Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and...

54
Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of Symmetry

Transcript of Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and...

Page 1: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 1

Chapter 10

Semiempirical Methods andApplications of Symmetry

Part A: The Hückel Model and other Semiempirical Methods

Part B: Applications of Symmetry

Page 2: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 2

Part A: The Hückel Model and other Semiempirical

Methods

• Hückel Molecular Orbital Model

• Application to Ethylene

• Application to the Allyl Radical (C3H5•)

• Application to Butadiene

• Introduction of Heteroatoms

• Electron Charge and Bond Order

• Semiempirical methods for sigma bonded systems

Page 3: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 3

Hückel Molecular Orbital Model

Developed by Eric Hückel in 1920’s to treat -electron systems.Extended by Roald Hoffman in 1963 to treat -bonded systems.

The Hückel model has been largely superseded by more accurateMO calculations. However, it is still useful to obtain qualitativepredictions of bonding and reactivity in conjugated systems.

The model is also very useful in learning how to perform theSecular Determinant and Molecular Orbital calculations of thetype used in Hartree-Fock theory, but at a much simpler level.

Page 4: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 4

Assumptions

1. The and electrons are independent of each other.

The electrons move in the constant electrostatic potential created by the electrons.

2. The carbons are sp2 hybridized.

The remaining pz orbital is perpendicular to the molecular framework.

3. The electron Molecular Orbitals are linear combinations of the pz orbitals (i).

1 1 1 1 2 2 1 3 3i i j jj

c c c c

4. The total electron Hamiltonian is a simple sum of effective one electron Hamiltonians.

1 2 3ii

H h h h h

Page 5: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 5

Linear Equations and Secular Determinant

i i j jj

c ii

H h+

1

( ) 0N

ij ij ijj

c H ES

One has N equations, where N is the number of carbon atoms.

Variational Method

0i j i jH E S

11 11 12 12 12 1

21 21 22 2 2 2

1 1 2 2

0

N

N N

N N N N NN NN

H ES H ES H ES

H ES H ES H ES

H ES H ES H ES

Page 6: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 6

Additional Assumptions

11 11 12 12 1 1

21 21 22 22 2 2

1 1 2 2

0

N N

N N

N N N N NN NN

H ES H ES H ES

H ES H ES H ES

H ES H ES H ES

5. The Orbitals are Normalized: Sii = 1

The overlap between orbitals is 0: Sij = 0 (ij)

6. The diagonal Hamiltonian elements are given by an empirical parameter,

7. Off-diagonal Hamiltonian elements are given by an empirical parameter, , if the carbons are adjacent

Hij = : Adjacent Carbons

Hij = 0: Non-Adjacent Carbons

Note: <0 and <0

Page 7: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 7

Parameter Values

What is the value of ?

Who cares?

cancels out in almost all applications, such as transition orreaction energies.

What is the value of ?

Who knows?

Estimates of the “best” value of vary all over the place.As noted in the text, values ranging from –30 kcal/mol to -70 kcal/mol( -130 to -290 kJ/mol) have been used.

For lack of anything better, we’ll use = -200 kJ/mol.

Page 8: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 8

Part A: The Hückel Model and other Semiempirical

Methods

• Hückel Molecular Orbital Model

• Application to Ethylene

• Application to the Allyl Radical (C3H5•)

• Application to Butadiene

• Introduction of Heteroatoms

• Electron Charge and Bond Order

• Semiempirical methods for sigma bonded systems

Page 9: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 9

Application to Ethylene (C2H4)

11 11 12 12

12 12 22 22

0H ES H ES

H ES H ES

Secular Determinant and Energies

0E

E

Put in Hückel matrix elements

Divide all termsby and define x by

Ex

10

1

x

x

Page 10: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 10

10

1

x

x

2 1 0x

11 1

Ex

22 1

Ex

1E 2E

Page 11: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 11

Molecular Orbitals

or

0E

E

1 1 2 2c c

1 2

1 2

0

0

E c c

c E c

1 2

1 2

0

0

xc c

c xc

2

1

cx

c

Page 12: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 12

Normalization:

