SiC Technologies for High Reliability

29
ALTER – CNM MEWS 25 Japan 2012 SiC Technologies for High Reliability MEWS25 - 2012 Power devices and Systems Group Systems Integration Department Centro Nacional de Microelectrónica, CNM CNM-CSIC, Campus Universidad Autónoma de Barcelona, 08193 Bellaterra, Barcelona, Spain Philippe Godignon [email protected] Optoelectronic and Innovation Department ALTER TECHNOLOGY C/ Majada 3 28760 Tres Cantos, Madrid, Spain Agustín Coello [email protected] [email protected]

Transcript of SiC Technologies for High Reliability

Page 1: SiC Technologies for High Reliability

ALTER – CNM

MEWS 25 Japan 2012

SiC Technologies for High Reliability MEWS25 - 2012

Power devices and Systems Group Systems Integration Department

Centro Nacional de Microelectrónica, CNM

CNM-CSIC, Campus Universidad Autónoma de Barcelona,

08193 Bellaterra, Barcelona, Spain

Philippe Godignon [email protected]

Optoelectronic and Innovation Department

ALTER TECHNOLOGY

C/ Majada 3 28760 Tres Cantos, Madrid, Spain

Agustín Coello

[email protected] [email protected]

Page 2: SiC Technologies for High Reliability

ALTER – CNM

MEWS 25 Japan 2012

TÜV NORD - Overview

06/11/2012 ALTER TECHNOLOGY - TüV NORD S.A.U.

2

TÜV Hannover/ Sachsen-Anhalt e.V. TÜV Nord e.V.

RWTÜV e.V. RWTÜV Stiftung

TÜV Thüringen e.V.

TÜV NORD AG Business Unit

Mobility TÜV NORD Mobilität Companies

Business Unit Industry Services TÜV NORD Systems TÜV NORD SysTec TÜV NORD EnSys Hannover TÜV NORD CERT Companies

Business Unit Training and Human Resources TÜV NORD Academies TÜV NORD Bildung Companies

Business Unit Natural Resources DMT Companies

Business Unit International TÜV NORD International Companies

Central Service Unit Administration TÜV NORD Service

TÜV Hannover/ Sachsen-Anhalt e.V. TÜV Nord e.V.

RWTÜV e.V. RWTÜV Stiftung

TÜV Thüringen e.V.

TÜV NORD AG Business Unit

Mobility TÜV NORD Mobilität Companies

Business Unit Industry Services TÜV NORD Systems TÜV NORD SysTec TÜV NORD EnSys Hannover TÜV NORD CERT Companies

Business Unit Training and Human Resources TÜV NORD Academies TÜV NORD Bildung Companies

Business Unit Natural Resources DMT Companies

Business Unit International TÜV NORD International Companies

Central Service Unit Administration TÜV NORD Service

Business Unit Aerospace

ATN - ALTER TECHNOLOGY Companies

Page 3: SiC Technologies for High Reliability

ALTER – CNM

MEWS 25 Japan 2012

Parts Engineering

Procurement

Testing

Optoelectronics

Niche technologies

Capable to support any customer need worldwide

Centre of reference for the space evaluation of optoelectronics

Take advantage of advanced technologies to fill market gaps

In house capability. No third party dependance including radiation.

Skilled parts engineering team with unique EEE Parts database

BUSINESS MODEL

06/11/2012

3

Page 4: SiC Technologies for High Reliability

ALTER – CNM

MEWS 25 Japan 2012

Outline

SiC ALTER / CNM Activities • CNM Facilities • SiC Technologies Standard technology

