Single storey building design English version

134
HCM City, date 18 month 03 year 2016 HO CHI MINH UNIVERSITY OF ARCHITECTURE Field: Structural Engineering STRUCTURAL STEEL PART II Project: Design Single Storey Steel Building. NAME: NGUYN TRÍ THIN Student ID number: Grade: XD12A2 TUTOR: DR. TRẦN VĂN PHÚC

Transcript of Single storey building design English version

Page 1: Single storey building design English version

HCM City, date 18 month 03 year 2016

HO CHI MINH UNIVERSITY OF ARCHITECTURE

Field: Structural Engineering

STRUCTURAL STEEL PART II

Project: Design Single Storey Steel Building.

NAME: NGUYỄN TRÍ THIỆN

Student ID number:

Grade: XD12A2

TUTOR: DR. TRẦN VĂN PHÚC

Page 2: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 1

SYMBOLS USED IN THIS PROJECT A: is gross area of cross section.

An: is net cross section area.

Af: is cross section area of flange (chord).

Aw: is cross section area of web.

Abn: is cross section area of bolt.

b: is width.

bf: is flange (chord) width.

bef: is design width.

bs: is the width of stiffener.

h: is height.

hw: is height of web.

hf: is the height of fillet weld.

hfk: is distance between flange’s central axis.

i: is inertia radius of cross section.

ix, iy: is inertia radius of cross section relative to axes x-x, y-y respectively.

If: moment of inertia of flange (chord).

It: torsional constant.

Ix, Iy: moment of inertia about the principal axes.

Inx, Iny: moment of inertia about the principal axes referred to the net area.

L: is length of member.

l0: is design length of compression members.

lx, ly: are design lengths of component in planes perpendicular to axes x-x and y-

y respectively.

lw: is the length of weld seam.

S: is static moment of gross slid portion cross section relative to neutral axis.

t: is thickness.

tf, tw: is thickness of flange (chord), web respectively.

Wnmin: is the minimum moment resistence of net section.

Wx, Wy: are the moment resistance of gross section relative to axes x-x, y-y

respectively.

F, P: is force.

M: is moment or bending moment

Mx, My: are moment or bending moment relative to axis x-x, y-y respectively.

N: is longitudinal force.

V: is lateral force or shear force.

E: is modulus of elasticity.

f: is design yield strength.

fv: is ultimate shear strength.

Page 3: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 2

fc: is design crushing strength.

fub: is ultimate tension strength.

σ: is stress.

σc: is local stress.

σx, σy: are normal stresses which are parallel with axes x-x, y-y respectively.

σct, σc,ct: are normal critical stress and concentrated critical stress respectively.

τ: is shear (tangential) stress.

τct: is ultimate shear stress.

e: is eccentricity of force.

m: is relative eccentricity.

me: is reduced relative eccentricity.

nv: is the number of design section.

βf, βs: are factor for analysis of corner seam through seam metal and through

metal of melting boundary respectively.

γc: is working condition factor.

γb: is working condition factor of bolt.

γg, γp: is load factor (load coefficient).

nc: is load combination factor.

η: is factor of influence of cross section form.

λ: is flexibility (slenderness ratio).

: is fictitious flexibility.

w : is fictitious flexibility of web.

λx, λy: are design flexibility in planes perpendicular to axes x-x and y-y

respectively.

μ: is length coefficent.

φ: is buckling factor.

φb: is factor of reducing design resistence at bending-and-twisting form of beam

stability loss.

φc: is factor of reducing design resistence at eccentric compression.

Ψ: is intermidiate factor to calculate φb factor.

Page 4: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 3

CHAPTER 1. GIVEN DATA Name: Nguyễn Trí Thiện Student ID number:

Order number: 87 Grade: XD12A2

Design three span single storey building according to following data

given below:

Span

(m) Bay

(m)

Level

Crane

Q(T)

Wind

pressure

at 10 m

qo

(daN/m2)

Length

(m)

Slope

i% L1 L2 L3

Ground

(m)

Ground

floor

(m)

Rail

(m)

30 33 30 6,5 -0,65 0 12 10 85 162,5 10

Area type to calculate wind load is B.

A single model overhead crane is in the center span which is its load

capacity is given above. There is no crane on the side span, and the

dimension of side span is equal L1=L3.

Roof materia: tole. Using portal frame with I built-up beam, straight

column, and beam with variable section.

Material using : Steel CCT34, with following properties:

Design yield strength: f = 2100 daN/cm2

Ultimate shear strength: fv = 1200 daN/cm2

Design crushing strength: fc = 3200 daN/cm2

Ultimate tension strength: fu = 3400 daN/cm2

Using Shielding metal arc welding method and electrode wire N46 with

fwf = 2000 daN/cm2

Conection between beam and column: Rigid.

Conection between column and foundation: Fixed.

Page 5: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 4

CHAPTER 2. FRAME GEOMETRY

CHOSING CRANE.

Accroding to given data: Span L2 = 33m, load capacity Q = 3T, using

catalouge and find out a suitable crane:

Span: 33-0,75x2=31,5 m

Gabarit high HK = 875 mm

DEFINE VERTICAL DIMENSION.

Upper column length:

r dcct KhH h H C

HK: Gabarit height (the distance between upper surface of the rail and yop

of the crane) – According to catalouge: HK = 875mm.

C: the safety distance between crane and rafter

1 1

100 33000 100 265200 200

C L mm

hdcc: the height of runway beam

1 1 1 1

.6500 650 812,58 10 8 10

dcth B mm

Chose hdct = 800mm

hr: the height of rail 200mm

So 200 8 00 875 265 2140r dcc Kt h h H C mH m

Chose Ht = 2.2m

Lower column length:

– d r dcc r mH H h h h

Hr – upper surface of the rail level, Hr = 12 m

hm – ground floor level above ground level 0,65m, hm=0,65m (foundation

are refferd to be placed at the same ground level).

120 – 00 800 200 650 11650d r dcc r nH H h h h mm

Chose Hd = 12m

The length of column:

  2200 12000 14200t dH H H mm

DEFINE HORIZONTAL DIMENSION:

The grid of reference axis shall be coincident with axis of column.

Page 6: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 5

The distance between reference axis and y-y axis of runway beam:

750mm to match up crane load capacity Q < 75 ton. To prevent

the impact between crane and column, shall be: 1 ( )tB h a D

B1 is the dimension of head crane B1 = 200(mm).

D is the safety clearence between crane and column D=

60(mm).

ht is the height of upper column:

1 1 1 12200 200 220( )

10 11 10 11t th H mm

Chose ht =250mm (ht is multiple of 250mm)

1750( ) ( ) 200 250 60 510tmm B h a D mm

1 1

14200 568 mm 60025 25

d dh H h mm

Distance between rail center point and outer edge of the middle

colum:

0.60

0.75 0.452 2

hZ m

JACK ROOF MONITOR DIMENSION.

Span of the roof:

1 133 3,3 ( )

10 10cmL L m

Height of the roof: Hcm =1.5(m).

HORIZONTAL FRAME MODEL OF CALCULATION.

Using straight column and beam with variable section.

Page 7: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 6

Horizontal frame model of calculation as follow :

Page 8: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 7

CHAPTER 3. DEFINE LOAD.

DEAD LOAD.

Dead load apply to horizontal frame include in gravity load of purlins,

self weight of frame and runway beam. In this project, self weight of bracing

column and roof are neglected.

Self weight of structure.

It would be automatically calculated by software.

Envelope material.

Roof structure.

Roof system: using roof fill insulation, purlins and snag rods. Take

230 d /tc

mg aN m , load factor n = 1,1.

Normal load apply to roof:

1 . 30 6,5 195 /tc tc

kh mg g B daN m

Design load apply to roof:

1 1. 1,1 195 214,5 /tt tc

kh khg n g daN m

Building lateral side.

Sidewall girt, sidewall canopy system and tole is assumed to be

230 d /tc

bcg aN m , load factor n = 1,1

Normal load apply to outside column:

2 . 30 6,5 195 /tc tc

kh bcg g B daN m

Design load apply to outside column:

2 2. 1,1 195 214,5 /tt tc

kh khg n g daN m

Runway beam.

The height of runway beam Hdct = 0,8m. Preliminary self weight of

runway beam is assumed to be 200 daN/m, load factor n = 1,1. It is

reduced to concentrated load and eccentric moment is located at level of

junction of column and lower surface of rail:

Normal load:

200 6,5 1300 dtc tc

dct dctG g B aN

1300 0,75 975 d .tc tc

dct dct nM G L aN m

Design load:

. 1,1 1300 1430 dtt tc

dct dctG n G aN

1430 0,75 1072,5 d .tt tt

dct dct nM G L aN m

Page 9: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 8

ROOF LIVE LOAD.

According to TCXDVN 2737: 1995, standard load of roof live load

should be taken as 30 daN/m2, load factor n = 1,3 (in case live load is

less than 200 daN/m2). It is reduced to distributed load apply to rafter:

Normal load: 30 6,5 195 /tc tc

htp p B daN m

Design load: . 1,3 195 253,5 /tt tc

pp n p daN m

CRANE LOAD.

This following table gives properties of 10 ton crane which is taken from crane catalouge :

Load

(T)

Span

(m)

Total

mass

Max

wheel

load Pmax

(T)

Min

wheel

load Pmin

(T)

Dimension

H3 B W C2 C1 H2 H1

10 31,5 7,76/8,28 6,60/6,85 1,55/1,56 1200 3500 3000 1230 1830 1640 875

Crane load apply to horizontal frame including vertical impact and

horizontal breaking focre:

Vertical impact.

The maximum wheel load used for the design of runway beams,

Page 10: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 9

including monorails, their connections and support brackets, shall be

increased by the percentage given below to allow for the vertical impact

or vibration:

_ Monorail cranes (powered) .........................................................25

Cab-operated or radio operated bridge cranes (powered)…...........25

_ Pendant-operated bridge cranes (powered)…..............................10

_ Bridge cranes or monorail cranes with hand-geared bridge, trolley and

hoist…...............................................................................................0

_ Vertical impact shall not be required for the design of frames, support

columns, or the building foundation.

It should be calculated as follow:

max max 0.85 1.2 6850 1 0,908 6600 0,446 0,538

19955,48

tt

c iD n n P y

daN

min min 0.85 1.2 1550 1 0,908 1560 0,446 0,538

4582,29

tt

c iD n n P y

daN

Where:

n – is the load factor of crane, n = 1,2.

nc – is the load combination factor, nc = 0,85 is taken from SNiP

2.01.07-85*

_ If two cranes are taken into account, their loads ought to be multiplied by the following combination coefficient: nc= 0,85 – for crane operation mode groups 1K-6K

INFLUENCE LINE FOR REACTION TO DEFINE Dmax, Dmin

Page 11: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 10

Through rail and runway beam, Dmax and Dmin would be transmited to

bracket support, thus eccentric of column may be e = L1 = 0,75m.

Eccentric moment is given by:

max max 19955,48 0.75 14966,61 .tt ttM D e daN m

min min 4582,29 0.75 3436,72 .tt ttM D e daN m

Breaking force of trolley and lifted load:

Lateral loads being bi-directional action are applied to the column

throught crane rail to account for such effects as acceleration and

breaking forces of trolley and lifted load, skewing of the travelling crane,

rail misalignment, and not picking up the load up vertically. It is defined

as :

max c kT n nT y

Where:

n – overload factor of crane, γp = 1,2

nc – load combination factor, nc = 0,85 is considered for crane

operation mode groups 1K-6K. Loads and effects SNiP 2.01.07-

85*

Tk – breaking force of single trolley wheel impact to rail

0

0,05 10000 8280 77600,05( )263

2

xck

Q GT daN

n

no – the number of driven wheels

1 0,908 0,446 0,538 2,892iy

max 0,85 1,2 263 2,892 775,81tc

c p iT n T y daN

WIND LOAD:

According to TCVN 2737-1995 or Loads and effects SNiP 2.01.07-85*, Upon calculation of internal pressure wi as well as upon calculation of high buildings up to 40 m and one-storey buildings up to 36 m – in case the ratio between the height and the span is less than 1,5 – that are located in areas of A and B types (see item 6.5), the pulsating component of wind load may be omitted. The standard average component of wind load W at the height of z over the ground surface is to be calculated under the following formula:

. . . .o

W W n c k B

Page 12: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 11

Where:

Wo = 85 daN/m2: standard wind pressure (see item 6.4)

B – span 6,5B m

c – aerodynamic coefficient (see item 6.6)

Coefficient α degrees h1/l

0 0.5 1 ≥2

ce1

0 0 -0.6 -0.7 -0.8

20 +0.2 -0.4 -0.7 -0.8

40 +0.4 +0.3 -0.2 -0.4

60 +0.8 +0.8 +0.8 +0.8

ce2 ≤60 -0.4 -0.4 -0.5 -0.8

Aerodynamic coefficient

ce1: 1 13,550,452

30

h

l và 5 42'o ce1 = -0,44

n = 1,2 : confidence factor of service life (50 years).

k – coefficient of wind pressure change in height (see item 6.5), which

is to be calculated as following formula

2

( ) 1,844

tm

t z g

t

zk

z

Page 13: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 12

Area type g

tz mt

A 250 0.07

B 300 0.19

C 400 0.14

According to given data, calculated area type is B so

300; 0,09g

t tz m . The height is lower than 10m take k = 1.

The coefficient k considering wind pressure change in height z is set

under following table:

Height z (m) k

0 1

10 1

13,55 1,056

15,05 1,090

15,2 1,093

According to TCVN 2737-1995 or Loads and effects SNiP 2.01.07-85*

if wind is perpendicular to the end wall of the building so it’s c = -0,7 for

the whole surface of the building.

Outside column

Left wind: c = +0,8

Level 10m: . . . . 85 1,2 0,8 1 6,5 530,4 /o

W W n c k B daN m

Level 13,55m:

. . . . 85 1,2 0,8 1,056 6,5 560,10 /o

W W n c k B daN m

Right wind: c = -0,4

Level 10m: . . . . 85 1,2 0,4 1 6,5 265,2 /o

W W n c k B daN m

Level 13,55m:

. . . . 85 1,2 0,4 1,056 6,5 280,05 /o

W W n c k B daN m

Longitudinal wind: c = -0,7

Level 10m: . . . . 85 1,2 0,7 1 6,5 464,1 /o

W W n c k B daN m

Level 13,55m:

. . . . 85 1,2 0,7 1,056 6,5 490,09 /o

W W n c k B daN m

Left roof’s L1-L2 span

Left wind: c = -0,442

Level 13,55m:

. . . . 85 1,2 0,442 1,056 6,5 309,46 /o

W W n c k B daN m

Level 15,050m:

Page 14: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 13

. . . . 85 1,2 0,442 1,090 6,5 319,42 /o

W W n c k B daN m

W 314,44 d /tb aN m

Right wind: c = - 0,4

Level 13,55m:

. . . . 85 1,2 0,4 1,056 6,5 280,05 /o

W W n c k B daN m

Level 15,050m:

. . . . 85 1,2 0,4 1,090 6,5 289,07 /o

W W n c k B daN m

W 284,56 d /tb aN m

Longitudinal wind: c = -0,7

Level 13,55m:

. . . . 85 1,2 0,7 1,056 6,5 490,09 /o

W W n c k B daN m

Level 15,050m:

. . . . 85 1,2 0,7 1,09 6,5 505,87 /o

W W n c k B daN m

W 497,98 d /tb aN m

Right roof’s L1-L2 span

Left wind: c = -0,6

Level 13,55m:

. . . . 85 1,2 0,6 1,056 6,5 420,08 /o

W W n c k B daN m

Level 15,05m:

. . . . 85 1,2 0,6 1,090 6,5 433,60 /o

W W n c k B daN m

W 426,84 d /tb aN m

Right wind: c = - 0,5

Level 13,55m:

. . . . 85 1,2 0,5 1,056 6,5 350,06 /o

W W n c k B daN m

Level 15,05m:

. . . . 85 1,2 0,5 1,090 6,5 361,34 /o

W W n c k B daN m

W 355,7 d /tb aN m

Longitudinal wind: c = -0,7

Level 13,55m:

. . . . 85 1,2 0,7 1,056 6,5 490,09 /o

W W n c k B daN m

Level 15,050m:

. . . . 85 1,2 0,7 1,090 6,5 505,87 /o

W W n c k B daN m

W 497,98 d /tb aN m

Page 15: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 14

Center roof

Left wind: c = -0,2

Level 13,55m:

. . . . 85 1,2 0,2 1,056 6,5 140,03 /o

W W n c k B daN m

Level 15,2m:

. . . . 85 1,2 0,2 1,093 6,5 144,93 /o

W W n c k B daN m

W 142,48 d /tb aN m

Right wind c = - 0,5

Level 13,55m:

. . . . 85 1,2 0,5 1,056 6,5 350,06 /o

W W n c k B daN m

Level 15,2m:

. . . . 85 1,2 0,5 1,093 6,5 362,33 /o

W W n c k B daN m

W 356,20 d /tb aN m

Longitudinal wind c = - 0,7

Level 13,55m:

. . . . 85 1,2 0,7 1,056 6,5 490,09 /o

W W n c k B daN m

Level 15,2m:

. . . . 85 1,2 0,7 1,093 6,5 507,26 /o

W W n c k B daN m

W 498,68 d /tb aN m

Page 16: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 15

CHAPTER 4. DETERMINE INTERNAL FORCE,

SHEAR AND MOMENT AT SAP 2000 V18

DEFINE MATERIAL AND SECTION PROPERTIES.

Material.

Properties of CCT34 steel:

Weight per unit volume 37850 /T daN m

Modulus of elasticity 10 22,1 10 /E daN m

Minimum yield stress 7 22,2 10 /yf daN m

Minimum tensile stress 7 23,4 10 /uf daN m

Page 17: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 16

Section.

a) Column section: (reference book: Structural Steel - Pham Van

Hoi - page 225).

Wide – flange shape I preliminary sizing

Brace is located at level (code) +6,35m, ly = 7,0 m.

Chosing height h and width b:

1 1 1 114200 568 947( )

15 25 15 25h H mm

Chọn 700h mm

1 1 1 17000 233 350

30 20 30 20

0,3 0,5 0,3 0,5 700 210 350

yb l mm

b h mm

Chọn 350b mm

Chosing the thickness of flange tf and web tw:

w

w w

1 1 1 1 21350 12.5 10

28 35 21 28 35 21

1 1 1 1700 11.67 5.83

60 120 60 120

; 60 ; 8

f

f f

ft b mm

t h mm

t t t mm t mm

→Chose

w

14

10

ft mm

t mm

Both kinds of column side and center are defined at the same size as

straight element.

Page 18: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 17

a) Beam section: (reference book: Structural Steel - Pham Van Hoi -

page 225).

The height of beam is normally bigger than hmin

min

5 5 210 15000200 577

24 24 210000 1,1 cos(10 )o

tb

f l lh mm

E

=>Chose 700h mm

To preventing over all buckling and easier connecting with other

elements, the width is defined as follow:

1 1 1 1

700 140 3502 5 2 5

180 , /10

f

f f

b h mm

b mm b h

=>Chose 350b mm

To preventing vertical buckling of compression flange, the ratio between

width and the thickness of flange is defined as follow:

6

2100350 11,07

2,1 10

30030 10

30 30

ff

f

f f f

fb E t b mmEt f

bb t t mm

Chose 14ft mm

To preventing shear buckling of web, the thickness of the web is defined

as:

ww 6

700 2 14 21006,64

3,2 3,2 2,1 10

h ft mm

E

Chose w 10t mm

Both kinds of beam side and center are defined at the same size as

straight element.

Page 19: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 18

CREATING BUILDING MODEL.

The length of rafters are too long L1 = L3 = 30 (m), L2 = 33 (m), so to be

easier in transportation, the rafter is devided into 2 separated segment.

Side span’s rafter L1 = L3 = 30 (m), the conection between 2 segment is

loacated at 6 (m) in horizontal direction starting at side column, the rafter

is divided as follow:

60001 4 9 12 6092,56

cos10

90002 3 10 11 9138,84

cos10

o

o

D D D D mm

D D D D mm

Centre span’s rafter L2 = 33 (m), the conection between 2 segment is

loacated at 6 (m) in horizontal direction starting at side column, the rafter

is divided as follow:

60005 8 6092,56

cos10

105006 7 10661,98

cos10

o

o

D D mm

D D mm

Page 20: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 19

DEFINE LOAD.

Dead loads include the following:

a) weight of structural parts including weight of bearing and

enclosing structures;

b) weight and pressure of ground (mounds and fillings), rock

pressure.

c) The prestressing forces remained in building structures and

foundations should be adopted in calculations as dead load forces.).

Crane load include in 6 load cases:

Dmax vertically impact on column E (Dmax LEFT)

Dmax vertically impact on column I (Dmax RIGHT)

T horizontally impact on column E, from right to left direction (T

LEFT)

T horizontally impact on column E, from left to right direction (-T

LEFT)

T horizontally impact on column I, from left to right direction (T

RIGHT)

T horizontally impact on column I, from right to left direction (-T

RIGHT)

Wind load include in 2 load cases:

Wind impact on building from left to right direction (LEFT WIND)

Wind impact on building from right to left direction (RIGHT WIND)

Live load include in 6 load cases: HT1, HT2, HT3, HT4, HT5, HT6.

Those kinds of loads could be occurred concurrent.

Page 21: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 20

Dead load

Defining load for building model at Sap 2000 to analysis, the Self

Weight Multiplier need to be 1.1

Live load.

HT1.

Page 22: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 21

HT2.

HT3.

HT4.

HT5.

HT6.

Page 23: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 22

Wind load.

Left wind.

Right wind.

Crane load.

Dmax Left.

Dmax phải.

Page 24: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 23

T LEFT.

-T LEFT.

T RIGHT.

-T RIGHT.

