Shoreline ExtractionRS

download Shoreline ExtractionRS

of 16

Transcript of Shoreline ExtractionRS

  • 8/8/2019 Shoreline ExtractionRS

    1/16

    BEACHMED-e/OpTIMAL BeachErosionMonitoring

    81

    Shoreline extraction

    using satellite imagery

    Michalis Lipakis, Nektarios Chrysoulakis,

    Yiannis Kamarianakis

    Shorelinechangeisconsideredtobeoneothemostdynamicprocessesinthecoastalarea.It

    hasbecomeimportanttomapshorelinechangesasaninputdataorcoastalhazardassessment.

    Inrecentyears,satelliteremotesensingdatahasbeenusedinshorelineextractionandmapping.

    Theaccuracyoimageorthorectiication,aswellastheaccuracyoimageclassiication,arethemostimportantactorsaectingtheaccuracyotheextractedshoreline.Inthisstudy,theshore-

    lineotheareaoGeorgioupoliswasmappedortheyears1998and2005usingaerialimagery

    andIkonosdata,respectively.Ikonosdatawereorthorectiiedandaeatureextractiontechnique

    wasthenusedtoextracttheshoreline.Thistechniqueemployedmachine-learningalgorithms

    whichexploitboththespectralandspatialinormationotheimage.Resultswerevalidatedwith

    in situmeasurementsusingDierentialGPS.Theanalysisshowedthattherehavenotbeensevere

    changesintheshorelinebetween1998and2005,exceptinsomelocationswherechangewas

    substantial.

    Introduction

    Thecoastalareaisahighlydynamicenvironmentwithmanyphysicalprocesses,suchastidalood-

    ing, sealevelrise,land subsidence,anderosion-sedimentation.Thoseprocessesplayanimportant

    roleinshorelinechangeanddevelopmentothecoastallandscape.Multi-yearshorelinemappingis

    consideredtobeavaluabletaskorcoastalmonitoringandassessment.Theshorelineisdenedasthe

    lineocontactbetweenlandandabodyowater.Itiseasytodenebutdiculttocapture,sincethe

    waterlevelisalwayschanging.Thereore,aproblemexistsinthemappingcommunitybecausedifer-

    entpublicorprivateentitieshavecompiledandpublishedshorelinedelineationsthatarebasedon

    diferentshorelinedenitions.Thishascreatedconusionanduncertaintyorthosewhouseshoreline

    inormationdailyorthesakeodecisionmaking,resourceplanning,emergencypreparednessetc.In

    theUSAorexample,NOAAusesthetide-coordinatedshoreline,whichistheshorelineextractedromaspecictidewaterlevel.TheMLLW(MeanLowerLowWater)andMHW(MeanHighWater)areusedin

    thiswaytomapshorelinesthatcanbegeo-reerenced.BoththeMLLWandMHWarecalculatedrom

    averagesoveraperiodo18.6lunaryears(Lietal.,2001).Incontrast,theU.S.GeologicalSurvey(USGS)

    compilesshorelinedataorthe1:24.000scaletopographicbasemapseriesromdigitalorthophoto

    quadranglescreatedromphotographsthatarenottidecoordinated,therebymakingtheshorelinea

    snapshotintime(Scottetal.,2003).Itisthereoreobviousthatsinceshorelinehasadynamicnature,

    itsdenition,mappingandmonitoringarecomplicatedtasks.

    Diferentapproachestoshorelinemappingandchangedetectionhavebeenusedinthepast.Tradi-

    tionalshorelinemappinginsmallareasiscarriedoutusingconventionaleldsurveyingmethods.The

    methodusedtodaybytheAmericanNationalGeodeticSurveytodelineatetheshorelineisanalytical

    stereophotogrammetryusingtide-coordinatedaerialphotographycontrolledbykinematicGPStech-niques(Dietal.,2003).Landvehicle-basedmobilemappingtechnologyhasbeenproposedtotrace

  • 8/8/2019 Shoreline ExtractionRS

    2/16

    Lipakisetal. Shorelineextractionusingsatelliteimagery

    82

    watermarksalongashorelineusingGPSreceiversandabeachvehicle.LiDARdepthdatahavealso

    beenusedtomapshorelines(ShawandAllen,1995;Li,1997).