High temperature technology High voltage technology

• Power Switches SiC JFET

• Conclusions

CNM ACTIVITIES

Page 5: SiC Technologies for High Reliability

ALTER – CNM

MEWS 25 Japan 2012

CMOS clean room – 11 furnaces: dry and wet oxidation, Al annealing, Boron diffusion … – CVD equipments: LPCVD, PECVD-TEOS, PECVD, ALD, RTCVD – Implanter 10-200keV: Ar, N, Si, As, P, B – New implanter (2008): Al,B… 0-500ºC, 2keV-200keV – Metallization : 3 sputterings (Al, AlSi, AlCu) and 1 e.gun (Al) – 3 optical photolithography (simple/double face) – 1 Stepper g-line 0.6um (1 new stepper i-line 0.35um 2008) – 2 wafer bonders – RTA (max 1150ºC, max 1900ºC) – 2 RIE, 2 ICP – Wet etch, cleaning, drying – CMP – In line measurements: ellipsometer, nanospec, profilometer, FTIR, 4 probes, SEM…

CNM FACILITIES

Page 6: SiC Technologies for High Reliability

ALTER – CNM

MEWS 25 Japan 2012

– 4 « contaminated » resistive furnaces: – PECVD, RTCVD – Metallization : 2 sputtering (Al, Ni, Ti, W, Si, Cr, Pt)

(Ni, Ti, Au) and 1 e.gun (all) – 2 optical photolitography equipments (simple/double

face) – 1 RIE, 1 ICP (2008) – 1 maskless lithography equipment (2008) – 2 Electron beam lithography: Leo 1530 + Raith Elphy

plus and Raith 150-two (10nm-20nm) – 1 Nano Imprint litography Obducat NIL 4” + 1 new

2008 NPS300 from SET – 1 FIB – In line measurements: ellipsometer, nanospec, profilometer, FTIR, 4 probes, SEM… – 2 AFM

Nanotechnologies and non CMOS CNM FACILITIES

Page 7: SiC Technologies for High Reliability

MEWS 25 Japan 2012

ALTER – CNM

Wide band gap: wide range of applications

Wide band gap semiconductor

Power Devices (>600V)

-High electric field -Wide Band Gap

RF Devices High carrier saturation velocity

MEMS High Young Modulus Harness

Chemical sensors Inertness

Bio-sensors Biocompability Transparency

Page 8: SiC Technologies for High Reliability

ALTER – CNM

MEWS 25 Japan 2012

SiC diodes technologies

•Standard technology

•High temperature technology

•High voltage technology

SiC diodes

Page 9: SiC Technologies for High Reliability

MEWS 25 Japan 2012

ALTER – CNM

1.2 kV large area diodes = 2.56 mm2 Stressed in DC at 8A (312 A.cm-2) for 50 hours

1.2kV JBS Diodes: Stability

No degradation observed: no stacking faults propagation

JBS in Schottky + bipolar mode conduction

Wafer ∅ 50 mm

SiC diodes

Page 10: SiC Technologies for High Reliability

ALTER – CNM

MEWS 25 Japan 2012

Space mission BepiColombo will set off in 2013 on a journey to Mercury lasting approximately 6 years. High temperature SiC blocking diodes for solar panel arrays: series protection devices for solar cells arrays Working temperature range -170C to +300C High reliability Radiation hard Stable with thermal cycling

High temperature protection diodes for Solar Cell Panel

D+T/CNM, ALTER, Ampère, Semelab

High temperature SiC diodes

WCu

Cu

Ag bondBeO

Ni/Au

AuGe die-attachSiC die

Au wire-bonds

Ceramic through-hole

Cu alloy

Ni cap

Page 11: SiC Technologies for High Reliability

MEWS 25 Japan 2012

ALTER – CNM

Diode Specifications • Operation temperature range: -170ºC / +280ºC. • Breakdown voltage >300 V over full temperature range. • Reverse current < 1 mA @ 300 V and 280ºC. • Nominal DC output current: 5 A over full temperature range. • Maximum forward voltage drop at nominal current and 280ºC: 1.7 V. • Packaged diode weight < 5 g. Diode Technology • N (5µm, 9.1015 cm-3) /N+ wafers from Cree • Multiple Al implantation for the JTE edge termination • Dopants annealed at 1,600ºC for 30 min without capping layer. • SiO2 as surface passivation layer. • Active Area: 2mmx2mm • Schottky contact: W

