Simultaneous Transformation Kinetics Avrami theory Adapted for many reactions occurring together...

25
Simultaneous Transformation Kinetics Avrami theory Adapted for many reactions occurring together Ferrite, Widmanstatten ferrite, pearlite…. Complex carbide-precipitation reactions Competition between inter- and intra- granularly nucleated reactions Some difficulties
  • date post

    21-Dec-2015
  • Category

    Documents

  • view

    268
  • download

    3

Transcript of Simultaneous Transformation Kinetics Avrami theory Adapted for many reactions occurring together...

Simultaneous Transformation Kinetics

• Avrami theory

• Adapted for many reactions occurring together

• Ferrite, Widmanstatten ferrite, pearlite….

• Complex carbide-precipitation reactions

• Competition between inter- and intra-granularly nucleated reactions

• Some difficulties

DISPLACIVE

RECONSTRUCTIVE

0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00 Allotriomorphic Widmanstatten Pearlite

PREDICTED FRACTION

MEASURED FRACTIONJones & Bhadeshia, 1996

CONSTRAINED UNCONSTRAINED

7407006606205800.0

0.2

0.4

0.6

0.8

1.0

Temperature / °C

0.0

0.2

0.4

0.6

0.8

1.0

PEARLITE

11 K/min

101 K/min

w

Jones & Bhadeshia, 1996

100 microns austenite grain size

Temperature / °C

PEARLITE

11 K/min

101 K/min

w

Jones & Bhadeshia, 1996

30 microns austenite grain size

0.0

0.2

0.4

0.6

0.8

1.0

7607206806406000.0

0.2

0.4

0.6

0.8

1.0

0 75 150 225 3000.00

0.25

0.50

0.75

1.00

Time / s

β+ β

Robson, Jones & Bhadeshia, 1996

0.001 0.01 0.1 1 10 100 1000 104500

550

600

650

700

Time /h

0.1% Laves

2% M23

C6

0.1% M2X

(b)

Steel F (10Cr1MoV)

Robson & Bhadeshia, 1996

0.1 1 10 100 1000 104500

550

600

650

700

750

800

Time /h

1% M23

C6

1% M2C

M23

C6 observed

M2X

observed

Baker & Nutting 2.25Cr1Mo Steel

Robson & Bhadeshia, 1996

10 100 1000 104450

500

550

600

650

700

0.25% Predicted0.25% Calculated by Hald

Time /h

(a)

Robson & Bhadeshia, 1996

NF 616

-350

-300

-250

-200

-150

-100

-50

0

50

400 500 600 700 800 900 1000

EquilibriumNon equilibrium

Temperature /degCRobson & Bhadeshia, 1996

Driving force for M2X precipitation

0

0.005

0.01

0.015

0.02

0.025

500 550 600 650 700 750 800

M23

C6

Laves PhaseM

2X

Temperature /degC

Steel F (10CrMoV)

Robson & Bhadeshia, 1996

-500

-450

-400

-350

-300

-250

-200

-150

-100

500 550 600 650 700

2.25Cr1Mo10CrMoV

Temperature /degC

M2X precipitation

Robson & Bhadeshia, 1996

-450

-400

-350

-300

-250

-200

-150

500 550 600 650 700 750

2.25Cr1Mo10CrMoV

Temperature /degCRobson & Bhadeshia, 1996

M23C6 precipitation

-100

-80

-60

-40

-20

0

20

500 550 600 650 700 750

10CrMoV 2.25Cr1Mo

Temperature /degC

Laves phase precipitation

Robson & Bhadeshia, 1996

-500

-400

-300

-200

-100

0

100

750 800 850 900 950 1000 1050 1100

DG M2X

DG M23C6

DG LavesDG M2X

Temperature /K

Delta G /J/mol

Steel F, Free Energy Changes

Robson & Bhadeshia, 1996

dVØ=µ1°VØV∂dVeØt1 t2

ba

dVØ=µ1°VØ+VµV∂dVeØdVµ=µ1°VØ+VµV∂dVeµ

Kasuya, Ichikawa, Fuji and Bhadeshia, 1999

Kasuya, Ichikawa, Fuji and Bhadeshia, 1999

0 100 200 300 400 500 6000.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time / s

Prestrain

0.0

0.18

0.360.63

Singh & Bhadeshia, 1996

Singh & Bhadeshia, 1996

0 100 200 300 400 500 6000.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time / s

Prestrain

0.0

0.63

Singh & Bhadeshia, 1996

0.0 0.2 0.4 0.6300

350

400

Prestrain

Ms of the alloy

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

Prestrain

500 oC

475 oC

450 oC

400 oC

V(x∞ÆC°xÆ∞C)=DC@xC@zjz§V(x∞ÆMn°xÆ∞Mn)=DMn@xMn@zjz§V(x∞ÆC°xÆ∞C)=DC@xC@zjz§V(x∞ÆMn°xÆ∞Mn)=DMn@xMn@zjz§DC¿DMnDC¿DMn