    Automaticextractionoshorelineeaturesromaerialphotoshasbeeninvestigatedusingneuralnet-

    worksandimageprocessingtechniques(Ryanetal.,1991).Photogrammetrictechniqueshavebeen

    employedtomapthetide-coordinatedshorelineromtheaerialimagesthataretakenwhenthewaterlevelreachesthedesiredlevel.Aerialphotographstakenatthesewaterlevelsaremoreexpensiveto

    obtainthansatelliteimagery.

    Besidesaerialimagery,space-bornradarandespeciallySyntheticApertureRadar(SAR)haveproven

    tobeavaluabletoolorcoastalmonitoring.SARimageryhasalsobeenusedtoextractshorelinesat

    variousgeographiclocations(Erteza,1998;ChenandShyu,1998;Trebossenetal.,2005;WuandLee,

    2007).SAR isa verypromisingtechnology,especiallyorEuropesincethe EuropeanSpaceAgency

    (ESA)isrecognizedasaworldleaderinSARmissions(ERS1,ERS2,Envisat,GMES-Sentinel-1).

    Inrecentyears,opticalsatelliteremotesensingdatahavebeenusedinautomaticorsemi-automatic

    shorelineextractionandmapping.BraudandFeng(1998)evaluatedthresholdlevelslicingandmulti-

    spectralimageclassicationtechniquesordetectionanddelineationotheLouisianashorelinerom

    30-meterresolutionLandsatThematicMapper(TM)imagery.TheyoundthatthresholdingTMBand5wasthemostreliablemethodology.FrazierandPage(2000)quantitativelyanalysedtheclassication

    accuracyowaterbodydetectionanddelineationromLandsatTMdataintheWaggaregioninAus-

    tralia.TheirexperimentsindicatedthatthedensityslicingoTMBand5achievedanoverallaccuracy

    o96.9percent,whichisassuccessulasthe6-bandmaximumlikelihoodclassication.Scottetal.

    (2003)proposedasemi-automatedmethodorobjectivelyinterpretingandextractingtheland-water

    interace,whichhasbeendevisedandusedsuccessullytogeneratemultipleshorelinedataorthe

    testStatesoLouisianaandDelaware.ThismethodwasbasedontheapplicationoTasseledCaptrans-

    ormationcoecientsderivedbytheEROSDataCenterorETM+dataasdescribedbyHuangetal.

    (2002).TheTasseledCaptransormationwaschosenoverothermethodsprimarilybecauseotheob-

    jectiveandconsistentmannerinwhichitclassiespixelsandbecauseitsuseallowedthecreationo

    otheruseulrasterbyproductles.Inoperation,theTasseledCaptransormationrecombinedspectral

    inormationothe6ETM+bandsinto3principalviewcomponentsthroughtheuseocoecientsde-

    rivedbysamplingknownlandcoverspectralcharacteristics.Othethreeprincipalviewcomponents

    created,i.e.,Brightness,Greenness,andWetness,theWetnesscomponentisexploitedtodiferentiate

    landromwater.Zakariyaetal.(2006)triedtodetectshorelinechangesortheTerengganurivermouth

    andrelatedcoastalarea.LandsatdatawereusedtogetherwithGIScapabilitytodetermineshoreline,

    sandyareaandthechangesthatoccurespeciallyonsedimentmovementrom1996to2002.RGBto

    IHSimageryconversionanalysisISODATA(IterativeSel-OrganizingDataAnalysis)classicationwere

    employed.LiuandJezek(2004),aswellasKarantzalosandArgialas(2007)automatedtheextractiono

    coastlineromsatelliteimagerybycannyedgedetectionusingdigitalnumber(DN)threshold.

    Lietal.(2001)comparedshorelinesothesameareathatwereextractedusingdiferenttechniques,

    evaluated their diferences and discussed the causes o possible shoreline changes.The diferent

    shoreline productshadbeengeneratedusingdiferenttechniques:by digitising rom aerialortho-

    photos,intersectinga digitalwatersuracewitha coastalterrainmodelandextractingromstereo

    satelliteimages.Inaddition,existingshorelinesdigitisedromUSGSmapsandNOAAT-Sheetswere

    includedintheiranalysis.