Longitudinal wind:

Page 25: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 24

DEAD LIVE1 LIVE2 LIVE3 LIVE4 LIVE5 LIVE6DMAX

LEFT

DMAX

RIGHTT LEFT - T LEFT T RIGHT - T RIGHT

LEFT

WIND

RIGHT

WIND

LO NGITUDINAL

WIND

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M(KN.m) -13501.4 -4281.6 -3692.7 691.9 -1116.3 127.5 -1328.7 1971.1 -1622.2 -1309.5 1309.5 1313.6 -1313.6 37250.2 -5522.0 6554.8

N(KN) -10176.9 -2959.1 -800.4 165.6 31.9 -7.4 -57.4 115.2 -47.1 -35.9 35.9 51.4 -51.4 5161.2 3963.5 7205.7

V(KN) -2328.3 -923.6 -646.7 137.9 -85.6 8.1 -145.7 227.9 -167.8 -134.1 134.1 141.6 -141.6 8122.2 -1425.6 -888.9

M(KN.m) 19559.8 8833.1 5490.2 -1266.8 99.7 13.0 739.9 -1265.5 759.9 594.0 -594.0 -696.3 696.3 -24547.8 -12047.6 -27668.0

N(KN) -5105.3 -2959.1 -800.4 165.6 31.9 -7.4 -57.4 115.2 -47.1 -35.9 35.9 51.4 -51.4 5161.2 3963.5 7205.7

V(KN) -2328.3 -923.6 -646.7 137.9 -85.6 8.1 -145.7 227.9 -167.8 -134.1 134.1 141.6 -141.6 537.8 2366.6 5747.5

M(KN.m) -3086.1 3790.0 3651.2 -4520.5 -4157.7 617.5 -1306.9 -3075.6 -3360.6 -2237.4 2237.4 1497.6 -1497.6 9490.0 -11480.0 3843.8

N(KN) -15040.6 -894.9 -3144.7 -3483.8 -917.3 131.1 90.0 -19986.4 -4619.5 15.2 -15.2 -30.7 30.7 9368.7 10457.9 15961.9

V(KN) -459.6 638.9 762.8 -929.5 -705.9 108.1 -139.0 -948.7 -553.0 -323.2 323.2 177.0 -177.0 787.8 -1455.5 560.7

M(KN.m) 2267.8 -3653.4 -5235.9 6307.9 4066.1 -641.7 312.2 7976.7 3082.0 1528.3 -1528.3 -564.3 564.3 312.0 5476.9 -2688.8

N(KN) -13378.8 -894.9 -3144.7 -3483.8 -917.3 131.1 90.0 -19986.4 -4619.5 15.2 -15.2 -30.7 30.7 9368.7 10457.9 15961.9

V(KN) -459.6 638.9 762.8 -929.5 -705.9 108.1 -139.0 -948.7 -553.0 -323.2 323.2 177.0 -177.0 787.8 -1455.5 560.7

M(KN.m) 1195.3 -3653.4 -5235.9 6307.9 4066.1 -641.7 312.2 -6989.9 -354.7 1528.3 -1528.3 -564.3 564.3 312.0 5476.9 -2688.8

N(KN) -11948.8 -894.9 -3144.7 -3483.8 -917.3 131.1 90.0 -30.9 -37.2 15.2 -15.2 -30.7 30.7 9368.7 10457.9 15961.9

V(KN) -459.6 638.9 762.8 -929.5 -705.9 108.1 -139.0 -948.7 -553.0 -323.2 323.2 177.0 -177.0 787.8 -1455.5 560.7

M(KN.m) 2367.2 -5282.6 -7181.1 8678.1 5866.2 -917.3 666.6 -4570.7 1055.5 994.8 -994.8 -1015.6 1015.6 -1697.0 9188.5 -4118.7

N(KN) -11585.0 -894.9 -3144.7 -3483.8 -917.3 131.1 90.0 -30.9 -37.2 15.2 -15.2 -30.7 30.7 9368.7 10457.9 15961.9

V(KN) -459.6 638.9 762.8 -929.5 -705.9 108.1 -139.0 -948.7 -553.0 452.6 -452.6 177.0 -177.0 787.8 -1455.5 560.7

ELEMENT SECTIO NINTERNAL

FO RCE

LO AD PATTERN

C1

CO LUMN

BASE

CO LUMN

HEAD

C2

CO LUMN

BASE

LO WER

BRACKET

C3

UPPER

BRACKET

CO LUMN

HEAD

INTERIAL FORCE AND LOAD COMBINATION.

INTERNAL FORCE TABLE OF COLUMN

Page 26: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 25

DEAD LIVE1 LIVE2 LIVE3 LIVE4 LIVE5 LIVE6DMAX

LEFT

DMAX

RIGHTT LEFT - T LEFT T RIGHT - T RIGHT

LEFT

WIND

RIGHT

WIND

LO NGITUDINAL

WIND

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

M(KN.m) -19559.75 -8833.08 -5490.22 1266.76 -99.68 -12.99 -739.87 1265.45 -759.94 -593.95 593.95 696.34 -696.34 24547.81 12047.57 27667.99

N(KN) -2824.69 -1213.43 -723.12 153.73 -82.04 7.29 -150.67 238.26 -171.61 -136.95 136.95 145.96 -145.96 1048.7 2749.27 6435.92

V(KN) -4848.31 -2852.54 -732.12 151.1 40.22 -8.14 -42.64 91.96 -30.2 -22.37 22.37 37.04 -37.04 5082.07 3708.38 6598.04

M(KN.m) 3214.44 3781.78 -1075.58 355.66 -342.2 36.1 -482.78 710.92 -577.84 -459.07 459.07 473.01 -473.01 -380.2 -5140.38 -3064.41

N(KN) -2610.4 -1061.33 -723.12 153.73 -82.04 7.29 -150.67 238.26 -171.61 -136.95 136.95 145.96 -145.96 1048.7 2749.27 6435.92

V(KN) -2705.41 -1331.54 -732.12 151.1 40.22 -8.14 -42.64 91.96 -30.2 -22.37 22.37 37.04 -37.04 3186.02 1992.5 3595.26

M(KN.m) 3214.44 3781.78 -1075.58 355.66 -342.2 36.1 -482.78 710.92 -577.84 -459.07 459.07 473.01 -473.01 -380.2 -5140.38 -3064.41

N(KN) -2610.4 -1061.33 -723.12 153.73 -82.04 7.29 -150.67 238.26 -171.61 -136.95 136.95 145.96 -145.96 1048.7 2749.27 6435.92

V(KN) -2705.41 -1331.54 -732.12 151.1 40.22 -8.14 -42.64 91.96 -30.2 -22.37 22.37 37.04 -37.04 3186.02 1992.5 3595.26

M(KN.m) 13147.86 5507.48 5546.37 -1010.99 -705.98 109.73 -97.15 -120.89 -304.68 -256.75 256.75 138.01 -138.01 -16335.27 -11522.44 -15213.23

N(KN) -2288.97 -833.18 -723.12 153.73 -82.04 7.29 -150.67 238.26 -171.61 -136.95 136.95 145.96 -145.96 1048.7 2749.27 6435.92

V(KN) 508.94 949.96 -732.12 151.1 40.22 -8.14 -42.64 91.96 -30.2 -22.37 22.37 37.04 -37.04 341.95 -581.31 -908.92

M(KN.m) 13147.86 5507.48 5546.37 -1010.99 -705.98 109.73 -97.15 -120.89 -304.68 -256.75 256.75 138.01 -138.01 -16335.27 -11522.44 -15213.23

N(KN) -2344.42 -1004.79 -563.83 120.77 -88.38 8.76 -139.24 215.33 -162.23 -129.81 129.81 135.73 -135.73 960.22 2809.94 6488.46

V(KN) 45.6 766.16 -860.82 178.55 23.18 -6.54 -71.63 137.32 -63.58 -49.04 49.04 65.21 -65.21 542.84 -25.39 383.52

M(KN.m) -1801.32 -1422.34 3014.4 -2625.92 -915.62 168.84 550.7 -1362.97 270.43 186.85 -186.85 -451.77 451.77 -3785.33 3257.1 1687.73

N(KN) -2665.86 -1004.79 -791.98 120.77 -88.38 8.76 -139.24 215.33 -162.23 -129.81 129.81 135.73 -135.73 960.22 2809.94 6488.46

V(KN) 3259.95 766.16 1420.68 178.55 23.18 -6.54 -71.63 137.32 -63.58 -49.04 49.04 65.21 -65.21 -3317.88 -3242.65 -4120.65

M(KN.m) -1801.32 -1422.34 3014.4 -2625.92 -915.62 168.84 550.7 -1362.97 270.43 186.85 -186.85 -451.77 451.77 -3785.33 3257.1 1687.73

N(KN) -2665.86 -1004.79 -791.98 120.77 -88.38 8.76 -139.24 215.33 -162.23 -129.81 129.81 135.73 -135.73 960.22 2809.94 6488.46

V(KN) 3259.95 766.16 1420.68 178.55 23.18 -6.54 -71.63 137.32 -63.58 -49.04 49.04 65.21 -65.21 -3317.88 -3242.65 -4120.65

M(KN.m) -27919.36 -6042.23 -10137.97 -3702.54 -1055.38 208.25 982.6 -2191.02 653.83 482.59 -482.59 -844.95 844.95 23981.18 29276.69 35588.23

N(KN) -2880.15 -1004.79 -944.08 120.77 -88.38 8.76 -139.24 215.33 -162.23 -129.81 129.81 135.73 -135.73 960.22 2809.94 6488.46

V(KN) 5402.85 766.16 2941.68 178.55 23.18 -6.54 -71.63 137.32 -63.58 -49.04 49.04 65.21 -65.21 -5891.69 -5387.5 -7123.43

M(KN.m) -30286.59 -759.59 -2956.89 -12380.59 -6921.59 1125.52 316.03 2379.71 -401.65 -512.22 512.22 170.68 -170.68 25678.17 20088.17 39706.95

N(KN) -3363.27 -286.48 103.26 -1117.78 -875.72 127.88 -279.99 -708.81 -725.58 314.9 -314.9 319.01 -319.01 1490.66 1279.75 7095.62

V(KN) -5615.58 -4.11 -134.65 -3222.9 -802.32 111.54 60.76 155.58 -12.15 -52.29 52.29 -11.1 11.1 3278.67 4713.55 7559.7

M(KN.m) -2885.82 -734.81 -2144.95 2467.52 -2083.64 452.95 -50.33 1441.55 -328.41 -196.94 196.94 237.63 -237.63 8498.32 -1858.45 3188.55

N(KN) -3148.98 -286.48 103.26 -965.68 -875.72 127.88 -279.99 -708.81 -725.58 314.9 -314.9 319.01 -319.01 1490.66 1279.75 7095.62

V(KN) -3472.68 -4.11 -134.65 -1701.9 -802.32 111.54 60.76 155.58 -12.15 -52.29 52.29 -11.1 11.1 2419.53 2565.69 4552.69

M(KN.m) -2885.82 -734.81 -2144.95 2467.52 -2083.64 452.95 -50.33 1441.55 -328.41 -196.94 196.94 237.63 -237.63 8498.32 -1858.45 3188.55

N(KN) -3148.98 -286.48 103.26 -965.68 -875.72 127.88 -279.99 -708.81 -725.58 314.9 -314.9 319.01 -319.01 1490.66 1279.75 7095.62

V(KN) -3472.68 -4.11 -134.65 -1701.9 -802.32 111.54 60.76 155.58 -12.15 -52.29 52.29 -11.1 11.1 2419.53 2565.69 4552.69

M(KN.m) 13973.08 -691.45 -724.04 6382.76 6382.76 -724.04 -691.45 -200.24 -200.24 354.81 -354.81 354.81 -354.81 -9100.66 -9100.66 -17088.52

N(KN) -2773.98 -286.48 103.26 -699.51 -875.72 127.88 -279.99 -708.81 -725.58 314.9 -314.9 319.01 -319.01 1490.66 1279.75 7095.62

V(KN) 277.4 -4.11 -134.65 959.85 -802.32 111.54 60.76 155.58 -12.15 -52.29 52.29 -11.1 11.1 916.02 -1193.07 -709.56

ELEMENT SECTIO NINTERNAL

FO RCE

LO AD PATTERN

B1

START

0m

END

6,03m

B2

START

0m

END

9,04m

B3

START

0m

END

9,04m

B6

START

0m

END

10,55m

B4

START

0m

END

6,03m

B5

START

0m

END

6,03m

INTERNAL FORCE TABLE OF RAFTER

Page 27: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 26

Mmax, Ntư Mmin, Ntư |N|max, Mtư Mmax, Ntư Mmin, Ntư |N|max, Mtư Mmax, Ntư Mmin, Ntư |N|max, Mtư

1,14 1,2,3,5,7 1,2,3,6,71,4,6,8,11,1

4, 16

1,2,3,5,7,9

,13, 151,2,3,6,7,9,13

1,4,6,8,11,1

4, 16

1,2,3,5,7,9

,13, 151,2,3,6,7

M(KN.m) 23748.8 -23920.8 -22677.0 29613.1 -30490.9 -24401.6 29613.1 -30490.9 -22677.0

N(KN) -5015.7 -13962.0 -14001.2 1231.8 -10104.9 -13707.4 1231.8 -10104.9 -14001.2

V(KN) 5794.0 -4129.8 -4036.1 4638.9 -5511.1 -4143.7 4638.9 -5511.1 -4036.1

1,2,3,5,6,7 1, 16 1,2,3,6,71,2,3,5,6,7,9

,13

1,4,8,11,1

4, 161,2,3,6,7,9,13 1,2,3,5,6,7

1,4,8,11,1

4, 161,2,3,6,7

M(KN.m) 34735.6 -8108.2 34635.9 34528.7 -30248.0 34438.9 34735.6 -30248.0 34635.9

N(KN) -8897.8 2100.4 -8929.7 -8607.2 6309.9 -8635.9 -8897.8 6309.9 -8929.7

V(KN) -4121.8 3419.2 -4036.1 -4220.8 3778.4 -4143.7 -4121.8 3778.4 -4036.1

1,14 1, 15 1,8,111,2,3,6,14,

16

1,4,5,7,8,1

0, 151,2,3,4,5,8,11

1,2,3,6,14,

16

1,4,5,7,8,1

0, 15

1,2,3,4,5,8,1

1

M(KN.m) 6404.0 -14566.1 -3924.3 16167.2 -27186.3 -4953.8 16167.2 -27186.3 -4953.8

N(KN) -5671.9 -4582.8 -35042.2 4239.2 -27482.7 -40638.8 4239.2 -27482.7 -40638.8

V(KN) 328.3 -1915.1 -1085.0 2113.0 -4511.2 -1232.8 2113.0 -4511.2 -1232.8

1,4,5,7 1,2,3,6 1,8,111,4,5,7,8,10,

151,2,3,6, 16 1,2,3,4,5,8,11

1,4,5,7,8,10

, 151,2,3,6, 16

1,2,3,4,5,8,1

1

M(KN.m) 12954.1 -7263.1 8716.3 25369.1 -8729.9 9407.8 25369.1 -8729.9 9407.8

N(KN) -17689.9 -17287.3 -33380.4 -25820.8 -2530.7 -38976.9 -25820.8 -2530.7 -38976.9

V(KN) -2233.9 1050.3 -1085.0 -4511.2 1404.0 -1232.8 -4511.2 1404.0 -1232.8

1,4,5,7 1,2,3,6 1,2,3,4,51,4,5,7,9,13,

15

1,2,3,6,8,1

1, 161,2,3,4,5,9,12

1,4,5,7,9,13

, 15

1,2,3,6,8,1

1, 161,2,3,4,5

M(KN.m) 11881.6 -8335.6 2680.1 15930.8 -17468.8 1704.6 15930.8 -17468.8 2680.1

N(KN) -16259.9 -15857.3 -20389.5 -6422.5 -1142.2 -19606.5 -6422.5 -1142.2 -20389.5

V(KN) -2233.9 1050.3 -693.2 -4023.5 841.0 -1008.2 -4023.5 841.0 -693.2

1,4,5,7 1,2,3,6 1,2,3,4,51,4,5,7,9,13,

15

1,2,3,6,8,1

1,14, 161,2,3,4,5,9,12

1,4,5,7,9,13

, 15

1,2,3,6,8,1

1,14, 161,2,3,4,5

M(KN.m) 17578.1 -11013.8 4447.8 26190.7 -19918.8 4275.6 26190.7 -19918.8 4447.8

N(KN) -15896.1 -15493.6 -20025.8 -6058.8 7653.4 -19242.8 -6058.8 7653.4 -20025.8

V(KN) -2233.9 1050.3 -693.2 -4023.5 851.8 -1008.2 -4023.5 851.8 -693.2

INTERNAL FORCE DESIGN

ELEMENT SECTIONINTERNAL

FORCE

LOAD COMBINATION 1 LOAD COMBINATION 2

C3

START

0m

END

2,55m

C1

START

0m

END

14,2m

C2

START

0m

END

11,65m

LOAD COMBINATION OF COLUMN

Page 28: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 27

Mmax, Ntư Mmin, Ntư |N|max, Mtư Mmax, Ntư Mmin, Ntư |N|max, Mtư Mmax, Ntư Mmin, Ntư |N|max, Mtư

1, 16 1,2,3,5,6,7 1,2,3,5,71,4,8,11,14,

16

1,2,3,5,6,7,9

,131,2,3,5,7,9,13

1,4,8,11,14,

161,2,3,5,6,7 1,2,3,5,7,9,13

M(KN.m) 8108.2 -34735.6 -34722.6 30248.0 -34528.7 -34517.0 30248.0 -34735.6 -34517.0

N(KN) 3611.2 -4986.7 -4994.0 4387.5 -5056.3 -5062.8 4387.5 -4986.7 -5062.8

V(KN) 1749.7 -8443.5 -8435.4 5902.7 -8144.5 -8137.2 5902.7 -8443.5 -8137.2

1,2,4,6 1, 15 1,2,3,5,7 1,2,4,6,8,111,3,5,7,9,13,

15, 161,2,3,5,7,9,13 1,2,4,6,8,11

1,3,5,7,9,13

, 15, 161,2,3,5,7,9,13

M(KN.m) 7388.0 -1925.9 5095.7 8023.6 -6826.1 3961.8 8023.6 -6826.1 3961.8

N(KN) -3510.7 138.9 -4627.6 -3083.0 4510.2 -4711.7 -3083.0 4510.2 -4711.7

V(KN) -3894.0 -712.9 -4771.5 -3672.2 1602.0 -4625.4 -3672.2 1602.0 -4625.4

1,2,4,6 1, 15 1,2,3,5,7 1,2,4,6,8,111,3,5,7,9,13,

15, 161,2,3,5,7,9,13 1,2,4,6,8,11

1,3,5,7,9,13

, 15, 161,2,3,5,7,9,13

M(KN.m) 7388.0 -1925.9 5095.7 8023.6 -6826.1 3961.8 8023.6 -6826.1 3961.8

N(KN) -3510.7 138.9 -4627.6 -3083.0 4510.2 -4711.7 -3083.0 4510.2 -4711.7

V(KN) -3894.0 -712.9 -4771.5 -3672.2 1602.0 -4625.4 -3672.2 1602.0 -4625.4

1,2,3,6 1,14 1, 16 1,2,3,6,8,111,4,5,7,9,13,

14, 161,2,3,5,7,9,13 1,2,3,6

1,4,5,7,9,13

,14, 161,2,3,5,7,9,13

M(KN.m) 24311.4 -3187.4 -2065.4 23317.4 -17276.9 21975.1 24311.4 -17276.9 21975.1

N(KN) -3838.0 -1240.3 4147.0 -3345.4 4090.3 -4184.9 -3838.0 4090.3 -4184.9

V(KN) 718.6 850.9 -400.0 800.6 72.0 642.3 718.6 72.0 642.3

1,2,3,6 1,14 1, 16 1,2,3,6,8,111,4,5,7,9,13,

14, 161,2,3,5,7,9,13 1,2,3,6

1,4,5,7,9,13

,14, 161,2,3,5,7,9,13

M(KN.m) 24311.4 -3187.4 -2065.4 23317.4 -17276.9 21975.1 24311.4 -17276.9 21975.1

N(KN) -3904.3 -1384.2 4144.0 -3437.7 3995.1 -4229.2 -3904.3 3995.1 -4229.2

V(KN) -55.6 588.4 429.1 122.2 880.5 -199.1 -55.6 880.5 -199.1

1,3,6,7 1,2,4,5 1,2,3,5,71,3,6,7,9,13,

15, 16

1,2,4,5,8,11,

141,2,3,5,7,9,13

1,3,6,7,9,13,

15, 16

1,2,4,5,8,11

,141,2,3,5,7,9,13

M(KN.m) 1932.6 -6765.2 -574.2 6659.6 -11070.4 -46.9 6659.6 -11070.4 -46.9

N(KN) -3588.3 -3638.3 -4690.3 4604.3 -2366.2 -4756.0 4604.3 -2366.2 -4756.0

V(KN) 4602.5 4227.8 5398.3 -2274.7 1312.7 5068.6 -2274.7 1312.7 5068.6

1,3,6,7 1,2,4,5 1,2,3,5,71,3,6,7,9,13,

15, 16

1,2,4,5,8,11,

141,2,3,5,7,9,13

1,3,6,7,9,13,

15, 16

1,2,4,5,8,11

,141,2,3,5,7,9,13

M(KN.m) 1932.6 -6765.2 -574.2 6659.6 -11070.4 -46.9 6659.6 -11070.4 -46.9

N(KN) -3588.3 -3638.3 -4690.3 4604.3 -2366.2 -4756.0 4604.3 -2366.2 -4756.0

V(KN) 4602.5 4227.8 5398.3 -2274.7 1312.7 5068.6 -2274.7 1312.7 5068.6

1, 16 1,2,3,4,5 1,2,3,5,71,6,7,9,13,

15, 16

1,2,3,4,5,8,1

11,2,3,5,7,9,13

1,6,7,9,13,

15, 16

1,2,3,4,5,8,

111,2,3,5,7,9,13

M(KN.m) 7668.9 -48857.5 -44172.3 32879.7 -49169.9 -41198.1 32879.7 -49169.9 -41198.1

N(KN) 3608.3 -4796.6 -5056.6 5102.8 -4294.4 -5107.2 5102.8 -4294.4 -5107.2

V(KN) -1720.6 9312.4 9062.2 -6043.3 9089.2 8580.4 -6043.3 9089.2 8580.4

1, 16 1,2,3,4,5 1,2,4,5,71,6,7,8,11,14

, 16

1,2,3,4,5,9,1

31,2,4,5,7,9,13

1,6,7,8,11,1

4, 161,2,3,4,5 1,2,4,5,7,9,13

M(KN.m) 9420.4 -53305.3 -50032.3 32460.2 -51518.5 -48572.9 32460.2 -53305.3 -48572.9

N(KN) 3732.4 -5540.0 -5923.2 3306.1 -6262.4 -6607.4 3306.1 -5540.0 -6607.4

V(KN) 1944.1 -9779.6 -9584.2 4481.1 -9364.1 -9188.2 4481.1 -9779.6 -9188.2

1,14 1,2,3,5,7 1,2,4,5,71,4,6,8,11,14

, 16

1,2,3,5,7,9,1

3, 151,2,4,5,7,9,13

1,4,6,8,11,1

4, 16

1,2,3,5,7,9,

13, 151,2,4,5,7,9,13

M(KN.m) 5612.5 -7899.6 -3287.1 11735.4 -9580.2 -3756.4 11735.4 -9580.2 -3756.4

N(KN) -1658.3 -4487.9 -5556.9 2903.3 -4142.4 -6256.2 2903.3 -4142.4 -6256.2

V(KN) -1053.2 -4353.0 -5920.3 1558.1 -1956.8 -5676.4 1558.1 -1956.8 -5676.4

1,14 1,2,3,5,7 1,2,4,5,71,4,6,8,11,14

, 16

1,2,3,5,7,9,1

3, 151,2,4,5,7,9,13

1,4,6,8,11,1

4, 16

1,2,3,5,7,9,

13, 151,2,4,5,7,9,13

M(KN.m) 5612.5 -7899.6 -3287.1 11735.4 -9580.2 -3756.4 11735.4 -9580.2 -3756.4

N(KN) -1658.3 -4487.9 -5556.9 2903.3 -4142.4 -6256.2 2903.3 -4142.4 -6256.2

V(KN) -1053.2 -4353.0 -5920.3 1558.1 -1956.8 -5676.4 1558.1 -1956.8 -5676.4

1,4,5 1, 16 1,2,4,5,7 1,4,5,8,111,2,3,6,7,9,1

3, 15, 161,2,4,5,7,9,13 1,4,5,8,11

1,2,3,6,7,9,

13, 15, 161,2,4,5,7,9,13

M(KN.m) 26738.6 -3115.4 25355.7 26936.7 -12654.5 23717.9 26936.7 -12654.5 23717.9

N(KN) -4349.2 4321.6 -4915.7 -5113.0 3521.9 -5641.6 -5113.0 3521.9 -5641.6

V(KN) 434.9 -432.2 491.6 606.3 -1405.7 469.2 606.3 -1405.7 469.2

INTERNAL FORCE DESIGN

ELEMENT SECTIONINTERNAL

FORCE

LOAD COMBINATION 1 LOAD COMBINATION 2

B1

START

0m

END

6,03m

B2

START

0m

END

9,04m

B3

START

0m

END

9,04m

B4

START

0m

END

6,03m

B5

START

0m

END

6,03m

B6

START

0m

END

10,55m

LOAD COMBINATION OF RAFTER

Page 29: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 28

CHAPTER 5. PURLINS DESIGN.