1 1 2 2c c 2

1

cx

c

1

1

1x

E

2

1

1c

c 2 1c c

1 1 2 2 1 1 2 21 c c c c

2 21 1 1 1 2 1 2 2 1 2 1 2 2 21 c c c c c c

2 21 21 c c

Note: For Hückel calculations, the normalization

condition is always:2 1i

i

c

2 21 21 c c

2 1c c 1 1 2

1

2

Page 13: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 13

2

2

1x

E

2 21 21 c c

2 1c c

2

1

1c

c

2 1c c

1 1 2

1

2 Bonding Orbital

2 1 2

1

2 Antibonding Orbital

Page 14: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 14

+

-

+

-C1 C2

1 1 2

1

2

1E

2 1 2

1

2

2E

+

-+

-C1 C2

Electrons are delocalized in 1

Electrons are not delocalized in 2

Page 15: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 15

Part A: The Hückel Model and other Semiempirical

Methods

• Hückel Molecular Orbital Model

• Application to Ethylene

• Application to the Allyl Radical (C3H5•)

• Application to Butadiene

• Introduction of Heteroatoms

• Electron Charge and Bond Order

• Semiempirical methods for sigma bonded systems

Page 16: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 16

Application to the Allyl Radical (C3H5•)

The Allyl radical has 3 electrons

Secular Determinant and Energies

C1

C2

C3.

11 11 12 12 13 13

12 12 22 22 23 23

13 13 23 23 33 33

0

H ES H ES H ES

H ES H ES H ES

H ES H ES H ES

0

0

0

E

E

E

Page 17: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 17

0

0

0

E

E

E

Divide by

DefineE

x

1 0

1 1 0

0 1

x

x

x

1 1 1 11 0 0

1 0 0 1

x xx

x x 2 1 1 0 0x x x

3 2 0x x

1 2E 2E

onBoard

11 2

Ex

2

2 0E

x

33 2

Ex

3 2E

Page 18: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 18

1 0

1 1 0

0 1

x

x

x

1 2x

2 1

3 1 2

3 2

1)

2)

13)

From c xc

From c c xc

From c cx

Normalization

22 21 1 12 1c c c 2

14 c

1

1

2c

2 0x

Normalization

2 221 10 1c c

1

1

2c

212 c

1 1 2 3

12

2 2 1 3

1

2

2 1 1

3 2 1

2 2

1

2

c c c

c c c

2 1

3 1 2 1

0 0

0

c c

c c c c

1 2

1 2 3

2 3

1) 0

2) 0

3) 0

xc c

c xc c

c xc

Page 19: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 19

3 2x 2 1 1

3 2 1

2 2

1

2

c c c

c c c

Normalization

22 21 1 12 1c c c

1

1

2c

3 1 2 3

12

2

214 c

1 0

1 1 0

0 1

x

x

x

2 1

3 1 2

3 2

1)

2)

13)

From c xc

From c c xc

From c cx

1 2

1 2 3

2 3

1) 0

2) 0

3) 0

xc c

c xc c

c xc

Page 20: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 20

Wavefunction Check

You can always check to be sure that you’ve calculated thewavefunction correctly by calculating the expectation valueof E and see if it matches your original calculated value.

We’ll illustrate with 3.

3 3 1 2 3 1 2 3

1 12 2

2 2E H H

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

21

2 2 24

2

H H H

H H H

H H H

12 0 2 2 2 0 2

4

14 4 2

4E 2 It checks!!

Page 21: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 21

1 1 2 3

12

2

1 2E

2 1 3

1

2

2E

3 1 2 3

12

2

3 2E

+

-

+

-

+

-C1 C2

C3

+

-+

-

+

-C1 C2 C3

+

- +

-

C1 C2C3

Page 22: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 22

Delocalization Energy

The delocalization energy is the total electron energy relative to theenergy of the system with localized bonds.

D e l o c L o cE E E

3 2E

2E

1 2E

C1

C2

C3.

C1

C2

C3.