    Withthedevelopmentoremotesensingtechnology,satellitescancapturehighresolutionimagery

    withthecapabilityoproducingstereoimagery.Thenewgenerationoveryhighspatialresolution

    satelliteimagingsystems,suchasIkonosandQuickbird,opensaneweraoearthobservationand

    digitalmapping.Theyprovidenotonlyhigh-resolutionandmulti-spectraldata,butalsothecapability

    orstereomapping.Becauseotheirhighresolutionandtheirshortrevisitrate(~3days),Ikonosand

    Quickbirdsatelliteimagesareveryvaluableorshorelinemappingandchangedetection,thereore

    theirdatahavebeenusedinseveralpaststudies.Wangetal.(2003)investigatedanovelapproachor

    automaticextractionoshorelineromIkonosimagesusingameanshitsegmentationalgorithm.Dietal.(2003)investigatedanovelapproachorautomaticextractionoshorelinesromIkonosimagery:

  • 8/8/2019 Shoreline ExtractionRS

    3/16

    BEACHMED-e/OpTIMAL BeachErosionMonitoring

    83

    4mand1mresolutionIkonosimagesalongtheLakeErieshorewereused.Intherststeptheimages

    weresegmentedintohomogeneousregionsbymeanshitsegmentation.Then,themajorwaterbody

    wasidentiedandaninitialshorelinewasgenerated.Thenalshorelinewasobtainedbylocalrene-

    mentwithintheboundariesothecandidateregionsadjacenttotheinitialshoreline.Lietal.(2003)

    usedIkonosstereoimageryinshorelineextraction.TheypresentedtheresultsoanexperimentinwhichtheyattemptedtoimproveIkonosRationalFunctions(RF)orabettergroundaccuracyandto

    employtheimprovedRFor3-Dshorelineextractionusing1-meterpanchromaticstereoimagesina

    LakeEriecoastalarea.Inthismethod,a2DshorelineisextractedbymanualdigitisingononeIkonos

    image;thencorrespondingshorelinepointsontheotherimageothestereo-pairareautomatically

    extractedbyimagematching.The3Dshorelineiscomputedusingphotogrammetrictriangulation.

    Chalabietal.(2006)hadusedpixel-basedsegmentationonIkonosimageusingDNthreshold.Thepar-

    titionothelandandseaboundarywasdoneusingpseudo-colourwhichexhibitsastrongcontrast

    betweenlandandwatereatures.

    Shorelinechangeisconsideredtobeoneothemostdynamicprocessesincoastalarea.Ithasbecome

    importanttomaptheshorelinechangeasaninputdataorcoastalhazardassessment.Therearemany

    change detectiontechniques currently in useincludingvisual interpretation, spectral-value-basedtechnique(diferencing, image regression, DN value analysis), multi-datacomposites, and change

    vectoranalysis.Visualinterpretationomulti-temporalimagesorcoastalmonitoringwaspresented

    byMazianetal.(1989)andElkoushyandTolba(2004).BagliandSoille(2003)analysedDNvalueus-

    ingslicingoperationorchangemonitoring.Inaddition,WhitheandElAsmar(1999)introducedan

    algorithmunctionandDNanalysistodeviatethewaterromtheland.TheDNvalueanalysishas

    alsobeenappliedonLandsatimages,e.g.byFrazierandPage(2000)andMarai(2003).Fromardet

    al.(2004)identiedcoastalchangesthattookplaceoverthelast50years,andrelatedthemtonatural

    processeso turnoverandreplenishmentomangroveorests.Theyusedacombinationo remote

    sensingtechniques(aerialphotographsandSPOTsatelliteimages)andeldsurveysintheareao

    theSinnamaryEstuary,FrenchGuiana.Millsetal.(2005)introducedtheintegrationothegeomat-

    icstechniquestoormaccuraterepresentationsothecoastline.AhighlyaccurateDigitalElevation

    Model(DEM),createdusingkinematicsGPS,wasusedascontroltoorientatesuracesderivedrom

    therelativeorientationstageophotogrammetryprocessing.MostaaandSoussa(2006)haveapplied

    GISandremotesensingtechniquetomonitorthelakeo Nasserincludingtheshorelinedynamics.

