la différence de performance entre hôtes successifs

Page 12: Slides PPD

Plus de survie = plus d’infectivité et de

résistance

Des perturbations trop fréquentes empêchent

l’évolution de l’infectivité0.05 0.10 0.20 0.50 1.000

.00.2

0.4

0.6

0.8

1.0

Fréquence de perturbation

Investissem

ent

Mortalité

99 %

90 %

50 %

None

Page 13: Slides PPD

La spécificité maximale est atteinte pour des

perturbations moins fréquentes quand la mortalité augmente

0.05 0.10 0.20 0.50 1.000.0

0.2

0.4

0.6

0.8

1.0

Fréquence de perturbation

Spécific

ité

Page 14: Slides PPD

La diversité est maximale pour des perturbations

fréquentes quand la mortalité est faible

Une plus grande mortalité décale ce patron vers les

fréquences faibles0.05 0.10 0.20 0.50 1.000

.00.1

0.2

0.3

0.4

Fréquence de perturbation

Coexis

tence

Mortalité

99 %90 %

50 %None

Page 15: Slides PPD

Res

sour

ce 1

Res

sour

ce 2

Phag

e

Res

sour

ce 1

Res

sour

ce 2

Phag

e

Res

sour

ce 1

Res

sour

ce 2

ET MAINTENANT?

Niche fondamentale vs. niche réalisée : le rôle du pathogène

Page 16: Slides PPD

La spécificité dépend de la fréquence et de l’intensité des perturbations

L’investissement dans l’infectivité est déterminé par l’environnement

La coévolution rend possible la

coexistence avec des variations

temporelles

TAKE HOME MESSAGES

Page 17: Slides PPD

Merci de votre attention

Michael E Hochberg

Financé par le contratANR «COMUTE»

Timothée Poisot

Financé par une boursedoctorale CNRS/Région