Simulation and Experimental Study of SCM/WDM Optical · PDF file Introduction: TDM,WDM...
date post
29-Sep-2020Category
Documents
view
2download
0
Embed Size (px)
Transcript of Simulation and Experimental Study of SCM/WDM Optical · PDF file Introduction: TDM,WDM...
Simulation and Experimental Study of SCM/WDM Optical
Systems
Renxiang Huang University of Kansas
May 23, 2001
OutlineOutline
■■ Introduction to SCM technologyIntroduction to SCM technology ■■ Demand for more bandwidthDemand for more bandwidth
■■ TDM,WDM strategiesTDM,WDM strategies
■■ SCM and WDM combinationSCM and WDM combination
■■ Numerical simulation modelNumerical simulation model ■■ Goals and general requirementsGoals and general requirements
■■ Description of the simulation modelDescription of the simulation model ■ Transmitter ■ Optical fiber nonlinear model ■ Receiver
OutlineOutline
■ Simulation results ■ BPSK, 4-subcarrier each with 2.5Gb/s datarate, self-coherent
detection ■ QPSK, 2-subcarrier each with 2x2.5Gb/s datarate, self-
coherent detection ■ ASK, 4-subcarriers each with 2.5Gb/s datarate, direct
detection using narrowband optical filter ■ Traditional NRZ modulated OC192 system
■ Experiment
■ Conclusions and future work
Introduction: Introduction: Demand for more BandwidthDemand for more Bandwidth
■ Faster Internet access ■ High speed data transmission ■ Video Conferencing ■ High resolution image transmission ■ Other new services
■■ More fiber everywhereMore fiber everywhere
■■ Higher data-rate each wavelength----------TDMHigher data-rate each wavelength----------TDM
■■ More wavelengths in the fiber--------------- WDMMore wavelengths in the fiber--------------- WDM
Introduction: TDM,WDM strategiesIntroduction: TDM,WDM strategies
■■ TDM strategyTDM strategy ■■ Simple modulation format: IMDD binary systemSimple modulation format: IMDD binary system
■■ Short bit length, more bits in unit timeShort bit length, more bits in unit time
■■ Electrical TDM and optical TDM, Electrical TDM and optical TDM, solitonsoliton
■■ Grooming may be a big problemGrooming may be a big problem
■■ Difficult in transmission through fiber: chromatic dispersion,Difficult in transmission through fiber: chromatic dispersion, PMD, fiber nonlinearityPMD, fiber nonlinearity
■■ Does not scale well beyond OC192Does not scale well beyond OC192
Introduction: TDM,WDM strategiesIntroduction: TDM,WDM strategies
■■ WDM strategyWDM strategy ■■ Multiple wavelengths in a single fiberMultiple wavelengths in a single fiber
■■ Better utilization of optical fiber transmission windowBetter utilization of optical fiber transmission window
■■ Lower Lower bitratebitrate & lower power per wavelength & lower power per wavelength
■■ From CWDM to DWDM: increase bandwidth efficiencyFrom CWDM to DWDM: increase bandwidth efficiency example:example:2.5Gb/s per-channel data rate and 50GHz channel spacing, the
bandwidth efficiency is 0.05 bit/Hz.
■■ Technical difficulties: Technical difficulties: lightwavelightwave sources, optical filters, sources, optical filters, dispersion management, dispersion management, nonliearnonliear crosstalkcrosstalk, …., ….
Introduction: SCM/WDM and OSSBIntroduction: SCM/WDM and OSSB
■■ SCM leverages mature microwave technologySCM leverages mature microwave technology
■■ Two-step modulation: RF modulation at sub-carriers, opticalTwo-step modulation: RF modulation at sub-carriers, optical modulation at wavelengths.modulation at wavelengths.
■■ OSSB is preferred: less dispersion penalty, higher bandwidthOSSB is preferred: less dispersion penalty, higher bandwidth efficiencyefficiency
fOf 3- f 2 - f 1 - f 4+f 3+f 2+f 1+f 4-
a. O ptical DSB SCM
b. O ptical SSB SCM
fO f 4+f 3+f 2+f 1+
op tic a l d e tec tion us ing filte r
Introduction: SCM/WDM and OSSBIntroduction: SCM/WDM and OSSB
■■ SCM/WDM combinationSCM/WDM combination ■■ Large number of channels, low channel speed, easy groomingLarge number of channels, low channel speed, easy grooming
and scaling, lower dispersion penaltyand scaling, lower dispersion penalty
■■ Advanced modulation format, phase modulation possibleAdvanced modulation format, phase modulation possible
■■ NonliearityNonliearity-introduced distortion-introduced distortion
b. W DM
a. W DM/SCM
f 4+f 3+f 2+f 1+
1λ 2λ
1λ 2λ
An exemplary setup of SCM/WDM systemAn exemplary setup of SCM/WDM system
λm
λ1
f1
Σ
f2 ch.2
fn ch.n
.