    ThreesatelliteLandsatimagesorNasserLakewereavailableinatimeseries(1984,1996,and2001).

    Topographymaposcale1:50.000,thatissuitabletotheresolutionoLandsatimages,wasusedor

    developingDEM.Chalabietal.(2006)assessedmulti-datasourcesormonitoringshorelineinKuala

    Terengganu,MalaysiausingIkonosandaerialphotographs.Resultsotimeseriesdatawerecombined

    toeachothershowingspatialchangeoshoreline.Maraietal.(2007)illustratedtheshorelinedynam-

    icsinacoastalareaoSemarang-Indonesiausingmultisourcespatialdata.Inspiteothetechnique

    andapproachtoshorelinemonitoringanddelineation,nosinglemethodhasbeenimplementedthat

    isreerommajordisadvantages.

    Thereore,shorelinesothesameareamaybeextractedatdiferenttimesusingsatellitedataand

    representchangesthatappearedindiferenceperiodsthatareillustratedasdiferencesamongthem.

    Therearetwopossibleinterpretationsotheshorelinediferences.Oneisthattheshorelineindeed

    changedintherealworld.Theotherpossibilityisthatthediferencesareintroducedbyshoreline

    mappingerrors.Theaccuracyotheshorelinederivedrom1meterIkonosimageryshouldbeabout

    2m-4m(ZhouandLi2000;Lietal.,2001,GrodeckiandDial,2003),consideringtheactthattheac-

    curacyo3Dgroundcontrolpoints(GCPs)reaches2m3m,withGCPsandtheaccuracyoidentiying

    andlocatingconjugateshorelinepointsisabout1.5pixels(1m-2m).Anoptimisticestimationothe

    shorelineaccuracyderivedromthe4-meterIkonosimagesinthisspeciccaseisabout8.5m(Lietal.,

    2001).

    Inmostotheaorementionedmethods,theshorelineextractionusingIkonosorthoimageryisbased

    onlandcoverclassicationtodiscriminatethepixelscorrespondingtowaterbodiesromthosecor-respondingtoland.Following,theresultingthematicimageisconvertedtovectorcoverage,usually

  • 8/8/2019 Shoreline ExtractionRS

    4/16

    Lipakisetal. Shorelineextractionusingsatelliteimagery

    84

    apolygonshapele(ESRI,2005)containingthepolygonscorrespondingtoeachclass.Theshorelineis

    nallyextractedromthepolygonthatcorrespondstowaterbyemployingautomaticorsemi-auto-

    maticGISprocedures.Thus,theaccuracyotheimageorthorectication,aswellastheaccuracyothe

    imageclassication,isthemostimportantactorsafectingtheaccuracyotheextractedshoreline.

    Theorthorecticationaccuracywasdiscussedabove.Concerningclassicationaccuracy,itdependsonthespatial,spectralandradiometricresolutionotheimage,aswellasontheclassicationmethod.

    Numerousstudieshavebeencarriedoutusingsatelliteimagestoextractlandcovertypes(Congalton,

    1991;RiddandLiu,1998;Martinetal.,1988;GongandHowarth,1990;Chrysoulakis,2003;Gallego,

    2004).Themajorityothepaststudiesrelyonremotesensingdatatoclassiylandcovertypesus-

    ingeitherrawDNorcalibratedradiancevalues.However,iveryhighspatialresolutiondatasuchas

    Ikonosimagesareused,thelandcoverclassicationocoastalareasmaybeproblematicbecauseo

    theheterogeneityandsmallspatialsizeothesuracematerials,whichleadstosignicantsub-pixel

    mixing(Foody,2000;Kontoesetal.,2000).Thereore,thespatialcontextshouldbetakenintoaccount

    inimageclassicationandobjectorientedalgorithmsshouldbeused.Improvementsintheaccuracy

    oclassicationhavebeenachievedusingavarietyosophisticatedapproachesincludingtheuseo

    neuralnetworks(Berberogluetal.,2000),uzzylogic(Bastin,1997;ZangandFoody1998;),textureanalysis(Stuckensetal.,2000),machinelearning(VLS,2007)andincorporationoancillaryspatialdata

    intheclassicationscheme(HarrisandVentura,1995;Vogelmannetal.,1998,Steanovetal.,2001).