2 2E 3 2 2

2 4

2

3 2

Loc C HE E

1E

2E

3 2 2 3 2

2 2 1 0.83

DelocE

Page 23: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 23

Part A: The Hückel Model and other Semiempirical

Methods

• Hückel Molecular Orbital Model

• Application to Ethylene

• Application to the Allyl Radical (C3H5•)

• Application to Butadiene

• Introduction of Heteroatoms

• Electron Charge and Bond Order

• Semiempirical methods for sigma bonded systems

Page 24: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 24

Electron Charge and Bond Order

Electron Charge (aka Charge Density)

The electron charge on atom is defined by:

2orbs

i ii

q n c

ci is the coefficient of the i’th. MO on atom µ.

Bond Order

The bond order between atoms and is defined by:

orbs

i i ii

p n c c

Page 25: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 25

Application to the Allyl Radical

Bond Order:orbs

i i ii

p n c c

222

1 1

1 12 1 1

2 2

o rb s

i ii

q n c

1 1 2 3

1 1 1

2 22

2 1 2 3

1 10

2 2

3 1 2 3

1 1 1

2 22

2

222 2

12 1 0 1

2

o rb s

i ii

q n c

22

23 3

1 12 1 1

2 2

o rb s

i ii

q n c

2orbs

i ii

q n c Electron Charge:

1 2 1 2

1 1 1 12 1 0 0 .7 1

2 2 2 2

o rb s

i i ii

p n c c

2 3 2 3

1 1 1 12 1 0 0 .7 1

22 2 2

o rb s

i i ii

p n c c

Page 26: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 26

Part A: The Hückel Model and other Semiempirical

Methods

• Hückel Molecular Orbital Model

• Application to Ethylene

• Application to the Allyl Radical (C3H5•)

• Application to Butadiene

• Introduction of Heteroatoms

• Electron Charge and Bond Order

• Semiempirical methods for sigma bonded systems

Page 27: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 27

Application to Butadiene

1,3-Butadiene has 4 electronsH2C

CH

HC

CH2

Secular Determinant and Energies

0 0

00

0

0 0

E

E

E

E

1 0 0

1 1 00

0 1 1

0 0 1

x

x

x

x

Divide by

Define

E

x

Note: Application of the Hückel theory to Butadiene is one of your HW problems.

The solution is worked out in detail below. I will just outline the solution.

Page 28: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 28

1 0 0

1 1 00

0 1 1

0 0 1

x

x

x

x

1 0 1 1 0

1 1 1 0 1 0 0 0

0 1 0 1

x

x x x

x x

2 21 1 0 1 1 1 1 0 0 0x x x x x

4 2 2 2 1 0x x x x

4 23 1 0x x

2 3 1 0y y

2y x

23 9 42 .6 1 8

2ay x

23 9 40 .3 8 2

2by x

Page 29: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 29

23 9 42 .6 1 8

2ay x

23 9 40 .3 8 2

2by x

11

44

1.618

1.618

Ex

Ex

22

33

0.618

0.618

Ex

Ex

1 1 . 6 1 8E

2 0 . 6 1 8E

3 0 . 6 1 8E

4 1 . 6 1 8E

Page 30: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 30

Butadiene Delocalization Energy

4 6 2 4( ) 2 ( )D e l o cE E C H E C H

1 1 . 6 1 8E

2 0 . 6 1 8E

3 0 . 6 1 8E

4 1 . 6 1 8E

H2C

CH

HC

CH2

H2C CH2

1E

2E

4 6( ) 2 1 .618 2 ( 0 .618 )

4 4 .472

E C H

4 4 . 4 7 2 4 4 0 . 4 7 2D e l o cE

2 4( ) 2 2 2 4 4E C H

0 . 4 7 2 ( 2 0 0 / ) 9 0 /D e l o cE k J m o l k J m o l

The additional stabilization of butadienecompared to 2 ethylenes is a result ofp electron delocalization between thetwo double bonds.