Electrical performances (Vf, Ir), stability with T, stability with ∆T

High temperature SiC diodes

Page 12: SiC Technologies for High Reliability

MEWS 25 Japan 2012

ALTER – CNM

Wafer processing

Diodes fabrication and selection

Case (hermetic) sealing

Wire Bonding Dicing and selected diodes back side mounting

Screening/burn-in of diodes (100% of diodes)

• Confidential • High temperature storage

with biasing: 150ºC for 48h with reverse biasing

RELIABILITY TESTS

Page 13: SiC Technologies for High Reliability

ALTER – CNM

MEWS 25 Japan 2012

• In the forward mode we do not detect any significant impact of the proton irradiation up to the tested fluence of 1.6e11 p/cm2 for energies of 60 MeV and 100 MeV.

• For the lowest energy, 15MeV, we observe a slight increase of the forward voltage on the 3 tested diodes, in the range of 2%.

• In the reverse mode, we can observe no significant change of the leakage current after stress

Radiation Hardness Proton irradiation Each sample has been biased @200V reverse during the test.

Gamma irradiation: no impact on the electrical characteristics up to cumulated dose of 540krad

High temperature SiC diodes

Page 14: SiC Technologies for High Reliability

MEWS 25 Japan 2012

ALTER – CNM

Toward 500ºC

• Novel Schottky metal ?

• Novel back side soldering method: sintering/diffusion processes • Ag nanoparticles / sintering • Thin Au diffusion (1-5um) • Copper diffusion (Infineon)

• Novel top side interconnection

• Gold wire reliable up to 500ºC (NASA) • Copper metallization + copper bonding • Pressure contact

• Novel insulation material

• Low thermal conductivity variation with T • Compatible CTE

High temperature SiC diodes

Page 15: SiC Technologies for High Reliability

MEWS 25 Japan 2012

ALTER – CNM

High voltage SiC diodes

High voltage SiC diodes

Page 16: SiC Technologies for High Reliability

ALTER – CNM

MEWS 25 Japan 2012

9kV 4H-SiC Schottky and JBS Diodes

Rdiff(Schottky) ≈Repi=3Ω Rdiff (JBS) = 3.3Ω Ron×S = 120 mΩ.cm2

High voltage SiC diodes

Page 17: SiC Technologies for High Reliability

ALTER – CNM

MEWS 25 Japan 2012

SmartPM X-ray demonstrator

-92 kV/42 kW

HV-Tank with transformer and demonstrator

kV ramp-up at -92 kV/203 kOhm

ENIAC SMARTPM

Page 18: SiC Technologies for High Reliability

MEWS 25 Japan 2012

ALTER – CNM

SiC power switches

SiC switches

Page 19: SiC Technologies for High Reliability

ALTER – CNM

MEWS 25 Japan 2012

JFETs for switching

• Normally-on • High temperature capability • Fast switching • Radiation hardness ?

SiC switches

10A-1200V

0 200 400 600 8001E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

VG=-80V

T=25oC T=125oC T=200oC T=250oC T=300oC

Drai

n Cu

rren

t (A)

Drain Voltage (V)

Page 20: SiC Technologies for High Reliability

ALTER – CNM

MEWS 25 Japan 2012

• JFET unipolar vertical power device • 3 terminals devices - gate control • 8 photolitographic mask levels • 2µm minimum feature size • Patented with Schneider electric