    Methodology

    TheIkonossatelliteprovidesglobal,accurate,high-resolutionimageryormapping,monitoring,and

    development.Thepanchromaticsensorwith82cmresolutionandan11.3kmwideswathatnadirpro-

    videshighresolution,intelligence-qualityimagery.Themultispectralsensor,simultaneouslycollect-

    ingblue,green,red,andnearinraredbandswith3.28mresolutionatnadir,providesnatural-colour

    imageryorvisualinterpretationandcolour-inraredimageryorremotesensingapplications.Com-

    biningthemultispectralimagerywiththehighresolutionpanchromaticresultsin1-metercolour

    images(pan-sharpenproduct),whichcanbeorthorectiedaterwards.Theorthorecticationisneed-

    edtoeliminatethegeometricdistortions,whichwillbeexplainedbelow,sothatimageeatureshave

    correctplanimetriccoordinates.Quantitativeestimationssuchasshorelinedetectionareperormed

    usingorthorectiedimages.

    Apartromthediferenttechniquesthatcanbeappliedorshorelineextractionandmonitoringrom

    highresolutionsatelliteimages,theprocessingchainconsistsotheollowingbasicsteps:

    acquisitionoimagesandpre-processing;

    acquisitionothegroundControlPoints(GCPs)withimagecoordinatesandmapcoordinates;

    computationotheunknownparametersothemathematicalunctionsusedorthegeometric

    correctionmodel;

    imageorthorecticationusinganappropriateDEM;

    automatic,semi-automaticormanualshorelineextractionromtheorthorectiedimagery;

    monitoringoshorelinechangesbyrepeatingtheabovestepsatpredenedtimeperiodsand

    comparingtherelativepositionsotheextractedshorelines.

    Thus,beoretheapplicationoanyalgorithmorautomaticextractionoshorelinerommultispectral

    satelliteimages,theseimagesshouldbeothorectiedtotakeintoaccountthegeometricdistortions

    duringimageacquisition,aswellastheefectotopography.Eachimageacquisitionsystemproduces

    uniquegeometricdistortionsinitsrawimagesandconsequentlythegeometryotheseimagesdoes

    notcorrespondtotheterrainorocoursetoaspecicmapprojection.Obviously,thegeometricdis-

    tortionsvaryconsiderablywithdiferentactorssuchastheplatorm,thesensorandalsothetotal

    eldoview.However,as ithasbeendescribedbyToutin(2004),it ispossibletomakegeneralcat-

    egorisationsothesedistortions.Thesourcesodistortioncanbegroupedintotwobroadcategories:

    theobserverortheacquisitionsystem(platorm,imagingsensorandothermeasuringinstruments,

    suchasgyroscope,stellarsensors,etc.)andtheobserved(atmosphereandEarth).Inadditiontothesedistortions,thedeormationsrelatedtothe mapprojectionhavetobetakenintoaccountbecause

  • 8/8/2019 Shoreline ExtractionRS

    5/16

    BEACHMED-e/OpTIMAL BeachErosionMonitoring

    85

    theterrainandmostGISend-userapplicationsaregenerallyrepresentedandperormedrespectively

    inatopographicspaceandnotinthegeoidorareerencedellipsoid.Mostothesegeometricdistor-

    tionsarepredictableorsystematicandgenerallywellunderstood.Someo thesedistortions,espe-

    ciallythoserelatedtotheinstrumentation,aregenerallycorrectedatgroundreceivingstationsor

    byimagevendors.Others,orexamplethoserelatedtotheatmosphere,arenottakenintoaccountandcorrectedbecausetheyarespecictoeachacquisitiontimeandlocationandinormationonthe

    atmosphereisrarelyavailable.Theremaininggeometricdistortionsrequiremodelsandmathematical

    unctionstoperormgeometriccorrectionsoimagery:eitherthrough2D/3Dempiricalmodels(such

    as2D/3Dpolynomialor3DRF)orwithrigorous2D/3Dphysicalanddeterministicmodels.With2D/3D

    physicalmodels,whichreectthephysicalrealityotheviewinggeometry(platorm,sensor,Earth

    andsometimesmapprojection),geometriccorrectioncanbeperormedstep-by-stepwithamath-

    ematicalunctionoreachdistortion/deormation,orsimultaneouslywithacombinedmathematical

    unction.