TOLE DESIGN.

Properties.

This product is taken from Ngo Long Cor. catalogue

Sectional drawing:

Properties:

2

tolef = 2100 daN/cm và 3ρ = 7850 daN/m

Table below:

Total

coated

thickness

Single

span

Coating

weight

Rib

height

Moment

of inertia

x-x

Moment

of inertia

y-y

Section

modulus

x-x

Section

modulus

y-y

t (mm) L

(mm)

P

(daN/m2) h (mm)

Jx

(104 mm4)

Jy

(104 mm4)

Wx

(103 mm3)

Wy

(103 mm3)

0.3 1000 2,65 21 2,117 25000 1,623 500

Page 30: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 29

Define load.

Self weight of tole is devided into 2 part gx and gy:

Normal load: tole

tc 2g = 2,65 (daN/m ) tc tc 2

y(tole)= g cosα = 2,65×0,995 = 2,64 (daN/m )

toleg

tc tc 2

x(tole)= p sinα = 2,65×0,1 = 0,27 (daN/m )

toleg

Design load:

tt tc 2( ) ( )g = ng =1,1×2,64 = 2,904 (daN/m )

y ytole tole

tt tc 2

( ) ( )g = ng = 1,1×0,27 = 0,3 (daN/m )

x xtole tole

Wind load: the most dangerous load case for tole is negative wind (c = -0.6):

gió

gió gió

tc 2

tt tc 2

q = W .c.k = 85×(-0,6)×1,09 = -55,59 (daN/m )

q =nq = 1,2 -55,59 = -66,71 (daN/m )

C

Live load:

Short-term load tc 2p = 30 daN/mroof is devided into 2 part px and py:

tc tc 2

y máip = p cosα = 30×0,995 = 29,85 (daN/m )

tc tc 2

x máip = p sinα = 30×0,1 = 3 (daN/m )

tt tc 2

y yp = np = 1,3×29,85 = 38,81 (daN/m )

tt tc 2

x xp = np = 1,3×3 = 3,9 (daN/m )

Design tole section.

Purlins spacing a = 1,1 m

Model of calculation: width of the section is supposed to be 1m to design:

These are the most dangerous load case is given below:

a) Load combination 1: Dead load and Wind load:

Check for allowable stress:

tt ttgió ( )q = q + g ×1 = -66,71 + 2,904 1= -69,61(daN/m)tt

y y tole

( )q = g 1= 0,3 1=0,3(daN/m)tt tt

x x tole

The value q 0,3 /tt

xdaN m is too small. Thus, it is neglected.

2 2q a -69,61×1,1M = = = -10,53 (daN.m)

8 8

tt

y

Section modulus at least:

3 3

yc x

c tole

M 10,53×100W = = = 0,55 (cm ) < W = 1,623 cm

γ f 0,9×2100

Page 31: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 30

Allowable stress:

2 2

c

x

M 10,53×100σ = = =648,8(daN/cm ) < fγ = 0,9 2100=1890 daN/cm

W 1,623

This section is OK.

Check for displacement:

tc tc

gió ( )q = q + g ×1 = -55,59 + 2,64 1= -52,95(daN/m)tc

y y tole

( )q = g 1= 0,27 1=0,27(daN/m)tc tc

x x tole

The value q 0,27 /tt

xdaN m is too small. Thus it is neglected.

3 3

6

x

q aΔ 5 5 (52,95/100)×(1,1×100) 1 Δ 1= = × = < =

a 384 EI 384 2,1×10 ×2,117 484 a 150

tc

y

This section is OK.

b) Load combination 2: Dead load and Wind load:

Check for allowable stress:

tt tt

( )q = g + p ×1 = 2,904 38,81 1= 41,71(daN/m)tt

y y tole y

tt tt

( )q = g + p ×1 = 0,3 3,9 1= 4,2(daN/m)tt

x x tole x

Moment: 2 2q a 41,71×1,1

M = = = 6,31 (daN.m)8 8

tt

y

x

2 2q a 4,2×1,1M = = = 5,08 (daN.m)

8 8

tt

xy

Allowable stress:

y 2x

max x y

x y

2

c

MM 6,31 100 5,08 100σ = σ + σ = + = + =389,8 (daN/cm )

W W 1,623 500

< fγ =1890 daN/cm

This section is OK.

Check for displacement:

tc tc

( )q = g + p ×1 = 3 29,85 1= 32,85(daN/m)tc

y y tole y

tc tc

(t )q = g + p ×1 = 0,27 2,64 1= 2,91(daN/m)tc

x x ole x

Page 32: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 31

2222 tc 3 tc 3y yx x

x

2 23 3

6 6

Δ q aΔ q aΔ 5 5 = + = +

a a a 384 EI 384 EI

32,85 /100 1,1 100 2,91/100 1,1 1005 5 1 Δ 1= + =

384 2,1×10 ×2,117 384 2,1×10 ×25000 781 a 150

y

This section is OK.

PURLINS DESIGN.

Properties. According to vvvTra co Cor. catalogue

Chose steel C15015

4 3

4 3

4,44 /

353 ; 34,7

39,6 ; 7,17

xg

x x

y y

g daN m

I cm W cm

I cm W cm

Load impact.

Purlins self weight: tc

y(xg) xgg = g cosα = 4,44×0,995 = 4,42 (daN/m)

tc

x(xg) xgg = g sinα = 4,44×0,1 = 0,444 (daN/m)

tt tc

y(xg) yg = ng = 1,1×4,42= 4,86(daN/m)

tt tc

x(xg) xg = ng = 1,1×0,444 = 0,488(daN/m)

Tole self weight:

tc tc

tole toleq = ag = 1,1×2,65 = 2,92 (daN/m) tc tc

y(tole)= q cosα = 2,92×0,995 = 2,91 (daN/m)

toleq

Page 33: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 32

tc tc

x(tole)= q sinα = 2,92×0,1 = 0,29(daN/m)

toleq

tt tc

( ) ( )= nq = 1,1×2,91 = 3,2 (daN/m)y ytole toleq

tt tc

( ) ( )= nq = 1,1×0,29 = 0,32 (daN/m)

x tole x toleq

Wind load: the most dangerous load case for tole is negative wind (c = -0.6).

gió

gió gió

tc

tt tc

q = W .c.k.a = 85×(-0,6)×1,09 1,1 = -61,15 (daN/m)

q =nq = 1,2 -61,15 = -73,38 (daN/m)

C

Short-term load tc 2p = 30 daN/mroof is devided into 2 part px and py:

tc tc

y máip = p .a.cosα = 30 1,1 0,995 = 32,84(daN/m)

tc tc

x máip = p .a.sinα = 30 1,1 0,1 = 3,3(daN/m)

tt tc

y yp = np = 1,3×32,84 = 42,69(daN/m)

tt tc

x xp = np = 1,3×3,3 = 4,29(daN/m)

Purlins design.

Model of calculation: pinned beam.

These are the most dangerous load case is given below:

a) Load combination 1: Dead load and Wind load:

Check for allowable stress: tt tt tt tt

y y(tole) y(xg) gióq = (q + g ) + q = 4,86 + 3,87 +(-73,38) = -64,65 (daN/m)

tt tt tt

x(tole) x(xg)q = (q + g ) = 0,32 + 0,488 = 0,81 (daN/m)

x

Moment: 2 2q -64,65×6,5

M = = = -341,4 (daN.m)8 8

tt

y

x

B

2 2q 0,81×6,5M = = = 4,28 (daN.m)

8 8

tt

xy

B

Allowable stress:

y 2x

max x y

x y

2

c

MM 341,4 100 4,28 100σ = σ + σ = + = + =1042,4 (daN/cm )

W W 34,7 7,17

< fγ =1890 daN/cm

This section is OK

Check for displacement: tc tc tc tc

y y(tole) y(xg) gióq = (q + g ) + q = 2,91 + 4,42 +(-61,15) = -53,82 (daN/m)

tc tc tc

x(tole) x(xg)q = q + g = 0,29 + 0,444 = 0,734 (daN/m)

x

Page 34: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 33

2 22 tc 3 tc 32

y xyx

x

2 23 3

6 6

q qΔΔ Δ 5 5 = + = +

384 EI 384 EI

53,82 /100 6,5 100 0,734 /100 6,5 1005 5 1= +

384 2,1×10 ×353 384 2,1×10 ×39,6 382

Δ 1 =

a 150

y

B B

B B B

This section is OK.

b) Load combination 2: Dead load and Wind load:

Checking for allowable stress: tt tt tt tt

y y(tole) y(xg)q = (q + g ) + p = 3,2 + 4,86 +42,69 = 50,75 (daN/m)

y

tt tt tt

x(tole) x(xg)q = (q + g ) + p = 0,32 + 0,488 + 4,29 = 5,098 (daN/m)tt

x x

Moment: 2 2q 50,75×6,5

M = = =268,02 (daN.m)8 8

tt

y

x

B

2 2q 5,098×6,5M = = = 26,92 (daN.m)

8 8

tt

xy

B

Allowable stress:

y 2x

max x y

x y

2

c

MM 268,02 100 26,92 100σ = σ + σ = + = + =1147,85 (daN/cm )

W W 34,7 7,17

< fγ =1890 daN/cm

This section is OK.

Check for displacement: tc tc tc tc

y y(tole) y(xg)q = (q + g ) + p = 2,91 + 4,42 + 32,84 = 40,17(daN/m)

y

tc tc tc

x(tole) x(xg)q = q + g + p = 0,29 + 0,444 + 3,3 = 4,034 (daN/m)tc

x x

2222 tc 3 tc 3y yx x

x

2 23 3

6 6

Δ qΔ Δ 5 5 q = + = +

384 EI 384 EI

40,17 /100 6,5 100 4,034 /100 6,5 1005 5 1= +

384 2,1×10 ×353 384 2,1×10 ×39,6 384

Δ 1 =

a 150

y

B B

B B B

This section is OK.

Page 35: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 34

DESIGN CONECTION BETWEEN TOLE AND PURLINS.

Spacing screw, bđv = 500 mm.

Chose screw has properties is as follow: d = 5.5 mm; ftb = 1700 (daN/cm2),

fvb = 1500 (daN/cm2), fcb = 3950 (daN/cm2).

Area force pressure impact on screw: 21,1 0,5 0,55đvA ab m

Load combination 1: Dead load and Wind load:

Tension force:

tt tt

gió y(tole)q 0,55 66,71 2,904 35,09tN A g daN

2 23,14 0,55

35,09 1700 403,694 4

t t bn tb tb

dN daN N A f f daN

This screw is OK.

Load combination 2: Dead load and Wind load:

Load ( )

tt tt

x tole xg p cause shear and bearing failure

tt

x(tole) ( ) 0,55 0,3 0,3 0,33tt

x htN A g p daN

Shear strength and bearing strength of screw:

2

min

3,14 0,551 0,9 1500 320,57

4

0,55 0,03 3950 0,9 58,66

v b vbvb

cb bcb

N n f A daN

N d t f daN

min

58.66N daN

So min

0,33 58,66N daN N daN

This screw is OK.

Page 36: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 35

DESIGN CONECTION BETWEEN PURLINS AND RAFTER:

Figure is as follow:

a) Load combination 1: Dead load and Wind load: tt tt tt tt

y y(tole) y(xg) gióq = (g + g ) + q = 2,904 + 4,86 + (-73,38) = -65,62 (daN/m)

tt tt tt

x(tole) x(xg)q = (g + g ) = 0,3 + 0,488 = 0,788 (daN/m)

x

b) Load combination 2: Dead load and Wind load: tt tt tt tt

y y(tole) y(xg)q = (q + g ) + p = 2,094 + 4,86 +42,69 = 49,64 (daN/m)

y

tt tt tt

x(tole) x(xg)q = (g + g ) + p = 0,3 + 0,488 + 4,29 = 5,08 (daN/m)tt

x x

tt

xq causing shear and moment for fillet weld conected plate purlin and rafter is

neglected.

tt

yq causing shear and bearing to bolts. Load combination 1 is more dangerous

than 2 one.

6,5 65,62 426,53tt

yN B q daN

Properties of bolt 4.6 ftb = 1700 (daN/cm2), fvb = 1500 (daN/cm2), fcb = 3950

(daN/cm2) - steel CCT34. Chose bolt’s diameter d = 14mm.

Shear strength and bearing strength of bolt:

2

min

3,14 1,41 0,9 1500 2077,11

4

1,4 0,49 3950 0,9 2438,73

v b vbvb

cb bcb

N n f A daN

N d t f daN

min

2077,11N daN

So min

426,53 2077,11N daN N daN . According to geometry

requirement, bolts are located as figure below.

Page 37: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 36

Page 38: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 37

CHAPTER 6. RAFTER DESIGN

DESIGN THE START SECTION OF RAFTER B1.

Section dimention.

From internal force table, chose N, Mx and My are absolute values of lateral

force and bending moments respectively at the most unfavourable

combination thereof:

M(daN.m) -34735.6

N(daN) -4986.7

VdaN) -8443.5

This force is at section (4) is caused by these load cases 1, 2, 3, 5, 6,7.

Section molulus is given as follow :

334735,6 100

1837,9 ( )0,9 2100

yc

x

c

MW cm

f

Preliminary height:

335,5 W 5,5 1837,9 67,37yc

xh cm

The smallest rafter height (model of calculation: pinned restraint):

min 6

5 5 2100 1500250 67,9

24 24 2,1 10 1,15tb

f l lh cm

E

Limit deflection: 1

250l

, take γtb = 1,15

Preliminary thickness of web: assume w minh h

maxw

3 3 8443,50,16

2 2 67,9 1200w v

Vt cm

h f

Page 39: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 38

tw is too small if using this formula. tw should be calculated follow shear

buckling of plate girder web: 6

w

w

2,1 103,2 3,2 101,19

2100

h E

t f

w

67,90,67

101,19t cm .

Chose tw = 1 (cm)

The effective height:

w

W 1837,91,2 51,44

1

yc

xkth k cm

t

k = 1,2 – coefficient factor.

Chose: h = 70 (cm) > hmin = 67,9 (cm)

Define flange dimention (bf và tf)

Flange area:

2W3 3 1873,920,08

4 4 70

yc

xfA cm

h

From local and over all buckling, formula is given below:

w

6

; 12 24

2,1 1031,62

2100

1 1 1 1700 140 350 ; 180

2 5 2 5

f f

f

f

f f

t t t mm

b E

t f

b h mm b mm

Chose tf = 1,4 (cm), bf = 35 (cm)

Checking section.

a) Properties of section.

Section area: 2 2 2 1 67,2 2 35 1,4 165,2( )n w f w w f fA A A t h b t cm

Moment of inertia relative to axis x-x:

3 2 3 3 2 3

w ww

4

. 35 1,4 68,6 1 67,22 2 . 2 35 1,4

12 4 12 12 4 12

140600,73

f f f

x x f f

b t h t hI I I b t

cm

Modulus of section:

Page 40: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 39

32 2 140600,73 4017,16 ( )

70

xx

IW cm

h

Statical moment of flange area:

368,6. . 1,4 35 1680,7

2 2

f

f f f

hS t b cm

Statical moment of ½ area:

w w wx

3

68,6 1 67,2 67,21,4 35

2 2 4 2 2 4

2245,18

f

f w f f

h t h hS S S t b

cm

b) Checking for allowable stress:

2

2

4986,7 34735,6 100 894,87 /

165,2 4017,16

2100 0.9 1890 /

x

n x

c

N MdaN cm

A W

f daN cm

This section is OK.

Checking for allowable shear stress:

20,9 1200 1080 /x

c v

x w

VSf daN cm

I t

2 28443,5 2245,18134,83( / ) 1080 /

140600,73 1

x

x w

VSdaN cm daN cm

I t

This section is OK.

The start rafter section is concurrent impacted by shear and moment. Thus,

allowable stress need to be stratified this formula below: 2 2 2

1 1 3 1,15 1,15 0,9 2100 2173,5 ( / )

td cf daN cm

Where:

2w

1

x

M h 34735,6 100 67,2σ = = × = 830,1(daN/cm )

W h 4017,16 70

2

1

8443,5 1680,7100,93( / )

140600,73 1

f

x w

VSdaN cm

I t

2 2 2 2 2 2

td 1 1σ = σ + 3τ = 830,1 + 3×100,93 = 848,3 (daN/cm ) < 2173.5 (daN/cm )

This section is OK

Because of impacting of purlin so rafter need to be checked by local buckling

limit:

2

cb

cb w z

F Fσ = = 0,9 2100 1890 /

A t lcf daN cm

Page 41: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 40

Where:

F – impact of purlin on rafter.

c) Load combination 1: Dead load and Wind load: tt tt tt tt

y y(tole) y(xg) gióq = (q + g ) + q = 4,86 + 3,87 +(-73,38) = -64,65 (daN/m)

tt tt tt

x(tole) x(xg)q = (q + g ) = 0,32 + 0,488 = 0,81 (daN/m)

x

d) Load combination 2: Dead load and Live load: tt tt tt tt

y y(tole) y(xg)q = (q + g ) + p = 3,2 + 4,86 +42,69 = 50,75 (daN/m)

y

tt tt tt

x(tole) x(xg)q = (q + g ) + p = 0,32 + 0,488 + 4,29 = 5,098 (daN/m)tt

x x Load combination 2 cause local web buckling in rafter (neglect qx

tt).

. 50,75 6,5 329,88( )tt

yF q B daN

lz – is fictitious length of load distribution determined depending on condition

of leaning.

2 8 2 1,4 10,8z f

l b t cm

2 2329,88 30,54 / 1890 /

1 10,8cb

w z

FdaN cm daN cm

t l

This section is OK

Checking for normal stress, shear stress and local buckling of web.

2 2 2 2

1 1 1 - 3 1,15 1,15 0,9 2100 2173,5 ( / )

td cb cb cf daN cm

2

1

2

1

2

830,1( / )

100,93( / )

30,54 /cb

daN cm

daN cm

daN cm

2 2 2 2

2

830,1 30,54 -830,1 30,54 3 100,93 833,79 /

< 2173,5 ( / )

td

td

daN cm

daN cm

This section is OK.

e) Checking for over all buckling:

Top flange connect to purlins, with purlins spacing is 1,1 (m).

So:

0 11003,143

350f

l

b

Maximum value of 0

f

l

b:

Page 42: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 41

6

0,41 0,0032 0,73 0,016

35 35 35 2,1 100,41 0,0032 0,73 0,016 20,82

1,4 1,4 68,6 2100

f f fo

f f f fk

b b bl E

b t t h f

o o

f f

l l

b b

so non checking.

f) Checking for local buckling of flange and web:

Flange: 635 1 2,1 10

12,14 0,5 0,5 15,812 1,4 2100

of

f

b E

t f

This section is OK.

Web:

Slender ratio of web

ww 6

w

67,2 21002,125

1 2,1 10

h f

t E

w w2,125 3.2 web without stiffeners is not buckling by shear.

Acctually, there is local buckling occur in top flange of rafter but it is doesn’t

mean so it is necglected. According to section 5.6.1.3 TCVN 5575 – 2012,

local buckling web do not need to check.

g) Calculating fillet weld connected between flange and web:

As rafter bending, flange slip on web and fillet weld is created to prevent

sliping.

Using shielded metal arc welding, electrode N46: βf = 0.7, βs = 1, fwf = 2000

daN/cm2; fws = 0,45fu = 0,45 × 3400 = 1530 daN/cm2.

So:

2

w

2

ws

2

w wmin

. 0,7 2000 1400 /

. 1 1530 1530 /

. 1400 /

f f

s

f f

f daN cm

f daN cm

f f daN cm

The height of the fillet weld:

Page 43: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 42

w min

.S 8443,5 1680,70,04

2 . . 2 1400 140600,73 0,9

f

f

x c

Vh cm

f I

The height of the fillet weld follow above formula is too small so it should be

calculated by following formula:

min

min

1.2 1,2 10 12

5

f

f f

h t mm

h h mm

Chosse hf = 6 (mm) along longitudinal rafter.

DESIGN SECTION AT THE END OF D1 – BEGIN OF D2.

Section dimension.