Page 31: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 31

Butadiene Wavefunctions

1 1 2 2 3 3 4 4c c c c

1 0 0

1 1 00

0 1 1

0 0 1

x

x

x

x

1 2

1 2 3

2 3 4

3 4

0

0

0

0

xc c

c xc c

c xc c

c xc

1 2

1 2 3

2 3 4

3 4

1.618 0

1.618 0

1.618 0

1.618 0

c c

c c c

c c c

c c

1 1 . 6 1 8x

From first equation: 2 11 . 6 1 8c c

From second equation: 3 1 2 1 1 11 . 6 1 8 2 . 6 1 8 1 . 6 1 8c c c c c c

From fourth equation: 34 11.618

cc c

1 1 2 3 41 . 6 1 8 1 . 6 1 8c

Page 32: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 32

1 1 1 2 3 41 . 6 1 8 1 . 6 1 8c

Normalization:4

2

1

1ii

c

(because all overlap integrals are 0)

217.236c2 2 2 2 2

1 (1 ) (1 . 6 1 8 ) (1 . 6 1 8 ) (1 ) 1c

1 0 . 3 7 2c

1 1 2 3 40 . 3 7 2 1 . 6 1 8 1 . 6 1 8

1 1 2 3 40 . 3 7 2 0 . 6 0 2 0 . 6 0 2 0 . 3 7 2

It is straightforward to perform the same procedure to determine2 , 3 and 4.

The results are shown on the next slide.

Page 33: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 33

4 1 . 6 1 8E

3 0 . 6 1 8E

2 0 . 6 1 8E

1 1 . 6 1 8E

1 1 2 3 40 . 3 7 2 0 . 6 0 2 0 . 6 0 2 0 . 3 7 2

+

-

+

-

+

-

+

-C1 C2 C3 C4

2 1 2 3 40 . 6 0 2 0 . 3 7 2 0 . 3 7 2 0 . 6 0 2

+

-

+

- +

-

+

-

C1 C2 C3 C4

3 1 2 3 40 . 6 0 2 0 . 3 7 2 0 . 3 7 2 0 . 6 0 2

+

-

+

- +

-

+

-

C1 C2 C3 C4

4 1 2 3 40 . 3 7 2 0 . 6 0 2 0 . 6 0 2 0 . 3 7 2

+

-+

-

+

- +

-

C1 C2 C3 C4

Page 34: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 34

Butadiene: Electron Charge and Bond Order

1 1 2 3 40 . 3 7 2 0 . 6 0 2 0 . 6 0 2 0 . 3 7 2 2 1 2 3 40 . 6 0 2 0 . 3 7 2 0 . 3 7 2 0 . 6 0 2 3 1 2 3 40 . 6 0 2 0 . 3 7 2 0 . 3 7 2 0 . 6 0 2 4 1 2 3 40 . 3 7 2 0 . 6 0 2 0 . 6 0 2 0 . 3 7 2

2orbs

i ii

q n c Electron Charge:

2 21 2 ( 0 . 3 7 2 ) 2 ( 0 . 6 0 2 ) 1 . 0 0q

2 22 2 ( 0 . 6 0 2 ) 2 ( 0 . 3 7 2 ) 1 . 0 0q

2 23 2 ( 0 . 6 0 2 ) 2 ( 0 . 3 7 2 ) 1 . 0 0q

2 24 2 ( 0 . 3 7 2 ) 2 ( 0 . 6 0 2 ) 1 . 0 0q

Actually, Butadiene (and the Allyl radical) belong to a class ofhydrocarbons called “Alternant hydrocarbons”, for which all qi = 1.0

All straight-chain polyalkenes are alternant hydrocarbons.