    2D/3Dphysicalunctionsusedtoperormthegeometriccorrectiondifer,dependingonthesensor,

    theplatormanditsimageacquisitiongeometry(Toutin,2004):

    instantaneousacquisitionsystems,suchasphotogrammetriccameras,MetricCameraorLargeFor-matCamera;

    rotatingoroscillatingscanningmirrors,suchasLandsat-MSS,TMandETM+;

    push-broomscanners,suchasSPOT-HRV,IRS-1C/D,IkonosandQuickbird;and

    SARsensors,suchasJERS,ERS-1/2,RADARSAT-1/2andEnvisat.

    Whateverthegeometricmodelused,evenwiththeRFsomeGCPshavetobeacquiredtocompute/

    renetheparametersothemathematicalunctionsinordertoobtainacartographicstandardaccu-

    racy.Generally,aniterativeleast-squareadjustmentprocessisappliedwhenmoreGCPsthanthemini-

    mumnumberrequiredbythemodel(asaunctionounknownparameters)areused.Thenumbero

    GCPsisaunctionodiferentconditions:themethodocollection,sensortypeandresolution,image

    spacing,geometricmodel,studysite,physicalenvironment,GCPdenitionandaccuracyandthenal

    expectedaccuracy.Theaerialtriangulationmethodhasbeendevelopedandappliedwithdiferent

    opticalandradarsatellitedatausing3Dphysicalmodels(Toutin,2003a,b),aswellaswithIkonosdata

    using3DRFmodels(Fraseretal.,2002a,b).Allmodelparametersoeachimage/striparedetermined

    byacommonleast-squaresadjustmentsothattheindividualmodelsareproperlytiedinandanentire

    blockisoptimallyorientedinrelationtotheGCPs.

    Asithasbeenalreadymotioned,shorelineextractionneedsorthorectiedimages.Torectiytheorigi-

    nalimageintoamapimage,therearetwoprocessingoperations:

    ageometricoperationtocomputethecellcoordinatesintheoriginalimageoreachmapimage

    cell,eliminatingthegeometricdistortionsaspreviouslyexplained;and

    aradiometricoperationtocomputetheintensityvalueorDNothemapimagecellasaunctiono

    theintensityvaluesooriginalimagecellsthatsurroundthepreviously-computedpositionothe

    mapimagecell.

    Thegeometricoperationrequirestheobservationequationsothegeometricmodelwiththeprevi-

    ouslycomputedunknowns,andsometimeselevationinormation.The3Dmodelstakeintoaccount

    elevationdistortionandDEMsisthusneededtocreatepreciseorthorectiedimages.DEMsimpacton

    theorthorecticationprocess,bothintermsoelevationaccuracyorthepositioningaccuracyand

    ogridspacingorthelevelodetails.Thislastaspectismoreimportantwithhigh-resolutionimages

    becauseapoorgridspacingwhencomparedtotheimagespacingcouldgeneratearteactsorlinear

    eaturessuchasshorelines.Foranymapcoordinates(x,y),withthezelevationextractedromaDEM

    when3Dmodelsareused,theoriginalimagecoordinates(columnandline)arecomputedromthe

    tworesolvedequationsothemodel.However,thecomputedimagecoordinatesothemapimage

    coordinateswillnotdirectlyoverlayintheoriginalimage;inotherwords,thecolumnandlinecom-

    putedvalueswillrarely,iever,beintegervalues.Sincethecomputedcoordinatevaluesintheoriginal

    imagearenotintegers,onemustcomputetheDNtobeassignedtothemapimagecell.Inordertodothis,theradiometricoperationusesaresamplingkernelappliedtooriginalimagecells:eithertheDN

  • 8/8/2019 Shoreline ExtractionRS

    6/16

    Lipakisetal. Shorelineextractionusingsatelliteimagery

    86

    otheclosestcell(callednearestneighbourresampling)oraspecicinterpolationordeconvolution

    algorithmusingtheDNsosurroundingcells(Toutin,2004).