JFETs for Current Limiting

530 µm × 530 µm530 µm × 530 µm

gate

source

passivation

Drain metalization

gate metalization

source metalizationCNM/Ampère

SiC JFET

Page 21: SiC Technologies for High Reliability

ALTER – CNM

MEWS 25 Japan 2012

SiC On Chip integration: Digital IC High temperature electronics

SiC Digital IC: HT

Page 22: SiC Technologies for High Reliability

ALTER – CNM

MEWS 25 Japan 2012

SUMMARY

• High temperature diode technology – Mature – For 300V - 600V – Currently processing ¼ of 3” wafers – Reasonable capability : 25 4” wafers/year -> 10000

diodes/year on wafer – Production capability limited by packaging process ! – New qualification for diodes produced on full 4”

wafers and other packaging partners – High cost (Only the TO257 package cost is 50 €/part)

SiC diodes

Page 23: SiC Technologies for High Reliability

ALTER – CNM

MEWS 25 Japan 2012

• High voltage JBS/Schottky technology – Mature up to 6kV – Still work to do for > 6kV – Reasonable capability : 30 4” wafers/year > 8000

dies/year – Packaging complex because very specific – Screening method needed – Need for qualification – No commercial devices

SUMMARY

SiC diodes

Page 24: SiC Technologies for High Reliability

ALTER – CNM

MEWS 25 Japan 2012

• High voltage/high temperature JFET technology – Not fully mature – Need between 6-12 months before maturity

(technological repeatitivity tested) – Breakdown voltage up to 3.3kV – Normally off ? – Production capability : 20 4” wafers/year -> around

10000 10A JFETs /year – Packaging: standard or BEPI type – Need for qualification – Commercial devices up to 1700V Tj 175ºC

SUMMARY

SiC switches

Page 25: SiC Technologies for High Reliability

ALTER – CNM

MEWS 25 Japan 2012

Conclusions

• CNM has large experience in SiC for many different fields with active research and a reasonable manufacturing capability.

• ALTER TECHNOLOGY has large experience in Testing High Power SiC devices for space applications.

• CNM & ALTER are working together for spreading the use of SiC technologies for space applications.

Page 26: SiC Technologies for High Reliability

ALTER – CNM

MEWS 25 Japan 2012

Thank you

for your attention

Page 27: SiC Technologies for High Reliability

ALTER – CNM

MEWS 25 Japan 2012

Schottky diode JBS diode

Anode: Schottky contact + Planar device + Low forward voltage + Ultra fast device - High leakage current - Low surge capability

Anode: Schottky and ohmic contact + Planar device + Low forward voltage + Very fast device + Low leakage current + High surge capability

Anode

Cathode N + Substrate

N - Drift layer : N drift

P - JTE

t drift L JTE

Passivation

t drift

Anode

Cathode N + Substrate

N - Drift layer

P - JTE

Passivation

Anode

Cathode

P +

N + Substrate

N - Drift layer : N drift

L P L N

P + P - JTE

t drift L JTE

Passivation

Anode

Cathode

P +

N + Substrate

N - Drift layer L P L N

P + P - JTE

Passivation

Standard SiC Schottky and JBS (Junction Barrier Schottky) Diodes

SiC diodes

Page 28: SiC Technologies for High Reliability

ALTER – CNM

MEWS 25 Japan 2012

SiC standard Power Diode: Schottky JBS Die • Internal interconnections (wire bond, back side solder) • Package housing (Substrate, plastic cover) • External interconnections

Commercially available Schottky diodes • Ti/Al top metallization • Al wire bonding • Plastic package (TO220, SMD) • Limited to 175ºC

WCu

Cu

Ag bondBeO

Ni/Au

AuGe die-attachSiC die

Au wire-bonds

Ceramic through-hole

Cu alloy

Ni cap

SiC diodes

Page 29: SiC Technologies for High Reliability

ALTER – CNM

MEWS 25 Japan 2012 29

3.3 kV: SiC Schottky, JBS or PiN Diodes ?

•Low BPD density starting material from Norstel for PiN and SBDs. •On-axis starting material from Linkoping Univ. • 8º off-axis material from Cree for JBS diodes

At higher voltages, the impact of stacking faults increases

High voltage SiC diodes