From internal force table, chose N, Mx and My are absolute values of lateral

force and bending moments respectively at the most unfavourable

combination thereof:

M(daN.m) -8023,6

N(daN) -3083,0

V(daN) -3672,2

This force is at section (5) is caused by these load cases 1, 2, 4, 6, 8, 11.

Section molulus is given as follow:

38023,6 100424,53( )

0,9 2100

yc

x

c

MW cm

f

Section varies by the height so other values should be constant:

tw = 1 (cm)

tf = 1,4 (cm)

bf = 35 (cm)

The effective height:

w

W 424,531,2 24,72

1

yc

xkth k cm

t

k = 1,2 – coefficient factor.

Chose h = 40 (cm)

Check tw:

maxw

6

w

w

3 3 3672,21 0,12

2 2 37,2 1200

37,2 2,1 1037,2 3,2 3,2 101,19

1 2100

w v

Vt cm cm

h f

h E

t f

Page 44: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 43

This section is OK

Checking section.

a) Properties of section.

Section area: 2 2 1 37,2 2 35 1,4 135,2( )w f w w f fA A A t h b t cm

Moment of inertia relative to axis x-x:

3 2 3 3 2 3

w ww

4

. 35 1,4 38,6 1 37,22 2 . 2 35 1,4

12 4 12 12 4 12

40809,93

f f f

x x f f

b t h t hI I I b t

cm

Modulus of section:

32 2 40809,93 2040,50 ( )

40

xx

IW cm

h

Statical moment of flange area:

338,6. . 1,4 35 945,7

2 2

f

f f f

hS t b cm

Statical moment of ½ area:

w w wx

3

38,6 1 37,2 37,21,4 35

2 2 4 2 2 4

1118,68

f

f x f f

h t h hS S S t b

cm

b) Checking for allowable stress.

2

2

3083 8023,6 100 416,02 /

135,2 2040,50

2100 0,9 1890 /

x

n x

c

N MdaN cm

A W

f daN cm

This section is OK.

Checking for allowable shear stress:

20,9 1200 1080 /x

c v

x w

VSf daN cm

I t

2 22672,2 1118,6873,25( / ) 1080 /

40809,93 1

x

x w

VSdaN cm daN cm

I t

This section is OK.

Page 45: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 44

The start rafter section is concurrent impacted by shear and moment. Thus,

allowable stress need to be stratified this formula below: 2 2 2

1 1 3 1,15 1,15 0,9 2100 2173,5 ( / )

td cf daN cm

Where:

2w

1

x

M h 8023,6 100 37,2σ = = × = 365,69 (daN/cm )

W h 2040,50 40

2

1

3672,2 945,785,1( / )

40809,93 1

f

x w

VSdaN cm

I t

2 2 2 2 2 2

td 1 1σ = σ + 3τ = 365,69 +3×85,1 = 394,28 (daN/cm ) < 2173,5 (daN/cm )

This section is OK.

Because of impacting of purlin so rafter need to be checked by local buckling

limit:

2

cb

cb w z

F Fσ = = 0,9 2100 1890 /

A t lcf daN cm

Where:

F – impact of purlin on rafter.

c) Load combination 1: Dead load and Wind load: tt tt tt tt

y y(tole) y(xg) gióq = (q + g ) + q = 4,86 + 3,87 +(-73,38) = -64,65 (daN/m)

tt tt tt

x(tole) x(xg)q = (q + g ) = 0,32 + 0,488 = 0,81 (daN/m)

x

d) Load combination 2: Dead load and Live load: tt tt tt tt

y y(tole) y(xg)q = (q + g ) + p = 3,2 + 4,86 +42,69 = 50,75 (daN/m)

y

tt tt tt

x(tole) x(xg)q = (q + g ) + p = 0,32 + 0,488 + 4,29 = 5,098 (daN/m)tt

x x Load combination 2 cause local web buckling in rafter (neglect qx

tt).

. 50,75 6,5 329,88( )tt

yF q B daN

lz – is fictitious length of load distribution determined depending on condition

of leaning.

2 8 2 1,4 10,8z f

l b t cm

2 2329,88 30,54 / 1890 /

1 10,8cb

w z

FdaN cm daN cm

t l

This section is OK.

Checking for normal stress, shear stress and local buckling of web.

Page 46: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 45

2 2 2 2

1 1 1 - 3 1,15 1,15 0,9 2100 2173,5 ( / )

td cb cb cf daN cm

2

1

2

1

2

365,69( / )

85,1( / )

30,54 /cb

daN cm

daN cm

daN cm

2 2 2 2

2

365,69 30,54 -365,69 30,54 3 85,1 381,08 /

< 2173,5 ( / )

td

td

daN cm

daN cm

This section is OK.

e) Checking for over all buckling:

Top flange connect to purlins, with purlins spacing is 1,1 (m).

So:

0 11003,143

350f

l

b

Maximum value of 0

f

l

b:

6

0,41 0,0032 0,73 0,016

35 35 35 2,1 100,41 0,0032 0,73 0,016 24,96

1,4 1,4 38,6 2100

f f fo

f f f fk

b b bl E

b t t h f

o o

f f

l l

b b

so non checking.

f) Checking for local buckling of flange and web:

Flange: 617 2,1 10

12,14 0,5 0,5 15,811,4 2100

of

f

b E

t f

This section is OK.

Web:

Slender ratio of web

ww 6

w

37,2 21001,18

1 2,1 10

h f

t E

Page 47: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 46

w w1,18 3,2 web without stiffeners is not buckling by shear.

Acctually, there is local buckling occur in top flange of rafter but it is doesn’t

mean so it is necglected. According to section 5.6.1.3 TCVN 5575 – 2012,

local buckling web do not need to check.

g) Calculating fillet weld connected between flange and web:

As rafter bending, flange slip on web and fillet weld is created to prevent

sliping.

Using shielded metal arc welding, electrode N46: βf = 0.7, βs = 1, fwf = 2000

daN/cm2; fws = 0,45fu = 0,45 × 3400 = 1530 daN/cm2.

So:

2

w

2

ws

2

w wmin

. 0,7 2000 1400 /

. 1 1530 1530 /

. 1400 /

f f

s

f f

f daN cm

f daN cm

f f daN cm

The height of the fillet weld:

w min

.S 3672,2 945,70,034

2 . . 2 1400 40809,93 0,9

f

f

x c

Vh cm

f I

The height of the fillet weld follow above formula is too small so it should be

calculated by following formula:

min

min

1.2 1,2 10 12

5

f

f f

h t mm

h h mm

Chosse hf = 6 (mm) along longitudinal rafter.

DESIGN SECTION AT THE END OF D2 – SECTION (6).

Section dimension.

From internal force table, chose N, Mx and My are absolute values of lateral

force and bending moments respectively at the most unfavourable

combination thereof:

M(daN.m) 24311.4

N(daN) -3838.0

V(daN) 718.6

This force is at section (6) is caused by these load cases 1, 2, 3, 6.

Page 48: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 47

Section molulus is given as follow:

324311,4 100

1286,32( )0,9 2100

yc

x

c

MW cm

f

Section varies by the height so other values should be constant:

tw = 1 (cm)

tf = 1,4 (cm)

bf = 35 (cm)

The effective height:

w

W 1286,321,2 43,04

1

yc

xkth k cm

t

k = 1,2 – coefficient factor.

Chose h = 50 (cm)

Check tw:

maxw

6

w

w

3 3 718,61 0,02

2 2 47,2 1200

47,2 2,1 1047,2 3,2 3,2 101,19

1 2100

w v

Vt cm cm

h f

h E

t f

This section is OK.

Checking section.

a) Properties of section.

Section area: 2 2 1 47,2 2 35 1,4 145,2( )w f w w f fA A A t h b t cm

Moment of inertia relative to axis x-x:

3 2 3 3 2 3

w ww

4

. 35 1,4 48,6 1 47,22 2 . 2 35 1,4

12 4 12 12 4 12

66646,86

f f f

x x f f

b t h t hI I I b t

cm

Modulus of section:

32 2 66646,862665,87 ( )

50

xx

IW cm

h

Statical moment of flange area:

348,6. . 1,4 35 1190,70

2 2

f

f f f

hS t b cm

Statical moment of ½ area:

Page 49: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 48

w w wx

3

48,6 1 47,2 47,21,4 35

2 2 4 2 2 4

1469,18

f

f x f f

h t h hS S S t b

cm

b) Checking for allowable stress.

2

2

3838 24311,4 100 938,4 /

145,2 2665,87

2100 0,9 1890 /

x

n x

c

N MdaN cm

A W

f daN cm

This section is OK.

Checking for allowable shear stress:

20,9 1200 1080 /x

c v

x w

VSf daN cm

I t

2 2718,6 469,185,06( / ) 1080 /

66646,86 1

x

x w

VSdaN cm daN cm

I t

This section is OK.

The start rafter section is concurrent impacted by shear and moment. Thus,

allowable stress need to be stratified this formula below: 2 2 2

1 1 3 1,15 1,15 0,9 2100 2173,5 ( / )

td cf daN cm

Where:

2w

1

x

hM 24311,4 100 47,2σ = = × = 860,88 (daN/cm )

W h 2665,87 50

2

1

718,6 1190,712,84( / )

66646,86 1

f

x w

VSdaN cm

I t

2 2 2 2

td 1 1

2

σ = σ + 3τ = 860,88 +3×12,84 = 1547,37 (daN/cm )

< 2173,5 (daN/cm )

This section is OK.

Because of impacting of purlin so rafter need to be checked by local buckling

limit:

2

cb

cb w z

F Fσ = = 0,9 2100 1890 /

A t lcf daN cm

Page 50: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 49

Where:

F – impact of purlin on rafter.

c) Load combination 1: Dead load and Wind load tt tt tt tt

y y(tole) y(xg) gióq = (q + g ) + q = 4,86 + 3,87 +(-73,38) = -64,65 (daN/m)

tt tt tt

x(tole) x(xg)q = (q + g ) = 0,32 + 0,488 = 0,81 (daN/m)

x

d) Load combination 2: Dead load and Live load tt tt tt tt

y y(tole) y(xg)q = (q + g ) + p = 3,2 + 4,86 +42,69 = 50,75 (daN/m)

y

tt tt tt

x(tole) x(xg)q = (q + g ) + p = 0,32 + 0,488 + 4,29 = 5,098 (daN/m)tt

x x

Load combination 2 cause local web buckling in rafter (neglect qxtt).

. 50,75 6,5 329,88( )tt

yF q B daN

lz – is fictitious length of load distribution determined depending on condition

of leaning.

2 8 2 1,4 10,8z f

l b t cm

2 2329,88 30,54 / 1890 /

1 10,8cb

w z

FdaN cm daN cm

t l

This section is OK.

Checking for normal stress, shear stress and local buckling of web. 2 2 2 2

1 1 1 - 3 1,15 1,15 0,9 2100 2173,5 ( / )

td cb cb cf daN cm

2

1

2

1

2

860,88( / )

12,84( / )

30,54 /cb

daN cm

daN cm

daN cm

2 2 2 2

2

860,88 30,54 -860,88 30,54 3 12,84 846,32 /

< 2173,5 ( / )

td

td

daN cm

daN cm

This section is OK.

e) Checking for over all buckling.

Top flange connect to purlins, with purlins spacing is 1,1 (m).

So:

0 11003,143

350f

l

b

Page 51: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 50

Maximum value of 0

f

l

b:

6

0,41 0,0032 0,73 0,016

35 35 35 2,1 100,41 0,0032 0,73 0,016 23,01

1,4 1,4 48,6 2100

f f fo

f f f fk

b b bl E

b t t h f

o o

f f

l l

b b

so non checking.

f) Checking for local buckling of flange and web.

Flange: 617 2,1 10

12,14 0,5 0,5 15,811,4 2100

of

f

b E

t f

This section is OK.

Web:

Slender ratio of web

ww 6

w

47,2 21001,49

1 2,1 10

h f

t E

w w1,49 3,2 web without stiffeners is not buckling by shear.

Acctually, there is local buckling occur in top flange of rafter but it is doesn’t

mean so it is necglected. According to section 5.6.1.3 TCVN 5575 – 2012,

local buckling web do not need to check.

g) Calculating fillet weld connection:

As rafter bending, flange slip on web and fillet weld is created to prevent

sliping.

Using shielded metal arc welding, electrode N46: βf = 0.7, βs = 1, fwf = 2000

daN/cm2; fws = 0,45fu = 0,45 × 3400 = 1530 daN/cm2.

So:

2

w

2

ws

2

w wmin

. 0,7 2000 1400 /

. 1 1530 1530 /

. 1400 /

f f

s

f f

f daN cm

f daN cm

f f daN cm

Page 52: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 51

The height of the fillet weld:

w min

.S 718,6 1190,70,0051

2 . . 2 1400 66646,86 0,9

f

f

x c

Vh cm

f I

The height of the fillet weld follow above formula is too small so it should be

calculated by following formula:

min

min

1,2 1,2 10 12

5

f

f f

h t mm

h h mm

Chosse hf = 6 (mm) along longitudinal rafter.

Page 53: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 52

8 9 10

M (daN.m) -53305.25 11735.427 26936.689

N (daN) -5539.99 2903.313 -5113.026

V (daN) -9779.56 1558.077 606.26

Pcb (daN) 329.88 329.88 329.88

h (cm) 80 40 50

hw (cm) 77.2 37.2 47.2

tw (cm) 1 1 1

tf (cm) 1.4 1.4 1.4

bf (cm) 35 35 35

hfk (cm) 78.6 38.6 48.6

bof (cm) 17 17 17

A (cm2) 175.2 135.2 145.2

Ix (cm4) 189717.66 40809.93 66646.86

Wx (cm3) 4742.94 2040.50 2665.87

Sf (cm3) 1925.70 945.70 1190.70

Sx (cm3) 2670.68 1118.68 1469.18

σxmax (daN/cm2) 1155.51 596.60 1045.64

γcf = 1890 (daN/cm2) OK OK OK

Τmax (daN/cm2) 137.67 42.71 13.36

γcfv = 1080(daN/cm2) OK OK OK

σ1 (daN/cm2) 1084.55 534.87 953.84

τ1 (daN/cm2) 99.27 36.11 10.83

σtd (σ1, τ1) (daN/cm2) 1098.09 538.51 954.03

1.15γcf = 2173.5 (daN/cm2) OK OK OK

σcb (daN/cm2) 42.29 42.29 42.29

γcf = 1890 (daN/cm2) OK OK OK

σtd (σ1, τ1, σcb) (daN/cm2) 1077.84 518.81 933.60

1.15γcf = 2173.5 (daN/cm2) OK OK OK

3.14 3.14 3.14

19.24 23.85 21.99

Condition OK OK OK

12.14 12.14 12.14

Condition OK OK OK

2.55 1.23 1.56

3.2 3.2 3.2

Non checking Non checking Non checking

hf (design) (mm) 0.39 0.14 0.04

hf (preliminary) (mm) 5 ≤ hf ≤ 12 5 ≤ hf ≤ 12 5 ≤ hf ≤ 12

hf (optimize) (mm) 6 6 6

CHECK FOR FLANGE

STABIITY

CHECK FOR WEB

STABILITY

CONECTION BETWEEN

FLANGE AND WEB

SECTION

INTERIAL FORCE

DIMENSION

SECTION PROPERTIES

CHECK FOR ULTIMATE

STRESS

CHECK FOR OVER ALL

STABILITY

o

f

l

b

o

f

l

b

of

f

b

t

ww

w

h f

t E

w

DESIGN SECTION OF RAFTER D5 AND D6.

The design process is the same to D1 and D2 rafter, the table below:

Page 54: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 53

CHAPTER 7. COLUMN DESIGN

DESIGN STRAIGHT COLUMN C1.

Design length:

Length H = 14,2 m

Side span L1 = L3 = 30m.

a) In the plane frame:

Factors of design length for columns with constant section in the frame

plane at stiff fixing of collar beams to columns shall be determined by formula

of Table 17a according to SNiP II – 23 – 81.

Factor for extreme column of multi – span frame shall be determined as for

single – span frame column.

Formulars for determining factor :

b

c 1

I H 14,2n = 0,29 0,14

I L 30

Where: Ib – the smallest moment of inertia of rafter.

Ic – moment of inertia of column.

The factor of design lengh is given below:

n + 0,56 0,14 0,56μ = = 1,6

n + 0,14 0,14 0,14

Design length ler of columns (posts) with constant section or of separate

portions of stepped columns shall be determined by formula:

. 1,6 14,2 22,72xl H m

b) Out of the frame plane:

Design lengths of columns in the direction along the buildings length (out of

frame planes) shall be adopted equal to distances between points fixed

fromshifting out of the frame plane (column supports, crane and eaves girders;

joints of braces' and collar beams' fixing, etc.). Design lengths may be

determined onthe basis of design schemes which consider actual type of

columns' fixing.

Setting wide – flange steel bracing system at level code +6,35 m.

Design length: yl = 7(m)

Page 55: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 54

Section dimension.

From internal force table, chose N, Mx and My are absolute values of lateral

force and bending moments respectively at the most unfavourable

combination thereof |N|max:

M(daN.m) -22677.0

N(daN) -14001.2

VdaN) -4036.1

This force is at base column section is caused by these load cases 1, 2, 3, 6, 7.

The height of column section:

1 1 1 114200 (568 947)mm

15 25 15 25h H

Chose h = 700 mm

The width of flange of column section is chosen follow geometry:

350

1 1 1 1 7000 350 250

20 30 20 30

0,3 0,5 0,3 0,5 700 210 350

f

f y

f

b mm

b l mm

b h mm

Chose bf = 350 mm.

According to formula of Iasinky xc

x

N M + fγ

φA W , area section requirement

shall be conducted as follow:

x xyc

c x c x

M A MN 1 N 1A = + = +

fγ φ NW fγ φ ρ N

Preliminary φ = 0,8 and xρ = (0,35 ÷ 0,45)h :

2

14001,2 22677 1001,25 2,2 2,8 1,25 (2,2 2,8)

2100 0,9 70 14001,2

46,97 57,25

x

yc

c

MNA

f h N

cm

The thickness of flange and web column is chosen follow geometry:

1 1 1 1 2100

= 35 1,25 1 ( )28 35 2100 28 35 2100

f f

ft b cm

Chose tf = 1,4 (cm)

w

1 1 1 170 0,58 1,17

120 60 120 60

8

w

f

t h cm

cm t t

Page 56: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 55

Chose tw = 1 (cm)

Checking section.

a) Properties of section.

Section area: 22 1 67,2 2 35 1,4 165,2 ( )w w f fA t h b t cm

Moment of inertia relative to axis x-x, y-y:

3 2 3 3 2 3

w ww

4

. 35 1,4 68,6 1 67,22 2 . 2 35 1,4

12 4 12 12 4 12

140600,73

f f f

x x f f

b t h t hI I I b t

cm

33 3 3

467,2 1 352 2 1,4 10009,77 ( )

12 12 12 12

fw wy f

bh tI t cm

Inertia radius of cross section relative to axes x-x, y-y:

xx

I 140600,73i = = = 29,17 (cm) ;

A 165,2

y

y

I 10009,77i = = = 7,78 (cm)

A 165,2

Modulus of section:

3xx

2I 2×140600,73W = = = 4017,16(cm )

h 70

Design flexibility in planes perpendicular to axes x-x and y-y:

xx

x

l 22,72 100λ = = = 77,89

i 29,17

x x 6

f 2100λ = λ =77,89× = 2,46

E 2,1×10

y

y

y

l 7,5×100λ = = = 96,4;

i 7,78

y y 6

f 2100λ = λ = 96,4 × = 3,05

E 2,1×10

max yλ = λ = 96,4 < λ = 165

Design flexibility [λ] of column is satisfied.

Relative eccentricity m and reduced relative eccentricity me:

Page 57: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 56

x

x

e A 22677 100 165,2m = = × = 6,7

W 14001,2 4017,16

M

N

According to Table 73 SNiP II-23-81, with f

w

A 2×1,4×35 = = 1,46 > 1

A 1×67,2;

x0 λ = 2,46 < 5 and 5 < m = 6,7 < 20 , factor of influence of cross section form

η is given as:

1,4 0,2 1,4 0,2 2,46 0,91x

e m = ηm = 0,91×6,7 =6,1

Coefficient e at reduced relative eccentricity 6,1em and fictitious flexibility

2,46x : 0,178e

Ultimate flexibility compression components:

180 60 180 60 0,25 165

where 14001,2

0,250,178 165,2 2100 0,9e c

N

Af

b) Checking for strength of eccentric compression.

According to Section 5.24 SNiP II-23-81: The strength analysis of

eccentrically compressed and compressed-and-bent components according to

formula (49) is not necessary when the value of reduced eccentricity

6,1 20em , the section weakening does not occur and the values of bending

moments used for strength and stability are equal.

c) Checking for stability in the plane of moment action.

The stability analysis of eccentric compression and compression-and-bending

components with constant section (with regard to requirements of Sections

5.28 and 5.33 of this Code) in the plane of the moment's action which

coincides with the symmetry plane, shall be conducted by formula:

x c

e

Nσ = fγ

φ A

Factor eφ in formula (51) shall be determined.

The internal force are calculating is at base section of column Mc = -22677

(daN.m), causing by load case 1, 2, 3, 6, 7.

2 2

x c

e

N 14001,2σ = = = 476,14 (daN/cm ) < γ f = 0,9 2100 =1890 daN/cm

φ A 0,178×165,2

Page 58: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 57

This column is OK.

d) Checking for stability out of the moment action.

According to Section 5.30 SNiP II-23-81, The stability analysis of eccentric

compression components with constant section out of the moment action plane

at bending thereof in the plane of maximum stiffness (Jx > Jy ) coinciding with

the symmetry plane shall be executed by formula:

y c

y

Nσ = fγ

cφ A

Where:

is factor calculated according to requirements of Section 5.3 on this Code,

when 2,5 3,05 4,5y then yφ is given below:

2

2

1,47 13 (0,371 27,3 ) (0,0275 5,53 )

1,47 13 0,001 (0,371 27,3 0,001) 3,05 (0,0275 5,53 0,001) 3,05 0,61

y y y

f f f

E E E

c is factor calculated as required by Section 5.31.

When determining the relative eccentricity mx it is necessary to adopt as the

design moment Mx:

The maximum moment within the middle third of bar length (but not less than

the haft of the maximum moment along the bar length) for bars with hinged

bearing ends which are prevented from shifting perpendiculally to the plane of

moment’s action.

The internal force are calculating is at base section of column Mc = -22677

(daN.m), causing by load case 1, 2, 3, 6, 7, moment value at head column is

Md = 34635,9 (daN.m).