Page 35: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 35

1 1 2 3 40 . 3 7 2 0 . 6 0 2 0 . 6 0 2 0 . 3 7 2 2 1 2 3 40 . 6 0 2 0 . 3 7 2 0 . 3 7 2 0 . 6 0 2 3 1 2 3 40 . 6 0 2 0 . 3 7 2 0 . 3 7 2 0 . 6 0 2 4 1 2 3 40 . 3 7 2 0 . 6 0 2 0 . 6 0 2 0 . 3 7 2

Bond Order:orbs

i i ii

p n c c

1 2 2 ( 0 . 3 7 2 ) ( 0 . 6 0 2 ) 2 ( 0 . 6 0 2 ) ( 0 . 3 7 2 ) 0 . 8 9 6 0 . 9 0p

2 3 2 ( 0 . 6 0 2 ) ( 0 . 6 0 2 ) 2 ( 0 . 3 7 2 ) ( 0 . 3 7 2 ) 0 . 4 4 8 0 . 4 5p

3 4 2 ( 0 . 6 0 2 ) ( 0 . 3 7 2 ) 2 ( 0 . 3 7 2 ) ( 0 . 6 0 2 ) 0 . 8 9 6 0 . 9 0p

Note: For a “full” bond, p = 1. For a pure bond, p = 0.

Therefore, the above bond orders reveal that the bonds betweenC1-C2 and C3-C4 are not as strong as in ethylene.

p23 > 0 shows that there is significant character in the C2-C3 bond.

Page 36: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 36

Part A: The Hückel Model and other Semiempirical

Methods

• Hückel Molecular Orbital Model

• Application to Ethylene

• Application to the Allyl Radical (C3H5•)

• Application to Butadiene

• Introduction of Heteroatoms

• Electron Charge and Bond Order

• Semiempirical methods for sigma bonded systems

Page 37: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 37

Introduction of Heteroatoms

Introduction of a heteroatom such as N or O into a conjugatedp system requires different values of and than those used forCarbon because the heteroatom has a different electronegativity; i.e.Eneg(C) < Eneg(N) <Eneg(O).

It is useful to put the new values of the Coulomb and Resonance Integrals,X and X (where X is the heteroatom), in terms of the original and .

The forms that is generally used are:

X Xh

and X Xk

where hX and kX are constants that depend upon the heteroatom.

Page 38: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 38

Atom hX

N

N

O

O

Cl

0.5

1.5

2.0

1.0

2.0

X Xh X Xk

Bond kX

NC

NC

OC

OC

C Cl

1.0

0.8

0.8

1.0

0.4

Page 39: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 39

A heteroatom can donate different numbers of electrons into the electrons depending upon its bonding.

Example: Nitrogen has 5 valence electrons

N

In pyridine, 4 of the 5 valence electrons are involved in(a) 2 bonds and (b) 2 electrons in the lone pair.

Therefore, this nitrogen will donate only 1 electron.

N

H

In pyrrole, 3 of the electrons will be involved in bonds.

This nitrogen will donate 2 electrons.

Page 40: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 40

Example: Bonding in Pyrrole

This will illustrate how a heteroatom is handled in theHückel Molecular Orbital Model.

C5

C4 C3

C2

N1

H

For pyrrole, 2 electrons are donated to the system.

The heteroatom parameters are: hN = 1.5 and kN = 0.8

Therefore: 1 . 5N Nh

0 .8N Nk

Page 41: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 41

The Secular Determinant

C5

C4 C3

C2

N1

H

1 . 5N 0 .8N

0 0

0 0

0 0 0

0 0

0 0

N N N

N

N

E

E

E

E

E

1.5 0.8 0 0 0.8

0.8 0 0

00 0

0 0

0.8 0 0

E

E

E

E

E

1.5 0.8 0 0 0.8

0.8 1 0 0

00 1 1 0

0 0 1 1

0.8 0 0 1

x

x

x

x

x

Page 42: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 42

1.5 0.8 0 0 0.8

0.8 1 0 0

00 1 1 0

0 0 1 1

0.8 0 0 1

x

x

x

x

x

This is a 5x5 Secular Determinant, which can be expanded to yielda fifth order polynomial equation, which can be solved to give:

(a) five values of x.(b) five energies.(c) five sets of coefficients.

But, I’m just really not in the mood right now.

Howsabout I just give you the results?

No Applause, PLEASE !!!