    InordertoaccuratelycreateorextractgeographicinormationromrawIkonosimagery,theImage

    GeometryModel(IGM)mustaccompanytheimagery.TheIGMconsistsoseveralmetadataleswhich

    containRPCs(rationalpolynomialcoecients).TheRPCsareaseriesocoecientsthatdescribetherelationshipbetweentheimageas itexistedwhencapturedandtheEarthssurace.Althoughthey

    donotdescribesensorparametersexplicitly,RFsaresimpletoimplementandperormtransorma-

    tionsveryrapidly.WiththeavailabilityoRPCs,theIkonosinteriorandexteriororientationsarevery

    accurate.ThereoreIkonosimagerycanbeorthorectieditheIGM,anaccurateDEMandsomeGCPs

    areavailablebyemployinganyphotogrametricsotwaresuchasOrthoengine(PCI,2003)orLeica

    PhotogrammetrySuite(Leica,2005).

    Thenextsteporshorelineextractionisthewater-landseparation;thereoretheorthorectiedimage

    shouldbeclassiedorapolygoncorrespondingtowater(orland)areashouldbeextracted.Taking

    intoaccounttheaorementionedlandcovermappingconstraintsorveryhighspatialresolutionsatel-

    litedata,amachinelearningclassierapproachseemsthebestsolutionorIkonosmultispectralimage

    classication.Thistypeoclassierusesaninductivelearningalgorithmtogenerateproductionrulesromtrainingdata.Aswithaneuralnetwork,thereareseveraladvantagestousingamachine-learn-

    ingapproach.Sinceancillarydatalayersmaybeusedtohelpimprovediscriminationbetweenclasses,

    ewereldsamplesaregenerallyrequiredortraining.Thismachinelearningmodelisnon-parametric

    anddoesnotrequirenormally-distributeddataorindependenceoattributes.Itcanalsorecognize

    nonlinearpatternsintheinputdatathataretoocomplexorconventionalstatisticalanalysesortoo

    subtletobenoticedbyananalyst.FeatureAnalystsotware(VLS,2007)wasselectedorshoreline

    extractionromIkonosimagery,sinceitemploysmachine-learningtechniqueswhichhavethepoten-

    tialtoexploitboththespectralandspatialinormationotheimage.Itprovidesaparadigmshitto

    automatedeatureextractionsinceit:(a)utilisesspectral,spatial,temporal,andancillaryinormation

    tomodeltheeatureextractionprocess,(b)providestheabilitytoremoveclutter,(c)incorporates

    advancedmachinelearningtechniquestoprovideunparalleledlevelsoaccuracy,and(d)providesan

    exceedingly simple interace

    oreatureextraction.Itworks

    by taking a small and sim-

    ple set o training examples,

    learnsromtheexamples,and

    classiestheremainderothe

    image. When classiying the

    contentsoimagery,thereare

    only a ew attributes acces-

    sible to human interpreters.

    Foranysinglesetoimagery

    theseare:Shape,Size,Colour,

    Texture,Pattern,Shadow,and

    Association. Traditional im-

    age processing techniques

    incorporate only colour

    (spectral signature) and per-

    haps texture or pattern into

    an involved expert workow

    process.Theshorelineextrac-

    tionstepsusingFeatureAna-

    lystareshowninFigure1.

    Figure 1 - Shoreline extraction work

    ow (adapted rom VLS, 2007).

  • 8/8/2019 Shoreline ExtractionRS

    7/16

    BEACHMED-e/OpTIMAL BeachErosionMonitoring

    87

    Case Study: Shoreline extraction in the area o Georgioupolis, Crete

    TheShorelineextractionortheareaoGeorgioupoliswasperormedortheyears1998and2005

    using aerial imageryandIkonosdata,respectively.Theresultsvalidatedwith in situmeasurements

    withDiferentialGPS (DGPS)providedbyOANAK.TheHellenicGeodeticReerenceSystemo1987

    (EGSA87)wasusedinallcases.