Page 59: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 58

So:

1/3

34635,9 22677max ; ; max 15531,1; ; 17317,9 daN.m

2 2 2 2

d cx

M MM M

Relative eccentricity mx is defined by adopted moment Mx:

x

x

e A 17317,9 100 165,2m = = × = 5,09

W 14001,2 4017,16

x

x

M

N

For relative eccentricity 5 < mx = 5,09 < 10, by formula:

5 102 0,2 0,2 1x xc c m c m

c5 is determined at mx = 5:

51 x

cm

α and β are factors adopted according to Table 10:

When mx = 5 the factor 0,65 0,05 0,65 0,05 5 0,9xm

When 62,1 10

96,4 3,14 3,14 99,32100

y c

E

f

the factor β = 1.

So 5

10,181

1 1 0,9 5x

cm

c10 is determined at mx = 10:

10

1

1x y

b

cm

0,61y (as calculated)

bφ is factor determined as required by Section 5.15 and Appendix 7 as for a

beam with two or more fixings of compression chord; bφ = 1.0 for closed

sections.

For welded double-T sections composed of three sheets as well as for double-

T sections with chord joints on high strength bolts: 2 23 3

o f w

3

fk f f f

l t at 700 1,4 68,6 1α = 8 1 + = 8 1 1,81

h b b t 68,6 35 2 35 1,4

According to Table 77 formulas for at 0.1 1,81 40 :

2,25 0,07 2,25 0,07 1,81 2,4

1φ is given as follow:

2 2 6

1

10009,77 70 2,1 10 2,4 1,49

140600,73 700 2100

y

x o

I h E

I l f

Page 60: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 59

φ1 > 0,851

1

0,68 0,21 0,68 0,21 1,49 0,99

b

b

Take φb = 0,99.

10

1 10,14

10 0,6111

0,99x y

b

cm

5 102 0.2 0,2 1 0,181 2 0,2 5,09 0,14 0,2 5,09 1 0,18x xc c m c m

So:

2 2

y c

y

N 14001,2σ = = = 771,89 / γ f = 0,9 2100 =1890 daN/cm

cφ A 0,18 0,61 165,2daN cm

This column is OK.

e) Checking for stability of flange and web.

For flange:

When analyzing centric and eccentric compression and compression - and

bending components with the fictitious flexibility equal to 0.8 to 4, the ratio

of design width of an overhang of chord sheets (flanges) be to thickness t shall

not exceed values determined by formulas of Table 29*:

62,1 10

0,36 0,1 0,36 0,1 2,46 19,22100

ob E

t f

Ratio:

0,5 (35 1)12,14

1,4

o

f

b

t

So:

12,14 19,2o o

f

b b

t t

This section is OK.

For web:

Checking by: w w

w w

h h

t t

.

In checking for stability:

2 2476,14 / 771,89 /x ydaN cm daN cm so the strength of this column

is mostly depend on moment’s action in the plane. Thus the slenderness ratio

[hw/tw] is given by Section 7.16 SNiP II-23-81 Code.

Page 61: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 60

14001,2 22677,1 100 67,2

550,42 165,2 140600,73 2

x w

x

M hN

A I

1

14001,2 22677,1 100 67,2533,44

2 165,2 140600,73 2

x w

x

M hN

A I

1

2 2

550,4 533,44 (2 1)1,97 1 4,35

550,4 2 4

w

w

h E

t

4036,11,4 (2 1) 1,4 (2 1) 1,4 (2 1,68 1) 0,36

67,2 1 550,4w w

V

h t

2 22 2

(2 1) (2 1,68 1) 21000004,35 4,35 281,66

550,4 2 1,68 1,68 4 0,362 4

21000003,8 3,8 120,17

2100

120.17

w

w

w

w

w

w

h E

t

h E

t f

h

t

Check:

w w

w w

h h67,2 = = 67,2 < = 120,17

t 1 t

This section is OK. In addition:

6

w

w

h 67,2 E 2,1×10 = = 67,2 < 2,3 = 2,3× = 72,73

t 1 f 2100

Web of this column need not be strengthend by lateral stiffening ribs.

Checking column at |M|max.

From internal force table, chose N, Mx and My are absolute values of lateral

force and bending moments respectively at the most unfavourable

combination thereof |M|max:

Page 62: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 61

M(daN.m) 34735.6

N(daN) -8897.8

VdaN) -4121.8

This force is at top of column section is caused by these load cases 1, 2, 3, 5,

6, 7.

Using dimension of calculated section.

But:

Relative eccentricity m and reduced relative eccentricity me:

x

x

e A 34735,6 100 165,2m = = × = 16,05

W 8897,8 4017,16

M

N

According to Table 73 SNiP II-23-81, with f

w

A 2×1,4×35 = = 1,46 > 1

A 1×67,2;

x0 λ = 2,46 < 5 and 5 < m = 6,7 < 20 , factor of influence of cross section form

η is given as:

1,4 0,2 1,4 0,2 2,64 0,87x

e m = ηm = 0,87×16,05 = 13,96

Coefficient e at reduced relative eccentricity 13.96em and fictitious

flexibility 2,64x : 0,098e

Ultimate flexibility compression components:

180 60 180 60 0,25 162.6

where 8897.8

0,290,098 165,2 2100 0,9e c

N

Af

max yλ = λ = 96.4< λ = 162.6

a) Checking for strength of eccentric compression.

According to Section 5.24 SNiP II-23-81: The strength analysis of

eccentrically compressed and compressed-and-bent components according to

formula (49) is not necessary when the value of reduced eccentricity

13.96 20em , the section weakening does not occur and the values of

bending moments used for strength and stability are equal.

b) Checking for stability in the plane of moment action.

The stability analysis of eccentric compression and compression-and-bending

components with constant section (with regard to requirements of Sections

5.28 and 5.33 of this Code) in the plane of the moment's action which

coincides with the symmetry plane, shall be conducted by formula:

Page 63: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 62

x c

e

Nσ = fγ

φ A

Factor eφ in formula (51) shall be determined.

The internal force are calculating is at top section of column Md = 34735,6

(daN.m), causing by load case 1, 2, 3, 5, 6, 7.

2 2

x c

e

N 8897,8σ = = = 549,6 (daN/cm ) < γ f = 0,9 2100 =1890 daN/cm

φ A 0,098×165,2

This section is OK.

c) Checking for stability out of the moment action.

According to Section 5.30 SNiP II-23-81, The stability analysis of eccentric

compression components with constant section out of the moment action plane

at bending thereof in the plane of maximum stiffness (Jx > Jy ) coinciding with

the symmetry plane shall be executed by formula:

y c

y

Nσ = fγ

cφ A

Where:

is factor calculated according to requirements of Section 5.3 on this Code,

when 2,5 3,05 4,5y then yφ is given below:

2

2

1,47 13 (0,371 27,3 ) (0,0275 5,53 )

1,47 13 0,001 (0,371 27,3 0,001) 3.05 (0,0275 5,53 0,001) 3,05 0,61

y y y

f f f

E E E

c is factor calculated as required by Section 5.31.

When determining the relative eccentricity mx it is necessary to adopt as the

design moment Mx:

The maximum moment within the middle third of bar length (but not less than

the haft of the maximum moment along the bar length) for bars with hinged

bearing ends which are prevented from shifting perpendiculally to the plane of

moment’s action.

The internal force are calculating is at top section of column Md = 34735,6

(daN.m) , causing by load case 1, 2, 3, 6, 7, 9, 13, moment value at base of

column is Mc = 29613,1 (daN.m).

Page 64: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 63

So:

1/3

34735,6 29613,1max ; ; max 33028,1; ; 33028,1 daN.m

2 2 2 2

d cx

M MM M

Relative eccentricity mx is defined by adopted moment Mx:

x

x

e A 34735,1 100 165,2m = = × =16,05

W 8897,8 4017,16

x

x

M

N

For relative eccentricity mx = 16.05 > 10, by formula:

1

1x y

b

cm

Where:

bφ is factor determined as required by Section 5.15 and Appendix 7 as for a

beam with two or more fixings of compression chord; bφ = 1.0 for closed

sections.

For welded double-T sections composed of three sheets as well as for double-

T sections with chord joints on high strength bolts: 2 23 3

o f w

3

fk f f f

l t at 700 1,4 68,6 1α = 8 1 + = 8 1 1,81

h b b t 68,6 35 2 35 1,4

According to Table 77 formulas for at 0.1 1,81 40 :

2,25 0,07 2,25 0,07 1,81 2,4

1φ is given as follow:

Page 65: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 64

2 2 6

1

10009,77 70 2,1 10 2,4 1,49

140600,73 700 2100

y

x o

I h E

I l f

φ1 > 0,851

1

0,68 0,21 0,68 0,21 1,49 0,99

b

b

Take φb = 0,99.

So:

1 1

0 0916 05 0 61

110 99

.. .

.x y

b

cm

So:

2 2

y c

y

N 8897,8σ = = = 981,07 / γ f = 0,9 2100 =1890 daN/cm

cφ A 0,09 0,61 165,2daN cm

This column is OK.

d) Checking for stability of flange and web.

For flange:

When analyzing centric and eccentric compression and compression - and

bending components with the fictitious flexibility equal to 0.8 to 4, the ratio

of design width of an overhang of chord sheets (flanges) be to thickness t shall

not exceed values determined by formulas of Table 29*:

62,1 10

0,36 0,1 0,36 0,1 2,46 19,22100

ob E

t f

Ratio:

0,5 (35 1)12,14

1,4

o

f

b

t

So:

12,14 19,2o o

f

b b

t t

This section is OK.

For web:

Checking by: w w

w w

h h

t t

In checking for stability:

Page 66: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 65

2 2549,6 / 981,07 /x ydaN cm daN cm so the strength of this column

is mostly depend on moment’s action in the plane. Thus the slenderness ratio

[hw/tw] is given by Section 7.16 SNiP II-23-81 Code:

8897,8 34735,6 100 67,2883,95

2 165,2 140600,73 2

x w

x

M hN

A I

1

8897,8 34735,6 100 67,2776,23

2 165,2 140600,73 2

x w

x

M hN

A I

1

2 2

883,95 776,23 (2 1)1,88 1 4,35

883,95 2 4

w

w

h E

t

4121,81,4 (2 1) 1,4 (2 1) 1,4 (2 1,88 1) 0,27

67,2 1 883,95w w

V

h t

2 22 2

(2 1) (2 1,88 1) 21000004,35 4,35 77,3

883,95 2 1,88 1,88 4 0,272 4

21000003,8 3,8 120,17

2100

77,3

w

w

w

w

w

w

h E

t

h E

t f

h

t

Check:

w w

w w

h h67,2 = = 67,2 < = 77,3

t 1 t

This section is OK. In addition:

6

w

w

h 67,2 E 2,1×10 = = 67,2 < 2,3 = 2,3× = 72,73

t 1 f 2100

Web of this column need not be strengthend by lateral stiffening ribs.

DESIGN STRAIGHT COLUMN C2-C3.

Design length.

Length H = 14,2 m

Page 67: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 66

Side span L1 = L3 = 30 (m), centre span L2 = 33 (m)

a) In the plane frame:

Factors of design length for columns with constant section in the frame

plane at stiff fixing of collar beams to columns shall be determined by formula

of Table 17a according to SNiP II – 23 – 81.

Factor for extreme column of multi – span frame shall be determined as for

single – span frame column.

Formulars for determining factor :

1 2( )

1

k n nn

k

Where:

k – the number of span, k = 3.

Side span L1 = 30 (m)

b

1

c 1

I H 15n = 0,29 0,15

I L 30

Centre span L2 = 33 (m)

b

2

c 2

I H 15n = 0,29 0,13

I L 33

Ib – the smallest moment of inertia of rafter.

Ic – moment of inertia of column.

1 2

2 0,15 0,13( )0,21

1 3 1

k n nn

k

The factor of design lengh is given below:

n + 0,56 0,21 0,56μ = = 1,49

n + 0,14 0,21 0,14

Design length ler of columns (posts) with constant section or of separate

portions of stepped columns shall be determined by formula:

. 1,49 14,2 21,16xl H m

b) Out of the frame plane:

Design lengths of columns in the direction along the buildings length (out of

frame planes) shall be adopted equal to distances between points fixed

fromshifting out of the frame plane (column supports, crane and eaves girders;

joints of braces' and collar beams' fixing, etc.). Design lengths may be

Page 68: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 67

determined onthe basis of design schemes which consider actual type of

columns' fixing.

Setting wide – flange steel bracing system at level code +6,35 m.

Design length: yl = 7(m)

Section dimension.

From internal force table, chose N, Mx and My are absolute values of lateral

force and bending moments respectively at the most unfavourable

combination thereof |N|max:

M(daN.m) -4953.8

N(daN) -40638.8

VdaN) -1232.8

This force is at base column section is caused by these load cases trọng 1, 2, 3,

4, 5, 8, 11.

The height of column section:

1 1 1 114200 (947 568)mm

15 25 15 25h H

Chose h = 700 mm

The width of flange of column section is chosen follow geometry:

350

1 1 1 1 7000 350 230

20 30 20 30

0.3 0.5 0,3 0,5 700 210 350

f

f y

f

b mm

b l mm

b h mm

Chose bf = 350 mm.

According to formula of Iasinky xc

x

N M + fγ

φA W , area section requirement

shall be conducted as follow:

x xyc

c x c x

M A MN 1 N 1A = + = +

fγ φ NW fγ φ ρ N

Preliminary φ = 0,8 and xρ = (0,35 ÷ 0,45)h :

2

40638,8 4953,8 1001,25 2,2 2,8 1,25 (2,2 2,8)

2100 0,9 70 40638,8

35,11 37,36

x

yc

c

MNA

f h N

cm

The thickness of flange and web column is chosen follow geometry:

Page 69: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 68

1 1 1 1 2100

= 35 1,25 1 ( )28 35 2100 28 35 2100

f f

ft b cm

Chose tf = 1.4 (cm)

w

1 1 1 170 0,58 1,17

120 60 120 60

8

w

f

t h cm

cm t t

Chose tw = 1 (cm)

Checking section.

a) Properties of section.

Section area: 22 1 67.2 2 35 1.4 165.2 ( )w w f fA t h b t cm

Moment of inertia relative to axis x-x, y-y:

3 2 3 3 2 3

w ww

4

. 35 1.4 68.6 1 67.22 2 . 2 35 1.4

12 4 12 12 4 12

140600.73

f f f

x x f f

b t h t hI I I b t

cm

33 3 3

467.2 1 352 2 1.4 10009.17 ( )

12 12 12 12

fw wy f

bh tI t cm

Inertia radius of cross section relative to axes x-x, y-y:

xx

I 140600.73i = = = 29.17 (cm) ;

A 165.2

y

y

I 10009.77i = = = 7.78 (cm)

A 165.2

Modulus of section:

3xx

2I 2×140600.73W = = = 4017.16(cm )

h 70

Design flexibility in planes perpendicular to axes x-x and y-y:

xx

x

l 21.16 100λ = = = 72.54

i 29.17

Page 70: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 69

x x 6

f 2100λ = λ =72.54× =2.29

E 2.1×10

y

y

y

l 7×100λ = = = 89.97 ;

i 7.78

y y 6

f 2100λ = λ = 89.97× = 2.85

E 2.1×10

max yλ = λ = 88.97< λ = 165.54

Design flexibility [λ] of column is satisfied

Relative eccentricity m and reduced relative eccentricity me:

x

x

e A 4953.8 100 165.2m = = × = 0.5

W 40638.8 4017.16

M

N

According to Table 73 SNiP II-23-81, with f

w

A 2×1,4×35 = = 1,46 > 1

A 1×67,2;

x0 λ = 2,46 < 5 and 5 < m = 6,7 < 20 , factor of influence of cross section form

η is given as:

1.90 0.1 0.02 6 1.90 0.1 0.5 0.02 (6 0.5) 2.29 1.59xm m

e m = ηm = 1.59 0.5=0.795

Coefficient e at reduced relative eccentricity 0.795em and fictitious

flexibility 2.29x : 0.539e

Ultimate flexibility compression components:

180 60 180 60 0.241 165.54

where 40638.8

0.2410.539 165.2 2100 0.9e c

N

Af

b) Checking for strength of eccentric compression.

According to Section 5.24 SNiP II-23-81: The strength analysis of

eccentrically compressed and compressed-and-bent components according to

formula (49) is not necessary when the value of reduced eccentricity

0.795 20em , the section weakening does not occur and the values of

bending moments used for strength and stability are equal.

c) Checking for stability in the plane of moment action.

The stability analysis of eccentric compression and compression-and-bending

components with constant section (with regard to requirements of Sections

Page 71: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 70

5.28 and 5.33 of this Code) in the plane of the moment's action which

coincides with the symmetry plane, shall be conducted by formula:

x c

e

Nσ = fγ

φ A

Factor eφ in formula (51) shall be determined.

The internal force are calculating is at base section of column Mc = -4953.8

(daN.m), causing by load case 1, 2, 3, 4, 5, 8, 11.

2 2

x c

e

N 40638.8σ = = = 456.4 (daN/cm ) < γ f = 0.9 2100 =1890 daN/cm

φ A 0.539×165.2

This column is OK.

d) Checking for stability out of the moment action.

According to Section 5.30 SNiP II-23-81, The stability analysis of eccentric

compression components with constant section out of the moment action plane

at bending thereof in the plane of maximum stiffness (Jx > Jy ) coinciding with

the symmetry plane shall be executed by formula:`

y c

y

Nσ = fγ

cφ A

Where:

is factor calculated according to requirements of Section 5.3 on this Code,

when 2,5 3,05 4,5y then yφ is given below:

2

2

1.47 13 (0.371 27.3 ) (0.0275 5.53 )

1.47 13 0.001 (0.371 27.3 0.001) 2.85 (0.0275 5.53 0.001) 2.85 0.66

y y y

f f f

E E E

c is factor calculated as required by Section 5.31.

When determining the relative eccentricity mx it is necessary to adopt as the

design moment Mx:

The maximum moment within the middle third of bar length (but not less than

the haft of the maximum moment along the bar length) for bars with hinged

bearing ends which are prevented from shifting perpendiculally to the plane of

moment’s action.

Page 72: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 71

The internal force are calculating is at base section of column Mc = -4953.8

(daN.m) , causing by load case 1, 2, 3, 4, 5, 8, 11, moment value at head

column is Md = 9407.8(daN.m).

So:

1/3

9407.8 4953.8max ; ; max 4588.3; ; 4703.9 daN.m

2 2 2 2

d cx

M MM M

Relative eccentricity mx is defined by adopted moment Mx:

x

x

e A 4703.9 100 165.2m = = × = 0.47

W 40638.8 4017.16

x

x

M

N

For relative eccentricity mx = 0.47 < 5, by formula:

1 x

cm

α and β are factors adopted according to Table 10:

When mx = 0.47 <1 the factor 0.7

When 62.1 10

89.97 3.14 3.14 99.32100

y c

E

f

the factor β = 1.

So: 1

0.751 1 0.7 0.47x

cm

So:

Page 73: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 72

2

y

y

2

c

N 40638.8σ = = = 573,42 /

cφ A 0.65 0.66 165.2

γ f = 0.9 2100 =1890 daN/cm

daN cm

This column is OK.

e) Checking for stability of flange and web.

For flange:

When analyzing centric and eccentric compression and compression - and

bending components with the fictitious flexibility equal to 0.8 to 4, the ratio

of design width of an overhang of chord sheets (flanges) be to thickness t shall

not exceed values determined by formulas of Table 29*:

62.1 10

0.36 0.1 0.36 0.1 2.29 18.632100

ob E

t f

Ratio: 0.5 (35 1)

12.141.4

o

f

b

t

So:

12.14 18.63o o

f

b b

t t

This section is OK.

For web:

Checking by: w w

w w

h h

t t

In checking for stability:

2 2456.4 / 573.42 /x ydaN cm daN cm so the strength of this

column is mostly depend on moment’s action in the plane. Thus the

slenderness ratio [hw/tw] is given by Section 7.16 SNiP II-23-81 Code.

40638.8 4953.8 100 67.2364.38

2 165.2 140600.73 2

x w

x

M hN

A I

1

40638.8 4953.8 100 67.2127.61

2 165.2 140600.73 2

x w

x

M hN

A I

1 364.38 127.610.65

364.38

Accoding to Section 7.16:

Page 74: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 73

α is determined by linear interpolation between values calculated for α = 0.5

and α = 1 when 0.5 < α < 1.

When 0.5 this ratio [hw/tw] is determined by Section 7.14 of this Codes

when m = 0.5 < 1 and xλ = 2.29 :

6

w

w w

6w

w

w

2.1 101.2 0.35 1.2 0.35 2.29 63.29

210063.29

2.1 103.1 3.1 98.03

2100

x

h E

t f h

th E

t f

When 1 this ratio [hw/tw] is determined as follow:

1232.81.4 (2 1) 1.4 (2 1) 1.4 (2 0.65 1) 0.02

67.2 1 364.38w w

V

h t

2 22 2

(2 1) (2 0.65 1) 21000004.35 4.35 127.86

364.38 2 0.65 0.65 4 0.022 4

21000003.8 3.8 120.17

2100

w

w

w

w

h E

t

h E

t f

120.17w

w

h

t

This ratio [hw/tw]= 100.26 is determined by linear interpolation between values

calculated for 0.5 and 1

Check:

w w

w w

h h67.2 = = 67.2 < = 100.26

t 1 t

This section is OK.

In addition: 6

w

w

h 67.2 E 2.1×10 = = 67.2 < 2.3 = 2.3× = 72.73

t 1 f 2100

Web of this column need not be strengthend by lateral stiffening ribs.

Checking column at |M|max

From internal force table, chose N, Mx and My are absolute values of lateral

force and bending moments respectively at the most unfavourable

combination thereof |M|max:

Page 75: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 74

M(daN.m) -27186.3

N(daN) -27482.7

VdaN) -4511.2

This force is at top of column section is caused by these load cases 1, 4, 5, 7,

8, 10, 15.

Using dimension of calculated section.

But:

Relative eccentricity m and reduced relative eccentricity me:

x

x

e A 27186.3 100 165.2m = = × = 4.07

W 27482.7 4017.16

M

N

According to Table 73 SNiP II-23-81, with f

w

A 2×1,4×35 = = 1,46 > 1

A 1×67,2;

x0 λ = 2,46 < 5 and 5 < m = 6,7 < 20 , factor of influence of cross section form

η is given as:

1.90 0.1 0.02 6 1.90 0.1 4.07 0.02 (6 4.07) 2.29 1.4xm m

e m = ηm = 1.4 4.07= 5.7

Coefficient e at reduced relative eccentricity 4.07em and fictitious

flexibility 2.29x : 0.192e

Độ mảnh giới hạn của thanh chịu nén là cột chính:

180 60 180 60 0.458 152.52

Where 27482.7

0.4580.192 165.2 2100 0.9e c

N

Af

max y

λ = λ = 89.87< λ = 152.52

a) Checking for strength of eccentric compression.