1 . 5N 0 .8N

Page 43: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 43

Wavefunctions and Energies

C5

C4 C3

C2

N1

H

3 0 . 6 1 8rE E

5 1 . 6 1 8sE E

1 2 . 3 2 0tE E

2 1 . 1 8 9uE E

4 1 . 0 0 8vE E

3 2 3 4 50 . 6 0 2 0 . 3 7 2 0 . 3 7 2 0 . 6 0 2r

5 2 3 4 50 . 3 7 2 0 . 6 0 2 0 . 6 0 2 0 . 3 7 2s

1 1 2 3 4 50 . 7 2 5 0 . 3 7 9 0 . 2 8 7 0 . 2 8 7 0 . 3 7 9t 2 1 2 3 4 50 . 5 3 0 0 . 1 1 1 0 . 5 8 9 0 . 5 8 9 0 . 1 1 1u

4 1 2 3 4 50 . 3 7 4 0 . 5 8 7 0 . 2 9 2 0 . 2 9 2 0 . 5 8 7v

Note: There are 6 electrons. Count them.

Note: Actually, I used symmetry to simplify the 5x5 determinant into a 2x2 and a 3x3 determinant

I’ll show you how at the end ofthe chapter.

Page 44: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 44

C5

C4 C3

C2

N1

H

3 0 . 6 1 8rE E

5 1 . 6 1 8sE E

1 2 . 3 2 0tE E

2 1 . 1 8 9uE E

4 1 . 0 0 8vE E

54323 6 0 2.03 7 2.03 7 2.06 0 2.0 r

54325 3 7 2.06 0 2.06 0 2.03 7 2.0 s

543211 3 7 9.02 8 7.02 8 7.03 7 9.07 2 5.0 t

543212 1 1 1.05 8 9.05 8 9.01 1 1.05 3 0.0 u

543214 5 8 7.02 9 2.02 9 2.05 8 7.03 7 4.0 v

2orbs

i ii

q n c Electron Charge:

1

2

3

4

5

1.61

1.04

1.14

1.14

1.04

q

q

q

q

q

5 .97 6q

Electron Charge

3 2 3 4 50 . 6 0 2 0 . 3 7 2 0 . 3 7 2 0 . 6 0 2r

5 2 3 4 50 . 3 7 2 0 . 6 0 2 0 . 6 0 2 0 . 3 7 2s

1 1 2 3 4 50 . 7 2 5 0 . 3 7 9 0 . 2 8 7 0 . 2 8 7 0 . 3 7 9t 2 1 2 3 4 50 . 5 3 0 0 . 1 1 1 0 . 5 8 9 0 . 5 8 9 0 . 1 1 1u

4 1 2 3 4 50 . 3 7 4 0 . 5 8 7 0 . 2 9 2 0 . 2 9 2 0 . 5 8 7v

Page 45: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 45

C5

C4 C3

C2

N1

H

3 0 . 6 1 8rE E

5 1 . 6 1 8sE E

1 2 . 3 2 0tE E

2 1 . 1 8 9uE E

4 1 . 0 0 8vE E

12

23

34

45

15

0.43

0.80

0.58

0.80

0.43

p

p

p

p

p

Bond Order

Bond Order:orbs

i i ii

p n c c

3 2 3 4 50 . 6 0 2 0 . 3 7 2 0 . 3 7 2 0 . 6 0 2r

5 2 3 4 50 . 3 7 2 0 . 6 0 2 0 . 6 0 2 0 . 3 7 2s

1 1 2 3 4 50 . 7 2 5 0 . 3 7 9 0 . 2 8 7 0 . 2 8 7 0 . 3 7 9t 2 1 2 3 4 50 . 5 3 0 0 . 1 1 1 0 . 5 8 9 0 . 5 8 9 0 . 1 1 1u

4 1 2 3 4 50 . 3 7 4 0 . 5 8 7 0 . 2 9 2 0 . 2 9 2 0 . 5 8 7v

Page 46: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 46

Part A: The Hückel Model and other Semiempirical

Methods

• Hückel Molecular Orbital Model

• Application to Ethylene

• Application to the Allyl Radical (C3H5•)

• Application to Butadiene

• Introduction of Heteroatoms

• Electron Charge and Bond Order

• Semiempirical methods for sigma bonded systems

Page 47: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 47

Semiempirical Methods for Sigma Bonded Systems

The Hückel model was developed to treat only bond systems.