.
Receiver
ch.1
O pt
ic a
l W D
M M
U X
O pt
ic a
l W D
M D
M U
XAdd/drop
f1
Σ
f2 ch.2
fn ch.n
.
.
Receiver
ch.1
Transmitter f1
Σ
f2 ch.2
fn ch.n
.
.
λ1ch.1
Transmitter f1
Σ
f2 ch.2
fn ch.n
.
.
λm
ch.1
50GHz
λ1 λ2 λ3 λ4 λ
5GHz
Numerical model for SCM/WDM systemsNumerical model for SCM/WDM systems
■■ Goals and general requirementsGoals and general requirements ■■ To be able to handle different types ofTo be able to handle different types of multi multi-wavelength-wavelength
SCM/WDM systemsSCM/WDM systems
■■ Include both dispersion and fiber Include both dispersion and fiber nonlinearitynonlinearity
■■ To be able to handle a variety of modulation formats, OSSB,To be able to handle a variety of modulation formats, OSSB, ASK, BPSK, QPSK and binary IMDDASK, BPSK, QPSK and binary IMDD
■■ Combine Combine waveform waveform distortion and noise: distortion and noise: sensitivitysensitivity
Transmitter simulation model
C hanne l 4 da ta 2 .488G b it/s
C hanne l 4 R F osc illa to r
(17 .5G Hz)
C hanne l 1 da ta 2 .488G b it/s
C hanne l 1 R F osc illa to r (3 .6 G Hz)
channe l 3 (13G Hz)
channe l 2 (8 .3G Hz)
T ransmitter fiilte r
T ransmitter filte r
S C M T ra nsm itter B lock D ia gram
RF mu ltip lexer
M Z m odu la tor
90degree phase shift
B ias
LD Power
amplifie r W D M coup le r
f ro m o ther laser sourses
to f iber
■ 27-1 PRBS ■ Random relative delay between different sub-carriers
and wavelengths ■ 6-order Butterworth filter for band-limiting ■ 64 to 256 samples per bit depending on the required
simulation bandwidth
Baseband signal generation
Baseband signal generation
2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0
0
5 0 0
1 0 0 0
1 5 0 0
2 0 0 0
2 5 0 0
3 0 0 0
3 5 0 0
4 0 0 0 C h a n n e l N u m b e r = 1 C h a n n e l W a v e le n g t h = 1 5 5 0 n m N u m b e r o f s a m p l e s / b i t = 6 4
(a)eyediagram of baseband signal after the electrical filter
0 0 . 5 1 1 . 5 2 2 . 5 3 3 . 5 4 4 . 5 5
x 1 0 4
- 2 0 0 0
- 1 0 0 0
0
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
I c h a n n e l T R A N S M I T F I L T E R O U T P U T P U L S E - - > I N T E N S I T Y a f t e r f i l t e r i n g
P u
ls e
in
t e
n s
it y
(
m w
)
T i m e ( p s )
C h a n n e l N u m b e r = 1 B i t R a t e = 2 . 4 8 G b / s C h a n n e l W a v e l e n g t h = 1 5 5 0 n m C a r r i e r f r e q u e n c y = 2 . 6 G H z
- 6 - 4 - 2 0 2 4 6 8 - 3 0
- 2 5
- 2 0
- 1 5
- 1 0
- 5
0
5
1 0
•Signal eyediagram
•Signal waveform
•Baseband Spectrum
)sin()()cos()()( tnTtfyAtnTtfxAts csnccsnc ωω ∑∑ ∞
∞−
∞
∞−
−−−=
cA peak signal value
nx and ny information bits (0, 1 or -1)
)(tf normalized baseband bit shape function
cω subcarrier frequency ASK: BPSK: QPSK:
0or 1=nx 1-or 1=nx 1-or 1=nx 0=ny 0=ny 1-or 1=ny
If f(t) represents a rectangular bit shape , the PSD of the complex envelope of MPSK is
) )sin(
()( 2
S
S Sc
fT
fT TAfP
π π
= , where ST is the symbol time.
The 3dB bandwidth of BPSK and QPSK are both 0.88R if they have the same symbol rate R. Each symbol in QPSK represents 2 bits, so the spectrum efficiency is doubled.
Sub-carrier generation
4-subcarrier BPSK composite signal4-subcarrier BPSK composite signal
0 . 5 1 1 . 5 2 2 . 5 3 3 . 5 4 4 . 5 5
x 1 0 4
- 5 0 0 0
- 4 0 0 0
- 3 0 0 0
- 2 0 0 0
- 1 0 0 0
0
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
5 0 0 0
T R A N S M I T F IL T E R O U T P U T P U L S E - - > IN T E N S IT Y a f t e r c o m b i n e r
P u
ls e
in
t e
n s
it y