According to Section 5.24 SNiP II-23-81: The strength analysis of

eccentrically compressed and compressed-and-bent components according to

formula (49) is not necessary when the value of reduced eccentricity

5.7 20em , the section weakening does not occur and the values of bending

moments used for strength and stability are equal.

b) Checking for stability in the plane of moment action.

The stability analysis of eccentric compression and compression-and-bending

components with constant section (with regard to requirements of Sections

5.28 and 5.33 of this Code) in the plane of the moment's action which

coincides with the symmetry plane, shall be conducted by formula:

x c

e

Nσ = fγ

φ A

Page 76: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 75

Factor eφ in formula (51) shall be determined.

This force is at top of column section is caused by these load cases Md = -

27186.3 (daN.m), causing by load case 1, 4, 5, 7, 8, 10, 15.

2 2

x c

e

N 27482.8σ = = = 866.46 (daN/cm ) < γ f = 0,9 2100 =1890 daN/cm

φ A 0,192×165,2

This section is OK.

c) Checking for stability out of the moment action.

According to Section 5.30 SNiP II-23-81, The stability analysis of eccentric

compression components with constant section out of the moment action plane

at bending thereof in the plane of maximum stiffness (Jx > Jy ) coinciding with

the symmetry plane shall be executed by formula:

y c

y

Nσ = fγ

cφ A

Where:

is factor calculated according to requirements of Section 5.3 on this Code,

when 2,5 3,05 4,5y then yφ is given below:

2

2

1.47 13 (0.371 27.3 ) (0.0275 5,53 )

1.47 13 0.001 (0.371 27.3 0.001) 2.85 (0.0275 5.53 0.001) 2.85 0.66

y y y

f f f

E E E

c is factor calculated as required by Section 5.31.

When determining the relative eccentricity mx it is necessary to adopt as the

design moment Mx:

The maximum moment within the middle third of bar length (but not less than

the haft of the maximum moment along the bar length) for bars with hinged

bearing ends which are prevented from shifting perpendiculally to the plane of

moment’s action.

The internal force are calculating is at base section of column Mc = -27186.3

(daN.m) , causing by load case 1, 4, 5, 7, 8, 10, 15, moment value at base of

column is Md = -8729.9(daN.m).

Page 77: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 76

So:

1/3

8729.9 27186.3max ; ; max 20884.2; ; 20884.2 daN.m

2 2 2 2

d cx

M MM M

Relative eccentricity mx is defined by adopted moment Mx:

x

x

e A 20884.2 100 165.2m = = × = 3.12

W 27482.7 4017.16

x

x

M

N

For relative eccentricity mx = 3.12 < 5, by formula:

1 x

cm

α and β are factors adopted according to Table 10:

When mx = 3.12 <1 the factor 0.65 0.05 0.65 0.05 3.12 0.81xm

When 62.1 10

89.97 3.14 3.14 99.32100

y c

E

f

the factor β = 1.

So 1

0.281 1 0.81 3.12x

cm

So:

2 2

y c

y

N 27482.7σ = = = 900.22 / γ f = 0.9 2100 =1890 daN/cm

cφ A 0.28 0.66 165.2daN cm

This sec tion is OK.

Page 78: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 77

d) Checking for stability of flange and web.

For flange:

When analyzing centric and eccentric compression and compression - and

bending components with the fictitious flexibility equal to 0.8 to 4, the ratio

of design width of an overhang of chord sheets (flanges) be to thickness t shall

not exceed values determined by formulas of Table 29*:

62,1 100,36 0,1 0,36 0,1 2,46 19,2

2100

ob E

t f

Ratio:

0.5 (35 1)12.14

1.4

o

f

b

t

So:

12,14 19,2o o

f

b b

t t

This section is OK.

For web:

Slenderness ratio of web:

ww 6

w

67.2 21002.13

1 2.1 10

h f

t E

w w2.13 3.2

Web of this column need not be strengthend by lateral stiffening ribs.

DESIGN COLUMN BRACING.

Chose steel-pipe with diameter d90 and thickness 1.5 mm. These are some

properties:

Section area:

2 2 2 2 2( ) (9 8.7 ) 4.17( )4 4

A D d cm

Moment of inertia relative to axis x-x, y-y:

4 4 4 4( ) (9 8.7 ) 40.864 64

x yI I D d

Inertia radius of cross section relative to axes x-x:

xx

I 40.8i = = = 3.13(cm) ;

A 4.17

Section modulus:

Page 79: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 78

3xx

2I 2×40.8W = = = 9.07(cm )

h 9 Bracing slenderness ratio:

xx

x

l 6.5 100λ = = = 207.7

i 3.13y

According to Section 6.16 flexibility of tension components shall not exeed

values specified in Table 20:

Component of

structure

Ultimate flexibility of tension components subject to impact of

Dynamic loads Static loads Crane load

Brace components 400 400 300

max y minλ = λ = 207.7 < λ = 300

Design flexibility [λ] of column is satisfied

Page 80: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 79

DEAD LIVE1 LIVE2 LIVE3 LIVE4 LIVE5 LIVE6DMAX

LEFT

DMAX

RIGHTT LEFT - T LEFT T RIGHT - T RIGHT

LEFT

WIND

RIGHT

WIND

LONGITUDINAL

WIND

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

6 U3 -43.3 -20.8 -21.1 6.1 3.4 -0.6 0.3 0.9 1.0 0.9 -0.9 -0.3 0.3 58.9 40.9 55.3

10 U3 -50.3 3.5 5.3 -27.6 -27.6 5.3 3.5 -1.3 -1.3 -1.2 1.2 -1.2 1.2 30.9 30.9 68.1

JOINT DISPLACEMENT

LOAD PATTERN

MAX MIN MAX MIN

1, 14 1, 2, 3, 6 1, 4, 5, 7, 9, 10,

14, 161, 2, 3, 6, 11

15.6 -85.8 70.1 -82.4

1, 16 1 4 51, 2, 3, 6, 7, 11,

14, 161, 4, 5, 8, 10

17.9 -105.4 55.6 -102.2

6 85.8 30 350

10 105.4 33 313

JOINTLOAD COMBINATION 1 LOAD COMBINATION 2 CHOSE

(mm)

SPAN L

(m)L/Δ

CHAPTER 8. CHECKING DISPLACEMENT. Using software SAP2000 to analyze the structure and export the most

unfavourable displacement point.

CHECKING VERTICAL DISPLACEMENT.

Export vertical displacement at (6) and (10) point of structure:

Limit deflection:

max

1 1

350 250L L

OK

Page 81: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 80

MAX MIN MAX MIN

1, 14 1, 3, 5, 71, 2, 4, 6, 8, 11,

14, 16

1, 3, 5, 7, 9, 10,

13

23.8 -26.4 44.4 -41.3

1, 14 1, 151, 2, 4, 6, 8, 11,

14, 16

1, 3, 5, 7, 9, 10,

15

21.7 -24.2 38.9 -38.4

1, 14 1, 151, 2, 4, 6, 8, 11,

14, 16

1, 3, 5, 7, 9, 10,

15

21.0 -24.4 36.0 -37.4

1, 14 1, 151, 2, 4, 6, 8, 11,

14

1, 3, 5, 7, 9, 10,

15

21.8 21.8 31.9 -31.9

4

8 37.4 14.2 320

10 31.9 14.85 334

H/Δ

44.4 14.2 320

JOINT

LOAD COMBINATION 1 LOAD COMBINATION 2CHOSE

(mm)

HEIGHT H

(m)

6 38.9 15.7 354

DEAD LIVE1 LIVE2 LIVE3 LIVE4 LIVE5 LIVE6DMAX

LEFT

DMAX

RIGHTT LEFT - T LEFT T RIGHT - T RIGHT

LEFT

WIND

RIGHT

WIND

LONGITUDINAL

WIND

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

4 U1 -13.5 0.3 -4.6 1.0 -4.8 1.3 -3.5 4.1 -3.8 -2.8 2.8 2.6 -2.6 37.3 -11.4 17.3

6 U1 -9.5 2.0 -2.3 0.3 -5.1 1.3 -3.4 3.9 -3.8 -2.8 2.8 2.6 -2.6 31.2 -14.7 12.2

8 U1 -5.1 4.2 -0.7 0.2 -5.3 1.4 -3.6 4.0 -4.0 -3.0 3.0 2.7 -2.7 26.1 -19.3 6.7

10 U1 0.0 3.9 -0.8 2.4 -2.4 0.8 -3.9 3.8 -3.8 -2.8 2.8 2.8 -2.8 21.8 -21.8 0.0

JOINT DISPLACEMENT

LOAD PATTERN

CHECKING HORIZONTAL DISPLACEMENT.

Export vertical displacement at (4), (6), (8) AND (10) of structure:

Limit deflection:

max

1 1

354 300H L

OK

Page 82: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 81

CHAPTER 9. BRACKET COLUMN DESIGN

SECTION DIMENSION.

Using wide – flange cold – form steel product.

Model of calculation: console, with spacing Z = 0.4 m.

Load combination is used to design: Dmax and self weight runway beam Gdct.

Internal force at column’s bracket section:

max

max

19955.48 1430 0.4 8554.19 .

19955.48 1430 21385.48

dct

dct

M D G Z daN m

V D G daN

Preliminary for rib width of bracket colum bdct = 35 (cm)

Preliminary for width of bracket colum 35dvb cm

Preliminary for the flange thickness of bracket colum: dv

ft 1.2 cm

Beam web is defined base on load application to upper beam chord which are

not strengthened by stiffening ribs:

21385.48

0.302( 2 ) (35 2 1.2) 0.9 2100

dv

w dv

dct f c

Vt cm

b t f

Chose dv

wt 1 cm

Beam height is defined base on strength of web under shear application:

3 3 21385.48

29.72 2 1 0.9 1200

dv

w dv

w v c

Vh cm

t f

Chose dv

w 37.6h cm

So w 2 37.6 2 1.2 40dv dv

fh h t cm

SECTION PROPERTIES.

Section area: 2 2 2 37.6 2 35 1.2 159.2( )w f w w f fA A A t h b t cm

Moment of inertia relative to axis x-x:

3 2 3 3 2 3

w ww

4

. 35 1.2 38.8 1 37.62 2 . 2 35 1.2

12 4 12 12 4 12

36054.1

f f f

x x f f

b t h t hI I I b t

cm

Modulus of section:

Page 83: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 82

32 2 36054.11802.7( )

40

xx

IW cm

h

Statical moment of flange area:

338.8. . 1.2 35 814.8

2 2

f

f f f

hS t b cm

Statical moment of ½ area:

3w w wx

38.8 1 37.6 37.61.2 35 991.5

2 2 4 2 2 4

f

f x f f

h t h hS S S t b cm

CHECKING FOR ALLOWABLE STRESS:

2 28554.19 100

474.52 / 2100 0.9 1890 /1802.7

x c

x

MdaN cm f daN cm

W

This section is OK

Checking for allowable shear stress:

20.9 1200 1080 /x

c v

x w

VSf daN cm

I t

2 221385.48 991.5588.1( / ) 1080 /

36054.1 1

x

x w

VSdaN cm daN cm

I t

This section is OK

The start rafter section is concurrent impacted by shear and moment. Thus,

allowable stress need to be stratified this formula below: 2 2 2

1 1 3 1.15 1.15 0.9 2100 2173.5 ( / )

td cf daN cm

Where:

2w

1

x

hM 8554.19 100 37.6σ = = × = 446.05(daN/cm )

W h 1802.7 40

221385.48 814.8

483.3( / )36054.1 1

f

x w

VSdaN cm

I t

2 2 2 2 2 2

td 1 1σ = σ + 3τ = 446.05 + 3×483.3 = 948.52 (daN/cm ) < 2173.5 (daN/cm )

This section is OK.

CHECKING FOR OVER ALL BUCKLING.

Model of calculation: console, lo = 0.4(m)

Page 84: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 83

Ratio:

0 4001.14

350f

l

b

Maximum value of 0

f

l

b:

6

0.41 0.0032 0.73 0.016

35 35 35 2.1 100.41 0.0032 0.73 0.016 23.43

1.2 1.2 38.8 2100

f f fo

f f f fk

b b bl E

b t t h f

o o

f f

l l

b b

so non checking.

CHECKING FOR LOCAL BUCKLING OF FLANGE AND WEB.

Flange: 617 2.1 10

14.17 0.5 0.5 15.811.2 2100

of

f

b E

t f

This section is OK.

Web:

Slender ratio of web

ww 6

w

37.6 21001.19

1 2.1 10

h f

t E

w w1.19 2.2 web without stiffeners is not buckling by shear.

Acctually, there is local buckling occur in top flange of rafter but it is

doesn’t mean so it is necglected. According to section 5.6.1.3 TCVN 5575 –

2012, local buckling web do not need to check.

CALCULATING FILLET WELD CONNECTION.

As rafter bending, flange slip on web and fillet weld is created to prevent

sliping.

Using shielded metal arc welding, electrode N46: βf = 0.7, βs = 1, fwf = 2000

daN/cm2; fws = 0,45fu = 0,45 × 3400 = 1530 daN/cm2.

So:

Page 85: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 84

2

w

2

ws

. 0.7 2000 1400 /

. 1 1530 1530 /

f f

s

f daN cm

f daN cm

2

w wmin. 1400 /f ff f daN cm

The height of the fillet weld:

min

min

1.2 1.2 10 12

6

f

f f

h t mm

h h mm

Chose hf = 6 (mm)

The length design of fillet weld:

Upper flange (2 lines): w 35 1 34l cm

Lower flange (4 lines): w 17 1 16l cm

Web (2 lines): w 36.4 1 35.4l cm

Properties of fillet weld:

Section area:

2 0.7 0.6 34 2 16 4 35.4 2 85.18wf f f w

A h l cm

Moment of inertia:

Page 86: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 85

3 3 32 2

w

4

34 0.6 0.6 35.4 16 0.60.7 2 34 0.6 20.3 4 16 0.6 18.3

12 12 12

23878.13

fI

cm

Section modulus:

32 2 23878.13

1159.1341.2

wf

wf

IW cm

h

Checking allowable stress:

22 2 2

2 2 28554.19 100 21385.48 779.52 /

1159.13 85.18w M Q

w wf

M VdaN cm

W A

2 2

w779.52 / 0.9 2000 1800 /

w c fdaN cm f daN cm

This fillet weld is OK.

STIFFENING RIB DIMENSION.

At the location connecting between bracket and column and impact of runway

beam, web bracket column shall be strengthened by stiffening ribs.

The height: w 376dv

sh h mm

Width and thickness:

w

6

37640 40 52.53

30 30

21002 2 52.53 3.32

2.1 10

s

s s

hb mm

ft b mm

E

Chose bs = 100 (mm), ts = 6 (mm)

Page 87: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 86

CHAPTER 10. DESIGN JOINTS.

DESIGN BOLT JOINT BETWEEN C1 AND D1.

The internal force are used to calculate which is causing the most unfavourable

tension to bolts.

Column head

C1 1, 2, 3, 5, 6, 7

M(daN.m) 34735.6

N(daN) -8897.8

V(KN) -4121.8

Design bolts conection.

Chose high strength bolta, class 8.8, diameter d = 27 (mm).

Outside flange of column is strengthend by stiffener with some properties:

Thickness: s wt t = 1cm. Chose ts = 1 cm

Width (depend on stiffener’s dimension), chose bs = 12 cm

Height s1.5 1.5 12 18sh b cm

Chose hs = 20 (cm)

MV

N

Page 88: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 87

Tensile strength of single bolt:

4000 4.59 18360tb bntb

N f A daN

Where:

ftb: tensile strength of bolt class 8.8, ftb = 4000 daN/cm2

Abn : is the net area of bolt’s cross section, the value of Abn for bolts with

metric thread shall be adopted in accordance with Appendix 1, d = 27 mm

Abn = 4.59 cm2.

Shear strength of single bolt:

1

2

0.257700 4.59 1 1 5197.5

1.7hb bn b fb

b

N f A n daN

Where:

fhb : shear strength of bolt.

20.7 0.7 11000 7700 /hb ubf f daN cm

fub: ultimate resitance of steel. Steel grade 40Cr: fub= 11000 daN/cm2

138

80

35

0

17

01

01

70

1467214

25700120

9913813813813460

80

19

0

138

276

414

552

686

Page 89: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 88

b1γ woking condition factor of joint; the number of bolts in joint is na =

12 > 10 b1γ 1

b2μ, γ is coefficient of friction and reliability factor to be adopted

according to Table 39, SNiP II-23-81. Without treatment so μ = 0.25; b2γ

=1.7.

nf: is number of friction surfaces of joined component, nf = 1.

In case, joined component is applied simultaneously by shear and moment, it

should be checked separately by shear and moment respectively.

1

max 2 2 2 2 2 2

34735.6 100 68.6 8897.810693.52

2 2 13.8 27.6 41.4 55.2 68.6 12b

i

Mh NN daN

h n

See: ,max 10693.52 18360 0.95 17442b ctbN daN N daN

This joint component is OK.

Checking for shear strength:

From internal force table, chose N, Mx and My are absolute values of lateral

force and bending moments respectively at the most unfavourable

combination thereof Vmax.

Column head

C1 1, 2, 3, 6, 7

Mtư (daN.m) 34735.6

Ntư (daN) -8897.8

Vmax (daN) -4121.8

Shear force impact on single bolt:

4121.8

343.512

V

VN daN

n

See: 343,5 5197.5 0.95 4938V cbN KN N daN

This joint component is OK.

Design joint flange.

Thickness of joint flange:

1

1

19 10693.52 (13.8 27.6 41.4 55.2 68.6)1.1 1.1 1.84

( ) 68.6 35 68.6 2100

ib Nt cm

b h f

Where:

b1 – distance of 2 bolts’s line, b1 = 19 cm.

Page 90: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 89

b – width of joint flange, b = 35 cm.

Chose t = 2 cm

Design fillet welded between joint flange and column.

Using shielded metal arc welding, electrode N46: βf = 0.7, βs = 1, fwf = 2000

daN/cm2; fws = 0,45fu = 0,45 × 3400 = 1530 daN/cm2.

So:

2

w

2

ws

. 0.7 2000 1400 /

. 1 1530 1530 /

f f

s

f daN cm

f daN cm

2

w wmin. 1400 /f ff f daN cm

Fillet weld at flange:

The length design of fillet weld:

wl =4 17 1 2 12 1 86 cm

Tensile force impact on upper flange:

34735.6 100 8897.8

45173.392 70 2

k

d

M NN daN

h

The requirement height of fillet weld:

80

35

0

17

01

01

70

1467214

25700120

845

9913813813813813460

80

19

0

Page 91: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 90

45173.39

0.42( ) 86 1400 0.9

yc k

f

w w c

Nh cm

l f

The preliminary height:

min

min

1.2 1.2 10 12

6

f

f f

h t mm

h h mm

Chose hf = 10 (mm)

Fillet weld at web:

From internal force table, chose N, Mx and My are absolute values of lateral

force and bending moments respectively at the most unfavourable

combination thereof Vmax.

Column head

C1 1, 2, 3, 6, 7

Mtư (daN.m) 34735.6

Ntư (daN) -8897.8

Vmax (daN) -4121.8

The length design of fillet weld:

wl =2 67.2 1 132.4 cm

The requirement height of fillet weld:

4121.8

0.023( ) 142.4 1400 0.9

yc

f

w w c

Vh cm

l f

Chose hf = 10 mm.

DESIGN BOLT JOINT BETWEEN C3 AND DẦM D4, D5.

The internal force are used to calculate which is causing the most unfavourable

tension to bolts:

Beam D4 and

Column C3

Beam D5 and

Column C3

Load

combination 1,2,3,4,5,8,11 1,2,3,4,5

M (daN.m) -49169.9 -53305.3

N (daN) -4294.4 -5540.0

V (daN) 9089.2 -9779.6

Page 92: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 91

Internal force is calculated:

Beam D5 and

Column C3 1,2,3,4,5

M (daN.m) -53305.3

N (daN) -5540.0

V (daN) -9779.6

Design bolts conection.

Chose high strength bolta, class 8.8, diameter d = 27 (mm).

Lower flange of rafter is strengthened by stiffener with some properties:

Thickness: s wt t = 1cm. Chose ts = 1 cm

Width (depend on stiffener’s dimension), chose bs = 12 cm

Height s1.5 1.5 12 18sh b cm

Chose hs = 20 (cm)

Web of rafter is strengthened by stiffener with some properties:

Thickness: s wt t = 1cm. Chose ts = 1 cm

Width (depend on stiffener’s dimension), chose bs1 = 17 cm

Height s1.5 1.5 17 25.5sh b cm

Chose hs = 25 (cm)

Page 93: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 92

Tensile strength of single bolt:

4000 4.59 18360tb bntb

N f A daN

Where:

ftb: tensile strength of bolt class 8.8, ftb = 4000 daN/cm2

Abn : is the net area of bolt’s cross section, the value of Abn for bolts with

metric thread shall be adopted in accordance with Appendix 1, d = 27 mm

Abn = 4.59 cm2.

Shear strength of single bolt:

1

2

0.257700 4.59 1 1 5197.5

1.7hb bn b fb

b

N f A n daN

Where:

80 190 80

350

17

4

27

4

37

4

54

6

64

6

74

6

92

0

17010

170

14

38

11

03

81

14

12

08

00

12

0

10

40

60

17

41

00

10

01

72

10

01

00

17

46

0

Page 94: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 93

fhb : shear strength of bolt.

20.7 0.7 11000 7700 /hb ubf f daN cm

fub: ultimate resitance of steel. Steel grade 40Cr: fub= 11000 daN/cm2

b1γ woking condition factor of joint; the number of bolts in joint is na =

16 > 10 b1γ 1

b2μ, γ is coefficient of friction and reliability factor to be adopted

according to Table 39, SNiP II-23-81. Without treatment so μ = 0.25; b2γ

=1.7.

nf: is number of friction surfaces of joined component, nf = 1.

In case, joined component is applied simultaneously by shear and moment, it

should be checked separately by shear and moment respectively.

1

max 2

2 2 2 2 2 2 2

cos sin

2

53305.3 100 92 5540.0 0.995 9779.6 0.1

2 17.4 27.4 37.4 54.6 64.6 74.6 92 16 16

9968.6

b

i

Mh N VN

h n n

daN

See: ,max 9968.6 18360 0.95 17442b ctbN daN N daN

This joint component is OK.