A number of methods have been developed to treat systems with bonded molecules as well as molecules with both and bonds.

Three of the most popular are: (1) Pariser-Pople-Parr (PPP) Model

(2) The Extended Hückel model

(3) MNDO methods

We will discuss each method qualitatively.

Page 48: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 48

Pariser-Pople-Parr (PPP) Model

The Hückel Model neglects repulsion between electron.The PPP Model introduces interelectron repulsion into theeffective Hamiltonian:

HPPP = HHückel + HRepulsion

The inclusion of HRepulsion introduces Coulomb Integrals intothe expression for the Energy.

However, these integrals are not calculated.

They are represented by empirical parameters.

Page 49: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 49

The Extended Hückel Model

As the title suggests, this is an extension of the Hückel Model to treat bonded molecules, developed by Roald Hoffmann (in 1963).

The concept is the same in that one assumes that:

1. The Molecular Orbitals are linear combinations of atomic orbitals (i).

11 1 1 2 2 13 3i i j jj

c c c c

2. The total Hamiltonian is a simple sum of effective one electron Hamiltonians.

1 2 3ii

H h h h h

0i j i jH E S

3. If one applies the variational principle, then a Secular Determinant is obtained.

Page 50: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 50

0i j i jH E S

3. The orbitals for Core shell electrons are ignored. Valence shell atomic orbitals are given by STOs; e.g. 2s, 2px, 2py, 2pz

4. The parameters in the Secular Determinant are determined as follows: • Overlap integrals, Sij are calculated directly (unlike

the Hückel model where they are assumed to be zero)

• Coulomb Integrals, Hii, are set equal to the negative of the valence shell ionization energies.

• Resonance Integrals, Hij, are calculate with the Wolfsberg-Helmholtz formula

2aa bb

ab ab

H HH K S

1 . 7 5K

Page 51: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 51

MNDO Methods

An ab initio Hartree-Fock calculation on a molecule requiresthe calculation of ~b4/8 integrals.

If one uses a high level basis set on a medium size molecule(10-20 atoms), a typical number of basis functions might beb=400, resulting in ~3x109 integrals.

A very great percentage of the time required for a Hartree-Fockcalculation is in the evaluation of these integrals.

There have been a number of semiempirical methods developedwhich approximate these integrals. The most popular of thesemethods is the MNDO (Modified Neglect of Differential Overlap)series of methods developed by M. J. S. Dewar.

I’ll comment briefly on them.

Page 52: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 52

Assumptions:

• Core (inner shell) electrons are not treated explicitly. An empirical core-core repulsion term is introduced.

• A minimal basis set with single ns, npx, npy, npz atomic orbitals is used to represent valence shell electrons.

• Overlap integrals are neglected.

• The one-center and two-center integrals are either ignored or approximated by empirical parameters.

The empirical parameters are obtained by finding the valuesthat give the best agreement with experimental data;i.e. Heats of Formation, Ionization Energies, Dipole Moments,etc.

Page 53: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 53

The three different MNDO methods are:

MNDO: The original of the methods. In general, this is not as accurate as later methods.

AM1: This stands for Austin Model 1 Dewar had moved to UT-Austin and wanted to give credit to his new university.

This method improves upon the parameterization of the integrals.

PM3: This stands for Parametric Method 3

This improves the parameterization method still further.

Page 54: Slide 1 Chapter 10 Semiempirical Methods and Applications of Symmetry Part A: The Hückel Model and other Semiempirical Methods Part B: Applications of.

Slide 54

Because the integrals are determined empirically, and are notcalculated, MNDO methods are thousands of times as fastas ab initio calculations.

The results are generally not as accurate as ab initio calculations,but the MNDO methods are good for:

(a) Semi-quantitative results.

(b) Calculations on very large molecules, where ab initio calculations are not feasible.