Checking for shear strength:

From internal force table, chose N, Mx and My are absolute values of lateral

force and bending moments respectively at the most unfavourable

combination thereof Vmax.

Beam D5 and

Column C3 1,2,4,5,7,9,13

M (daN.m) -48572.9

N (daN) -6607.4

V (daN) -9188.2

Shear force impact on single bolt:

sin cos 6607.4 0.1 9188.2 0.995

530.0916 16

v

N VN daN

n n

See: 530.09 5197.5 0.95 4937.63blV cbN daN N daN

Page 95: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 94

This joint component is OK.

Design joint flange.

Thickness of joint flange:

1

1

19 9968.6 (17.4 27.4 37.4 54.6 64.6 74.6 92)1.1 1.1 1.85

( ) 92 35 92 2100

ib N

t cmb h f

Where:

b1 – distance of 2 bolts’s line, b1 = 19 cm.

b – width of joint flange, b = 35 cm

Chose t = 2.5 cm.

Design fillet welded between joint flange and column.

Using shielded metal arc welding, electrode N46: βf = 0.7, βs = 1, fwf = 2000

daN/cm2; fws = 0,45fu = 0,45 × 3400 = 1530 daN/cm2.

So:

2

w

2

ws

. 0.7 2000 1400 /

. 1 1530 1530 /

f f

s

f daN cm

f daN cm

2

w wmin. 1400 /f ff f daN cm .

Fillet weld at flange:

The length design of fillet weld:

wl =4 17 1 2 12 1 86 cm

Tensile force impact on upper flange:

80

19

08

0

35

0

17

01

01

70

14 381 10 381 14

120 800 120

1040

Page 96: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 95

cos sin 53305.3 100 5540 0.995 9779.6 0.1

2 2 80 2 2

63386.5

k

d

M N VN

h

daN

The requirement height of fillet weld:

63386.5

0.585( ) 86 1400 0.9

yc k

f

w w c

Nh cm

l f

The preliminary height:

min

min

1.2 1.2 10 12

6

f

f f

h t mm

h h mm

Chose hf = 10 (mm)

Fillet weld at web:

From internal force table, chose N, Mx and My are absolute values of lateral

force and bending moments respectively at the most unfavourable

combination thereof Vmax.

Beam D5 and

Column C3 1,2,4,5,7,9,13

M (daN.m) -48572.9

N (daN) -6607.4

V (daN) -9188.2

The length design of fillet weld:

wl =4 38.1 1 4 17 1 212.4 cm

The requirement height of fillet weld:

sin Vcos 6607.4 0.1 9188.2 0.995

0.03( ) 212.4 1400 0.9

yc

f

w w c

Nh cm

l f

Chose hf = 10 mm

DESIGN BOLT JOINT BETWEEN D1-D2, D3-D4 AND D5-D6.

Section are the same at 3 point so chose 1 for calculating.

The internal force are used to calculate which is causing the most unfavourable

tension to bolts.

Page 97: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 96

D1-D2 D3-D4 D5-D6

1,2,4,6,8,11 1,2,4,5,8,11,14 1,4,6,8,11,14, 16

M (daN.m) 8023.6 -11070.4 11735.4

N (daN) -3083.0 -2366.2 2903.3

V (daN) -3672.2 1312.7 1558.1

Internal force is calculated:

Design Check Check

D5-D6 D1-D2 D3-D4

1,4,6,8,11,14, 16 1,2,4,6,8,11 1,2,4,5,8,11,14

M (daN.m) 11735.4 8023.6 -11070.4

N (daN) 2903.3 -3083.0 -2366.2

V (daN) 1558.1 -3672.2 1312.7

Design bolt joint between D5 – D6.

a) Design bolts conection.

D5-D6 Design

1,4,6,8,11,14, 16

M (daN.m) 11735.4

N (daN) 2903.3

V (daN) 1558.1

Chose high strength bolta, class 8.8, diameter d = 27 (mm).

Lower flange of rafter is strengthened by stiffener with some properties:

Thickness: s wt t = 1cm. Chose ts = 1 cm

Width (depend on stiffener’s dimension), chose bs = 12 cm

Height s1.5 1.5 12 18sh b cm

Chose hs = 20 (cm)

Tensile strength of single bolt:

4000 4.59 18360tb bntb

N f A daN

Where:

ftb: tensile strength of bolt class 8.8, ftb = 4000 daN/cm2

Abn : is the net area of bolt’s cross section, the value of Abn for bolts with

metric thread shall be adopted in accordance with Appendix 1, d = 27 mm

Abn = 4.59 cm2.

Page 98: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 97

80

19

08

0

35

0

60 174 172 174 60

174

346

520

17

01

01

70

14 372 14

120 400 120

640

Shear strength of single bolt:

1

2

0.257700 4.59 0.9 1 4677.75

1.7hb bn b fb

b

N f A n daN

Where:

fhb : shear strength of bolt.

20.7 0.7 11000 7700 /hb ubf f daN cm

fub: ultimate resitance of steel. Steel grade 40Cr: fub= 11000 daN/cm2

b1γ woking condition factor of joint; the number of bolts in joint is na = 8

< 10 b1γ 0.9

b2μ, γ is coefficient of friction and reliability factor to be adopted

according to Table 39, SNiP II-23-81. Without treatment so μ = 0.25; b2γ

=1.7.

nf: is number of friction surfaces of joined component, nf = 1.

In case, joined component is applied simultaneously by shear and moment, it

should be checked separately by shear and moment respectively.

1

max 2 2 2 2

11735.4 100 52 2903.37620.9

2 2 17.4 34.6 52 8b

i

Mh NN daN

h n

Page 99: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 98

See: ,max 7620.9 18360 0.95 17442b ctbN daN N daN

This joint component is OK.

Checking for shear strength:

From internal force table, chose N, Mx and My are absolute values of lateral

force and bending moments respectively at the most unfavourable

combination thereof Vmax.

D5-D6 1,2,4,5,7,9,13

M (daN.m) -3756.4

N (daN) -6256.2

V (daN) -5676.4

Shear force impact on single bolt:

5676.4

709.68

V

VN daN

n

See: 709.6 4677.75 0.95 4443.86blV cbN daN N daN

This joint component is OK.

b) Design joint flange.

Thickness of joint flange:

1

1

19 7620.9 (17.4 34.6 52)1.1 1.1 1.38

( ) 52 35 52 2100

ib N

t cmb h f

Where:

b1 – distance of 2 bolts’s line, b1 = 19 cm.

b – width of joint flange, b = 35 cm.

Chose t = 2 cm.

c) Design fillet welded between joint flange and rafter.

Using shielded metal arc welding, electrode N46: βf = 0.7, βs = 1, fwf = 2000

daN/cm2; fws = 0,45fu = 0,45 × 3400 = 1530 daN/cm2.

So:

2

w

2

ws

. 0.7 2000 1400 /

. 1 1530 1530 /

f f

s

f daN cm

f daN cm

Page 100: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 99

80

19

08

0

35

0

60 174 172 174 60

17

01

01

70

14 372 14

120 400 120

640

2

w wmin. 1400 /f ff f daN cm .

Fillet weld at flange:

The length design of fillet weld:

wl =4 17 1 2 12 1 86 cm

Tensile force impact on upper flange:

11735.4 100 2903.3

30790.152 40 2

k

d

M NN daN

h

The requirement height of fillet weld:

30790.15

0.28( ) 86 1400 0.9

yc k

f

w w c

Nh cm

l f

The preliminary height:

min

min

1.2 1.2 10 12

6

f

f f

h t mm

h h mm

Chose hf = 10 (mm)

Fillet weld at web:

From internal force table, chose N, Mx and My are absolute values of lateral

force and bending moments respectively at the most unfavourable

combination thereof Vmax.

Page 101: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 100

D5-D6 1,2,4,5,7,9,13

M (daN.m) -3756.4

N (daN) -6256.2

V (daN) -5676.4

The length design of fillet weld:

wl =2 37.2 1 72.4 cm

The requirement height of fillet weld:

5676.4

0.06( ) 72.4 1400 0.9

yc

f

w w c

Vh cm

l f

Chose hf = 10 mm.

Checking joint bolt at D1-D2

The same arrangement between D1-D2 and D5-D6.

Internal force design

1,2,4,6,8,11

Mmax (daN.m) 8023.6

Ntư (daN) -3083.0

1,2,3,5,7,9,13

Vmax (daN) 3961.8

Strength of one bolt [N]tb (daN) 18360

[N]b (daN) 4677.75

Max tensile force Nb max (daN) 4577 < γc.[N]tb = 17442

THỎA

Max shear force NV (daN) 495.23 < γc.[N]tb =

4443.86 THỎA

Calculating joint flange 1

1

1.1( )

ib Nt cm

b h f

1.07 < tchọn = 2

Chord fillet weld

lw (tính toán) (cm) 86

Nk (daN) 18517.5

hfyc (cm) 0.17 < hf chọn = 1

Web fillet weld

lw (tính toán) (cm) 72.4

V(KN) 3961.8

hfyc (cm) 0.04 < hf chọn = 1

Page 102: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 101

Checking joint bolt at D3-D4

Internal force design

1, 2, 4, 5, 8, 11, 14

Mmax (daN.m) -11070.4

Ntư (daN) -2366.2

1,2,3,5,7,9,13

Vmax (daN) -4756.0

Strength of one bolt [N]tb (daN) 18360

[N]b (daN) 4677.75

Max tensile force Nb max (daN) 7142.49 < γc.[N]tb =

17442 THỎA

Max shear force NV (daN) 594.5 < γc.[N]tb =

4443.86 THỎA

Calculating joint flange 1

1

1.1( )

ib Nt cm

b h f

1.34 < tchọn = 2

Chord fillet weld

lw (tính toán) (cm) 86

Nk (daN) 28859.1

hfyc (cm) 0.27 < hf chọn = 1

Web fillet weld

lw (tính toán) (cm) 72.4

V(KN) -4756.0

hfyc (cm) 0.05 < hf chọn = 1

DESIGN BOLT JOINT BETWEEN D2-D3 AND D6-D7.

Section are the same at 3 point so chose 1 for calculating.

The internal force are used to calculate which is causing the most

unfavourable tension to bolts:

D2-D3 D6-D7

1,2,3,6 1,4,5,8,11

M (daN.m) 24311.4 26936.7

N (daN) -3838.0 -5113.0

V (daN) 718.6 606.3

Internal force is calculated:

Check Design

D2-D3 D6-D7

1,2,3,6 1,4,5,8,11

M (daN.m) 24311.4 26936.7

N (daN) -3838.0 -5113.0

V (daN) 718.6 606.3

Page 103: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 102

Design bolt joint between D6-D7.

a) Design bolts conection.

D6-D7 Design

1,4,5,8,11

M (daN.m) 26936.7

N (daN) -5113.0

V (daN) 606.3

Chose high strength bolta, class 8.8, diameter d = 27 (mm).

Lower flange of rafter is strengthened by stiffener with some properties:

Thickness: s wt t = 1cm. Chose ts = 1 cm

Width (depend on stiffener’s dimension), chose bs = 12 cm

Height s1.5 1.5 12 18sh b cm

Chose hs = 20 (cm)

Tensile strength of single bolt:

4000 4.59 18360tb bntb

N f A daN

Where:

ftb: tensile strength of bolt class 8.8, ftb = 4000 daN/cm2

Abn : is the net area of bolt’s cross section, the value of Abn for bolts with

metric thread shall be adopted in accordance with Appendix 1, d = 27 mm

Abn = 4.59 cm2.

Page 104: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 103

80 190 80

350

60

90

90

16

46

0

170 170

14

47

21

4

12

05

00

12

0

74

0

16

4

25

4

36

6

45

6

11

21

64

62

0

Shear strength of single bolt:

1

2

0.257700 4.59 1 1 5197.5

1.7hb bn b fb

b

N f A n daN

Where:

fhb : shear strength of bolt.

20.7 0.7 11000 7700 /hb ubf f daN cm

fub: ultimate resitance of steel. Steel grade 40Cr: fub= 11000 daN/cm2

b1γ woking condition factor of joint; the number of bolts in joint is na =

12 > 10 b1γ 1

b2μ, γ is coefficient of friction and reliability factor to be adopted

according to Table 39, SNiP II-23-81. Without treatment so μ = 0.25; b2γ

=1.7.

nf: is number of friction surfaces of joined component, nf = 1.

In case, joined component is applied simultaneously by shear and moment, it

should be checked separately by shear and moment respectively.

Page 105: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 104

1

max 2

2 2 2 2 2

cos sin

2

26936.7 100 62 5113 0.995 606.3 0.19838.56

12 122 16.4 25.4 36.6 45.6 62

b

i

Mh N VN

h n n

daN

See: ,max 9838.56 18360 0.95 17442b ctbN daN N daN

This joint component is OK.

Checking for shear strength:

From internal force table, chose N, Mx and My are absolute values of lateral

force and bending moments respectively at the most unfavourable

combination thereof Vmax.

D6-D7 1,2,4,5,7,9,13

M (daN.m) 23717.9

N (daN) -5641.6

V (daN) 469.2

Shear force impact on single bolt:

cos sin 469.2 0.995 5641.6 0.1

8.112 12

V

V NN daN

n n

See: 8.1 5197.5 0.95 4937.63blV cbN daN N daN

This joint component is OK.

b) Design joint flange.

Thickness of joint flange:

1

1

19 9838.56 16.4 25.4 36.6 45.6 621.1 1.1 1.83

( ) 62 35 62 2100

ib N

t cmb h f

Where:

b1 – distance of 2 bolts’s line, b1 = 19 cm.

b – width of joint flange, b = 35 cm.

Chose t = 2 cm.

c) Design fillet welded between joint flange and column.

Page 106: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 105

80 190 80

3506

09

09

01

64

60

17010

170

14

47

21

4

12

05

00

12

0

74

0

11

21

64

Using shielded metal arc welding, electrode N46: βf = 0.7, βs = 1, fwf = 2000

daN/cm2; fws = 0,45fu = 0,45 × 3400 = 1530 daN/cm2.

So:

2

w

2

ws

. 0.7 2000 1400 /

. 1 1530 1530 /

f f

s

f daN cm

f daN cm

2

w wmin. 1400 /f ff f daN cm .

Fillet weld at flange:

The length design of fillet weld::

wl =4 17 1 2 12 1 86 cm

Tensile force impact on upper flange:

26936.7 100 5113

51316.92 50 2

k

d

M NN daN

h

The requirement height of fillet weld:

Page 107: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 106

51316.9

0.47( ) 86 1400 0.9

yc k

f

w w c

Nh cm

l f

The preliminary height:

min

min

1.2 1.2 10 12

6

f

f f

h t mm

h h mm

Chose hf = 10 (mm)

Fillet weld at web:

From internal force table, chose N, Mx and My are absolute values of lateral

force and bending moments respectively at the most unfavourable

combination thereof Vmax:

D6-D7 1,2,4,5,7,9,13

M (daN.m) 23717.9

N (daN) -5641.6

V (daN) 469.2

The length design of fillet weld:

wl =2 47.2 1 92.4 cm

The requirement height of fillet weld:

cos sin 469.2 0.995 5641.6 0.1

0.001( ) 92.4 1400 0.9

yc

f

w w c

V Nh cm

l f

Chose hf = 10 mm.

Page 108: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 107

Checking joint bolt at D2-D3

The same arrangement between D2-D3 and D6-D7.

Internal force design

1,2,3,6

Mmax (daN.m) 24311.4

Ntư (daN) -3838.0

1,2,3,5,7,9,13

Vmax (daN) -4184.9

Strength of one bolt [N]tb (daN) 18360

[N]b (daN) 5197.5

Max tensile force Nb max (daN) 8863.6< γc.[N]tb = 17442

THỎA

Max shear force NV (daN) 315.01 < γc.[N]tb =

4443.86 THỎA

Calculating joint flange 1

1

1.1( )

ib Nt cm

b h f

1.73 < tchọn = 2

Chord fillet weld

lw (tính toán) (cm) 86

Nk (daN) 46703.8

hfyc (cm) 0.43 < hf chọn = 1

Web fillet weld

lw (tính toán) (cm) 92.4

V(KN) -4184.9

hfyc (cm) 0.032 < hf chọn = 1

DESIGN BASE OF COLUMN.

Base column C1.

a) Design joint flange.

The internal force are used to calculate which is causing the most

unfavourable combination |M|max and Nmax:

1,2,3,5,7,9,1

3, 15

1,2,3,6,7

Mmax -30490.9 Mtư -22677.0

Ntư -10104.9 Nmax -14001.2

Vtư -5511.1 Vtư -4036.1

The premilinary width:

cot 12 35 2 10 55

bdB b c cm

Where:

bcot = 35 cm – column width

Page 109: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 108

c1 = 10 cm

The length of joint flange is defined from concrete’s located pressure

condition: 2

, , ,

6

2 2bd

bd b loc bd b loc bd b loc

N N ML

B R B R B R

Where:

ψ = 0.75 for nonuniform load

2

,0.98 1.1 145 155.93 /

b loc b bR R daN cm

Using concrete class B25: Rb =145 daN/cm2; Rbt= 10.5 daN/cm2.

10.5

13.5 13.5 0.98145

bt

b

R

R .

3 1.5 m

b

bd

A

A Chose 1.1.b

The length of joint flange with Mmax and Nmax :

In case of |M|max

2

max

, , ,

6

2 2

tu tu

bd

bd b loc bd b loc bd b loc

N N ML

B R B R B R

2

d

10104.9 10104.9 6 30490.9 10054.1

2 55 0.75 155.93 2 55 0.75 155.93 55 0.75 155.93b

L cm

In case of Nmax

2

max max

, , ,

6

2 2

tu

bd

bd b loc bd b loc bd b loc

N N ML

B R B R B R

2

d

14001.2 14001.2 6 22677 10047.09

2 55 0.75 155.93 2 55 0.75 155.93 55 0.75 155.93bL cm

Base on geometry, the length of joint flange with c2 = 14 (cm) and the

thickness is 1 (cm)

dd dd 22 2 70 2 1 2 14 100L h t c cm

Chose Ldd = 100 (cm)

Stress reaction of concrete causing by Mmax:

2max

max 2 2

6 10104.9 6 30490.9 10035.1 /

55 100 55 100

tu

bd bd bd bd

N MdaN cm

B L B L

Page 110: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 109

2max

min 2 2

6 10104.9 6 30490.9 10031.43 /

55 100 55 100

tu

bd bd bd bd

N MdaN cm

B L B L

2

max min ,, 0.75 155.93 116.94 /b locR daN cm

Stress reaction of concrete causing by Nmax:

2max

max 2 2

6 14001.2 6 22677 10027.28 /

55 100 55 100

tu

bd bd bd bd

N MdaN cm

B L B L

2max

min 2 2

6 14001.2 6 22677 10022.19 /

55 100 55 100

tu

bd bd bd bd

N MdaN cm

B L B L

2

max min ,, 0.75 155.93 116.94 /b locR daN cm

According to stress results, using unfavourable focre |M|max to determine

the thickness of joint flange.

The thickness of joint flange is determined base on moment resistence

condition under the stress reaction of concrete, chosing maximum stress for

safe.

max6

bd

c

Mt

f

Where:

Mmax – maximum moment in cellular

Moment is defined as: 2

b i iM = α σ d i

di – calculating span in cellular i

iσ - is stress reaction of concrete

bα - is taken according to, Table 4.12, 4.13 (Structural steel book – Pham

Van Hoi).

Page 111: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 110

Cellular viewing:

O1 (3 edge soported slab)

1 2 234.5 ; 27d a cm b cm

Ratio: 2 2/ 0.783b a . Table 2.4 (book), using interpolation method: 0.095b

2 2

1 1 1 0.095 25.12 34.5 2840.41 .bM d daN cm

O2 (2 edge soported slab)

Page 112: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 111

2 2 230.414 ; 12.429d a cm b cm

Ratio: 2 2/ 0.409b a . Table 2.4 (book), using interpolation method: 0.06b

2 2

2 1 1 0.06 35.1 30.414 1948.07 .bM d daN cm

max 1 2max( , ) 2840.41 . M M M daN cm

So the requirement thickness: max6 6 2840.41

2.852100

bd

c

Mt cm

f

Chose tbd= 3 cm.

b) Design stiffening rib.

Dimension:

Thickness: tdd = 1 (cm)

Width: bdd = Bbd = 55 (cm)

Height: hdd depend on the strength capacity of weld line transmitting load

to column form concrete’s stress reaction.

Concrete’s stress reaction force:

dd 15 35.1 17.5 25.12 55 53135.5N daN

Using shielded metal arc welding, electrode N46: βf = 0.7, βs = 1, fwf = 2000

daN/cm2; fws = 0,45fu = 0,45 × 3400 = 1530 daN/cm2.

So:

2

w

2

ws

. 0.7 2000 1400 /

. 1 1530 1530 /

f f

s

f daN cm

f daN cm

Page 113: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 112

2

w wmin. 1400 /f ff f daN cm .

The preliminary height:

min

min

1.2 1.2 10 12

6

f

f f

h t mm

h h mm

Chose hf = 10 (mm)

The length fillet weld design:

w

53135.521.09

2 ( ) 2 1 1400 0.9

yc dd

f w c

Nl cm

h f

Executed length weld:

w w 1 21.09 1 22.09ycl l cm

The height of stiffening rib hdd = 25 (cm)

c) Design stiffening rib A.

Model of combination: console.

13.48 2 17.5 471.8 /sq daN cm

2 2471.8 27

171971.1 .2 2

s ss

q lM daN cm

471.8 27 12738.6s s sV q l daN

Preliminary thickness ts = 1 (cm).

The height of stiffening rib is determined base on moment resistence condition

under the stress reaction of concrete:

6 6 171971.1

22.171 2100 1

s

s

s c

Mh cm

t f

ls

Ms

Vs

Page 114: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 113

Chose hs = 25 (cm)

Checking for allowable stress:

2 2

2 2 2

1 1 2

6 171971.1 12738.6 3 3 1872( / )

1 25 1 25td

daN cm

2 21872( / ) 1.15 1.15 2100 0.9 2173.5( / )td cdaN cm f daN cm

The preliminary height:

min

min

1.2 1.2 10 12

6

f

f f

h t mm

h h mm

Chose hf = 10 (mm)

Section area and section modulus:

2

w

2

3

w

2 1 25 1 48

1 25 1W 2 192

6

A cm

cm

The strength of fillet weld is checked as follow:

2 2 2 2

2 2 2171971.1 12738.6 934.17 /

192 48

s s

w M Q

w w

M VdaN cm

W A

2 2

w min934.17 / 0.9 1400 1260 /

w cdaN cm f daN cm

d) Design stiffening rib B.

It is the same to stiffenng rib A, the width of area pressure:

1.5 1.5 14 21s sa l cm

35.1 21 737.1 /sq daN cm

2 2737.1 14

72235.8 .2 2

s ss

q lM daN cm

737.1 14 10319.4s s sV q l daN

Page 115: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 114

ls

Ms

Vs

Preliminary thickness ts = 1 (cm).

The height of stiffening rib is determined base on moment resistence condition

under the stress reaction of concrete:

6 6 72235.8

14.371 2100 1

s

s

s c

Mh cm

t f

Chose hs = 25 (cm)

Checking for allowable stress:

2 2

2 2 2

1 1 2

6 72235.8 10319.4 3 3 996.01( / )

1 25 1 25td

daN cm

2 2996.01( / ) 1.15 1.15 2100 0.9 2173.5( / )td cdaN cm f daN cm

The preliminary height:

min

min

1.2 1.2 10 12

6

f

f f

h t mm

h h mm

Chose hf = 10 (mm)

Section area and section modulus:

2

w

2

3

w

2 1 25 1 48

1 25 1W 2 192

6

A cm

cm

The strength of fillet weld is checked as follow:

Page 116: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 115

2 2 2 2

2 2 272235.8 10319.4 433.32 /

192 48

s s

w M Q

w w

M VdaN cm

W A

2 2

w min433.32 / 0.9 1400 1260 /

w cdaN cm f daN cm

e) Design anchored bolt.

The internal force are used to calculate which is causing the most

unfavourable tension to bolts:

1,2,3,5,7,9,1

3, 15

Mmax -30490.9

Ntư -10104.9

Vtư -5511.1

The length area is under compression c = 52.76 (cm).

Distance between centre bolt and the edge of column 7 (cm), is defined as:

d

d

100 52.7632.41

2 3 2 3

52.767 100 7 75.41

3 3

b

b

L ca cm

cy L cm

Where:

a – distance between compression area’s centre and column centre.

y – distance between compression area’s centre and opposite tension bolts

centre.

Tensile force apply to bolts:

1

30490.9 100 10104.9 32.4136090.57

75.41

M NaT daN

y

Using anchored bolts class 09Mn2Si: fba = 1900 daN/cm2.

Net cross section area requirement of single bolt:

21

1

36090.574.75

. 4 1900

yc

ba

ba

TA cm

n f

Chose bolt Φ30: Abn = 5.6 (cm2)

Tensile force apply to bolts reviewing:

2

30490.9 100 10104.930402.1

2 86 2b

M NT daN

L

Page 117: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 116

Where:

Lb – spacing of 2 line outside bolt.

Because T2 < T1 so chosing bolt class follow T1 is satisfied.

Page 118: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 117

f) Design fillet welded between joint flange and column.

Using shielded metal arc welding, electrode N46: βf = 0.7, βs = 1, fwf = 2000

daN/cm2; fws = 0,45fu = 0,45 × 3400 = 1530 daN/cm2.

So:

2

w

2

ws

. 0.7 2000 1400 /

. 1 1530 1530 /

f f

s

f daN cm

f daN cm

2

w wmin. 1400 /f ff f daN cm .

The internal force are used to calculate is the same to anchored bolt’s.

Fillet weld at flange:

The total length design of fillet weld:

wl =2 27 1 2 17 1 2 10 1 102 cm

Tensile force impact on upper flange:

30490.4 100 10104.9

38505.262 70 2

k

c

M NN daN

h

The requirement height of fillet weld:

38505.26

0.3( ) 102 1400 0.9

yc k

f

w w c

Nh cm

l f

The preliminary height:

140103451034510140

1000

170

10

170

500500

280

135

550

70 180 500 180 70

100

100

135

Page 119: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 118

min

min

1.2 1.2 10 12

6

f

f f

h t mm

h h mm

Chose hf = 10 (mm)

Fillet weld at web:

The total length design of fillet weld:

wl =4 33.1 1 128.4 cm

The requirement height of fillet weld:

5511.1

0.034( ) 128.4 1400 0.9

yc

f

w w c

Vh cm

l f

Chose hf = 10 mm.

Base column C2.

a) Design joint flange.

The internal force are used to calculate which is causing the most

unfavourable combination |M|max and Nmax:

1,4,5,7,8,10, 15

1,2,3,4,5,8,11

Mmax -27186.3 Mtư -4953.8

Ntư -27482.7 Nmax -40638.8

Vtư -4511.2 Vtư -1232.8

The premilinary width:

cot 12 35 2 10 55

bdB b c cm

Where:

bcot = 35 cm – column width

c1 = 10 cm

The length of joint flange is defined from concrete’s located pressure

condition: 2

, , ,

6

2 2bd

bd b loc bd b loc bd b loc

N N ML

B R B R B R

Where:

ψ = 0.75 for nonuniform load

2

,0.98 1.1 145 155.93 /

b loc b bR R daN cm

Using concrete class B25: Rb =145 daN/cm2; Rbt= 10.5 daN/cm2.

Page 120: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 119

10.5

13.5 13.5 0.98145

bt

b

R

R .

3 1.5 m

b

bd

A

A Chose 1.1.b

The length of joint flange with Mmax and Nmax:

In case of |M|max

2

max

, , ,

6

2 2

tu tu

bd

bd b loc bd b loc bd b loc

N N ML

B R B R B R

2

d

27482.7 27482.7 6 27186.3 10052.54

2 55 0.75 155.93 2 55 0.75 155.93 55 0.75 155.93b

L cm

In case of Nmax

2

max max

, , ,

6

2 2

tu

bd

bd b loc bd b loc bd b loc

N N ML

B R B R B R

2

d

40638.8 40638.8 6 4953.8 10024.88

2 55 0.75 155.93 2 55 0.75 155.93 55 0.75 155.93b

L cm

Base on geometry, the length of joint flange with c2 = 14 (cm) and the

thickness is 1 (cm)

dd dd 22 2 70 2 1 2 14 100L h t c cm

Chose Ldd = 100 (cm)

Stress reaction of concrete causing by Mmax:

2max

max 2 2

6 27482.7 6 27186.3 10034.65 /

55 100 55 100

tu

bd bd bd bd

N MdaN cm

B L B L

2max

min 2 2

6 27482.7 6 27186.3 10024.66 /

55 100 55 100

tu

bd bd bd bd

N MdaN cm

B L B L

2

max min ,, 0.75 155.93 116.94 /b locR daN cm

Stress reaction of concrete causing by Nmax:

2max

max 2 2

6 40638.8 6 4953.8 10012.79 /

55 100 55 100

tu

bd bd bd bd

N MdaN cm

B L B L

2max

min 2 2

6 40638.8 6 4953.8 1001.98 /

55 100 55 100

tu

bd bd bd bd

N MdaN cm

B L B L

Page 121: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 120

2

max min ,, 0.75 155.93 116.94 /b locR daN cm

According to stress results, using unfavourable focre |M|max to determine

the thickness of joint flange.

The thickness of joint flange is determined base on moment resistence

condition under the stress reaction of concrete, chosing maximum stress for

safe.

max6

bd

c

Mt

f

Where:

Mmax – maximum moment in cellular

Moment is defined as: 2

b i iM = α σ d i

di – calculating span in cellular i

iσ - is stress reaction of concrete

Page 122: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 121

bα - is taken according to, Table 4.12, 4.13 (Structural steel book – Pham

Van Hoi)

Cellular viewing:

O1 (3 edge soported slab)

1 2 234.5 ; 27d a cm b cm

Tỉ số: 2 2/ 0.783b a . Table 2.4 (book), using interpolation method: 0.095b

2 2

1 1 1 0.095 25.75 34.5 2911.65 .bM d daN cm

O2 (2 edge soported slab)

2 2 230.414 ; 12.429d a cm b cm

Ratio: 2 2/ 0.409b a . Table 2.4 (book), using interpolation method: 0.06b

2 2

2 1 1 0.06 34.65 30.414 1923.1 .bM d daN cm

max 1 2max( , ) 2911.65 . M M M daN cm

So the requirement thickness: max6 6 2911.65

2.882100

bd

c

Mt cm

f

Chose tbd= 3 cm.

b) Design stiffening rib.

Dimension:

Thickness: tdd = 1 (cm)

Page 123: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 122

Width: bdd = Bbd = 55 (cm)

Height: hdd depend on the strength capacity of weld line transmitting load

to column form concrete’s stress reaction.

Concrete’s stress reaction force:

dd 15 34.65 17.5 25.75 55 53370.63N daN

Using shielded metal arc welding, electrode N46: βf = 0.7, βs = 1, fwf = 2000

daN/cm2; fws = 0,45fu = 0,45 × 3400 = 1530 daN/cm2.

So:

2

w

2

ws

. 0.7 2000 1400 /

. 1 1530 1530 /

f f

s

f daN cm

f daN cm

2

w wmin. 1400 /f ff f daN cm .

The preliminary height:

min

min

1.2 1.2 10 12

6

f

f f

h t mm

h h mm

Chose hf = 10 (mm)

The length fillet weld design:

w

53370.6321.18

2 ( ) 2 1 1400 0.9

yc dd

f w c

Nl cm

h f

Executed length weld:

w w 1 21.18 1 22.18ycl l cm

The height of stiffening rib hdd = 25 (cm)

c) Design stiffening rib A.

Model of combination: console:

15.37 2 17.5 537.95 /sq daN cm

2 2537.95 27

196082.78 .2 2

s ss

q lM daN cm

537.95 27 14524.65s s sV q l daN

Page 124: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 123

Preliminary thickness ts = 1 (cm).

The height of stiffening rib is determined base on moment resistence condition

under the stress reaction of concrete:

6 6 196082.78

23.671 2100 1

s

s

s c

Mh cm

t f

Chọn hs = 25 (cm)

Checking for allowable stress: 2 2

2 2 2

1 1 2

6 196082.78 14524.65 3 3 2134.49( / )

1 25 1 25td

daN cm

2 22134.49( / ) 1.15 1.15 2100 0.9 2173.5( / )td cdaN cm f daN cm

The preliminary height:

min

min

1.2 1.2 10 12

6

f

f f

h t mm

h h mm

Chose hf = 10 (mm)

Section area and section modulus

2

w

2

3

w

2 1 25 1 48

1 25 1W 2 192

6

A cm

cm

The strength of fillet weld is checked as follow:

2 2 2 2

2 2 2196082.78 14524.65 1065.15 /

192 48

s s

w M Q

w w

M VdaN cm

W A

2 2

w min1065.15 / 0.9 1400 1260 /

w cdaN cm f daN cm

ls

Ms

Vs

Page 125: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 124

d) Design stiffening rib B.

It is the same to stiffenng rib A, the width of area pressure:

1.5 1.5 14 21s sa l cm

34.65 21 727.65 /sq daN cm

2 2727.65 14

71309.7 .2 2

s ss

q lM daN cm

727.65 14 10187.1s s sV q l daN

Preliminary thickness ts = 1 (cm).

The height of stiffening rib is determined base on moment resistence condition

under the stress reaction of concrete:

6 6 71309.7

14.271 2100 1

s

s

s c

Mh cm

t f

Chose hs = 25 (cm)

Checking for allowable stress:

2 2

2 2 2

1 1 2

6 71309.7 10187.1 3 3 983.24( / )

1 25 1 25td

daN cm

2 2983.24( / ) 1.15 1.15 2100 0.9 2173.5( / )td cdaN cm f daN cm

The preliminary height:

min

min

1.2 1.2 10 12

6

f

f f

h t mm

h h mm

Chose hf = 10 (mm)

ls

Ms

Vs

Page 126: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 125

Section area and section modulus:

2

w

2

3

w

2 1 25 1 48

1 25 1W 2 192

6

A cm

cm

The strength of fillet weld is checked as follow:

2 2 2 2

2 2 271309.7 10187.1 427.77 /

192 48

s s

w M Q

w w

M VdaN cm

W A

2 2

w min427.77 / 0.9 1400 1260 /

w cdaN cm f daN cm

e) Design anchored bolt.

The internal force are used to calculate which is causing the most

unfavourable tension to bolts:

1,4,5,7,8,10, 15

Mmax -27186.3

Ntư -27482.7

Vtư -4511.2

The length area is under compression c = 58.42 (cm).

Distance between centre bolt and the edge of column 7 (cm), is defined as:

d

d

100 58.4230.53

2 3 2 3

58.427 100 7 73.53

3 3

b

b

L ca cm

cy L cm

Where:

a – distance between compression area’s centre and column centre.

y – distance between compression area’s centre and opposite tension bolts

centre

Tensile force apply to bolts:

1

27186.3 100 27482.7 30.5325562.13

73.53

M NaT daN

y

Page 127: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 126

Using anchored bolts class 09Mn2Si: fba = 1900 daN/cm2.

Net cross section area requirement of single bolt:

21

1

25562.133.36

. 4 1900

yc

ba

ba

TA cm

n f

Chose bolt Φ30: Abn = 5.6 (cm2)

Tensile force apply to bolts reviewing:

2

27186.3 100 27482.117870.93

2 86 2b

M NT daN

L

Where:

Lb – spacing of 2 line outside bolt.

Because T2 < T1 so chosing bolt class follow T1 is satisfied.

Page 128: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 127

f) Design fillet welded between joint flange and column.

Using shielded metal arc welding, electrode N46: βf = 0.7, βs = 1, fwf = 2000

daN/cm2; fws = 0,45fu = 0,45 × 3400 = 1530 daN/cm2.

So:

2

w

2

ws

. 0.7 2000 1400 /

. 1 1530 1530 /

f f

s

f daN cm

f daN cm

2

w wmin. 1400 /f ff f daN cm .

The internal force are used to calculate is the same to anchored bolt’s.

Fillet weld at flange.

The total length design of fillet weld:

wl =2 27 1 2 17 1 2 10 1 102 cm

Tensile force impact on upper flange:

27186.3 100 27482.1

25096.522 70 2

k

c

M NN daN

h

The preliminary height:

25096.52

0.2( ) 102 1400 0.9

yc k

f

w w c

Nh cm

l f

The preliminary height:

140103451034510140

1000

170

10

170

500500

280

135

550

70 180 500 180 70

100

100

135

Page 129: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 128

min

min

1.2 1.2 10 12

6

f

f f

h t mm

h h mm

Chose hf = 10 (mm)

Fillet weld at web:

The total length design of fillet weld:

wl =4 33.1 1 128.4 cm

The requirement height of fillet weld:

4511.2

0.028( ) 128.4 1400 0.9

yc

f

w w c

Vh cm

l f

Chose hf = 10 mm.

Page 130: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 129

REFERENCES

1. TCVN 5575 – 2012 Tiêu chuẩn thiết kế kết cấu thép.

2. SNiP II – 23 – 81 Structural Steel Design.

3. TCVN 2737 – 1997 Tải trọng và tác động.

4. SNiP 2.01.07 – 85* Loads and effects.

5. Bài giảng kết cấu thép 2 Thầy Trần Văn Phúc.

6. Phạm Văn Hội, Nguyễn Quang Viên, Phạm Văn Tư, Lưu Văn Tường. Kết cấu

thép – Cấu kiện cơ bản. NXB Khoa học và Kỹ thuật. Hà Nội – 2009.

7. Phạm Văn Hội, Nguyễn Quang Viên, Phạm Văn Tư, Đoàn Ngọc Tranh,

Hoàng Văn Quang. Kết cấu thép 2 – Công trình dân dụng và công nghiệp.

NXB Khoa học và Kỹ thuật. Hà Nội – 2010.

8. Trần Thị Thôn. Bài tập Thiết kế kết cấu thép. NXB Đại học quốc gia Tp.

HCM. Tp. HCM – 2013.

9. GS. Đoàn Định Kiến, Phạm Văn Tư, Nguyễn Quang Viên. Thiết kế Kết cấu

thép nhà công nghiệp. NXB Khoa học và Kỹ thuật. Hà Nội – 2007.

10. Tủ sách khoa học công nghệ xây dựng. Hướng dẫn thiết kế Kết cấu thép theo

TCVN 338:2005. NXB Xây dựng 338:2005. Hà Nội – 2009.

11. Dr. GooGle.

Page 131: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 130

CONTENTS

SYMBOLS USED IN THIS PROJECT ............................................................................. 0

CHAPTER 1. GIVEN DATA .............................................................................................. 3

CHAPTER 2. FRAME GEOMETRY ................................................................................ 4

CHOSING CRANE. .................................................................................................... 4

DEFINE VERTICAL DIMENSION. .......................................................................... 4

Upper column length: .......................................................................................... 4

Lower column length: .......................................................................................... 4

DEFINE HORIZONTAL DIMENSION: .................................................................... 4

JACK ROOF MONITOR DIMENSION. .................................................................... 5

HORIZONTAL FRAME MODEL OF CALCULATION. ......................................... 5

CHAPTER 3. DEFINE LOAD. ........................................................................................... 7

DEAD LOAD. ............................................................................................................. 7

Self weight of structure. ....................................................................................... 7

Envelope material. ............................................................................................... 7

ROOF LIVE LOAD. .................................................................................................... 8

CRANE LOAD. ........................................................................................................... 8

Vertical impact. .................................................................................................... 8

Breaking force of trolley and lifted load: ........................................................... 10

WIND LOAD: ........................................................................................................... 10

Outside column .................................................................................................. 12

Left roof’s L1-L2 span ........................................................................................ 12

Right roof’s L1-L2 span ...................................................................................... 13

Center roof ......................................................................................................... 14

CHAPTER 4. DETERMINE INTERNAL FORCE, SHEAR AND MOMENT AT SAP

2000 V18 .............................................................................................................................. 15

DEFINE MATERIAL AND SECTION PROPERTIES. ........................................... 15

Material. ............................................................................................................. 15

Page 132: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 131

Section. ............................................................................................................... 16

CREATING BUILDING MODEL. ........................................................................... 18

DEFINE LOAD. ........................................................................................................ 19

Dead load ........................................................................................................... 20

Live load. ........................................................................................................... 20

Wind load. .......................................................................................................... 22

Crane load. ......................................................................................................... 22

INTERIAL FORCE AND LOAD COMBINATION. ............................................... 24

CHAPTER 5. PURLINS DESIGN. ................................................................................... 28

TOLE DESIGN. ........................................................................................................ 28

Properties. .......................................................................................................... 28

Define load. ........................................................................................................ 29

Design tole section. ............................................................................................ 29

PURLINS DESIGN. .................................................................................................. 31

Properties. According to vvvTra co Cor. catalogue ........................................... 31

Load impact........................................................................................................ 31

Purlins design. .................................................................................................... 32

DESIGN CONECTION BETWEEN TOLE AND PURLINS. ................................ 34

Load combination 1: Dead load and Wind load: ............................................... 34

Load combination 2: Dead load and Wind load: ............................................... 34

DESIGN CONECTION BETWEEN PURLINS AND RAFTER: ........................... 35

CHAPTER 6. RAFTER DESIGN ..................................................................................... 37

DESIGN THE START SECTION OF RAFTER B1. ................................................ 37

Section dimention. ............................................................................................. 37

Checking section. ............................................................................................... 38

DESIGN SECTION AT THE END OF D1 – BEGIN OF D2. ................................... 42

Section dimension. ............................................................................................. 42

Checking section. ............................................................................................... 43

DESIGN SECTION AT THE END OF D2 – SECTION (6). .................................... 46

Section dimension. ............................................................................................. 46

Page 133: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 132

Checking section. ............................................................................................... 47

DESIGN SECTION OF RAFTER D5 AND D6. ....................................................... 52

CHAPTER 7. COLUMN DESIGN ................................................................................... 53

DESIGN STRAIGHT COLUMN C1. ....................................................................... 53

Design length: .................................................................................................... 53

Section dimension. ............................................................................................. 54

Checking section. ............................................................................................... 55

Checking column at |M|max. ............................................................................. 60

DESIGN STRAIGHT COLUMN C2-C3. ................................................................. 65

Design length. .................................................................................................... 65

Section dimension. ............................................................................................. 67

Checking section. ............................................................................................... 68

Checking column at |M|max .............................................................................. 73

DESIGN COLUMN BRACING. .............................................................................. 77

CHAPTER 8. CHECKING DISPLACEMENT. ............................................................. 79

CHECKING VERTICAL DISPLACEMENT. ......................................................... 79

CHECKING HORIZONTAL DISPLACEMENT. ................................................... 80

CHAPTER 9. BRACKET COLUMN DESIGN .............................................................. 81

SECTION DIMENSION. .......................................................................................... 81

SECTION PROPERTIES. ......................................................................................... 81

CHECKING FOR ALLOWABLE STRESS: ............................................................ 82

CHECKING FOR OVER ALL BUCKLING. ........................................................... 82

CHECKING FOR LOCAL BUCKLING OF FLANGE AND WEB. ....................... 83

CALCULATING FILLET WELD CONNECTION. ................................................ 83

STIFFENING RIB DIMENSION. ............................................................................ 85

CHAPTER 10. DESIGN JOINTS. .................................................................................... 86

DESIGN BOLT JOINT BETWEEN C1 AND D1................................................... 86

Design bolts conection. .................................................................................... 86

Design joint flange. .......................................................................................... 88

Page 134: Single storey building design English version

STRUCTURAL STEEL PART TUTOR: DR.TRẦN VĂN PHÚC

NAME: NGUYỄN TRÍ THIỆN Page 133

Design fillet welded between joint flange and column.................................... 89

DESIGN BOLT JOINT BETWEEN C3 AND DẦM D4, D5. ................................. 90

Design bolts conection. .................................................................................... 91

Design joint flange. .......................................................................................... 94

Design fillet welded between joint flange and column.................................... 94

DESIGN BOLT JOINT BETWEEN D1-D2, D3-D4 AND D5-D6. ........................ 95

Design bolt joint between D5 – D6.................................................................. 96

Checking joint bolt at D1-D2 ......................................................................... 100

Checking joint bolt at D3-D4 ......................................................................... 101

DESIGN BOLT JOINT BETWEEN D2-D3 AND D6-D7. ................................... 101

Design bolt joint between D6-D7. ................................................................. 102

Checking joint bolt at D2-D3 ......................................................................... 107

DESIGN BASE OF COLUMN. ............................................................................ 107

Base column C1. ............................................................................................ 107

Base column C2. ............................................................................................ 118

REFERENCES ................................................................................................................. 129