    Shoreline extraction using an aerial image acquired in 1998

    AnorthorectiedaerialimageandaDEMothebroaderareaoGeorgioupoliswereavailabletoOANAK

    aspastprojectproducts.Theaerialimagehasthespatialresolutiono1m,whereasitspositionalac-

    curacywasbetterthan2m(RMSExy

  • 8/8/2019 Shoreline ExtractionRS

    8/16

    Lipakisetal. Shorelineextractionusingsatelliteimagery

    88

    Step 2: Acquisition o GCPs.

    AeldcampaignwasorganizedbyOANAKand15GCPswereselectedusingadiferentialGPS.The

    locationothesepoints(circles)superimposedtotheroadnetworkothestudyareaisshowninFig-

    ure5.Theirpositionalaccuracywasbetterthan1m(RMSExy

  • 8/8/2019 Shoreline ExtractionRS

    9/16

    BEACHMED-e/OpTIMAL BeachErosionMonitoring

    89

    asithasbeenalreadydescribed.TheorthorecticationresultisshowninFigure7asapseudocolour

    compositionRGB:3-2-1,withtheroadnetworkothearea(redlines)andtheshorelineextractedrom

    theaerialimage(yellowline)superimposed.Thespatialresolutionotheothorectiedimageis1m,

    whereasitspositionalaccuracyisbetterthan2m(RMSExy

  • 8/8/2019 Shoreline ExtractionRS

    10/16

    Lipakisetal. Shorelineextractionusingsatelliteimagery

    90

    Inordertorunamulti-classextraction,thetwodiferentclassesowaterandlandhavetobecom-

    binedintoasingle,multi-classlayer.Thereisa built-inunctionoFeatureAnalystorthis.Thepro-

    ducedtwo-classlayeristheinputothealgorithm.

    Havingtheinput,thenextactionistosetthealgorithmsparameters(VLS,2007).Allourimagebands

    areabouttobeincludedandtheimageresolutionissetto1m.Thespectralinormationisderivedromthismultispectralimage,whereasthespatialcontextoreachpixelistakenintoaccountbyad-

    justingtheinputrepresentationotheclassicationalgorithm.Theinputrepresentation,thatdeter-

    mineshoweachpixelislookedatin relationtoitsneighbours,issettoManhattanrepresentation

    (VLS,2007).Manhattanisapre-denedinputpattern,usedmainlyorwatermassandlandcoverea-

    tures,likeoceans,lakes,oods,wetland,impermeablesuraces,etc.Thepatternwidthissetto5.This

    meansthatconsideringthatthedecisionpixel(redinFigure9)isinthecentreoa55grid,according

    totheManhattaninputrepresentation,thealgorithmwilltakeintoaccount13pixels(blueinFigure9),

    locatedasshowninFigure9.Computing13pixelsoeachband,thereisatotalo52pixelsthatwillbe

    computedtomakeadecisionorasinglepixel.Theminimumaggregateareaissetto500pixels.That

    istomaintainrelativeeaturecharacteristics,whiletryingtondalargearea.

    Figure 9 - The Manhattan input

    representation that is used, withpattern width set to 5.

    TheclassicationresultisshowninFigure10.Itisagainamulti-classlayer,whichneedstobesplit.

    Althoughtheborderobothresultclassesisthesameline(theshoreline),thewaterclassischosen

    ortheextraction.Thebuilt-inunctioninFeatureAnalystthatsplitsoutclasseswasusedtosplitthe

    classesandkeeponlythewaterclassasaseparateset.Sinceonlyonepolygonhasbeenletitsborder

    wassmoothedinordertoextracttheshoreline.TheBezierSmoothAlgorithm(VLS,2007)wasused,

    withtheollowingparameters:thenumberoverticestoeachsidesetto2andthemaximumdistance

    eachvertexisallowedtomovesetto3m.TheresultothesmoothedpolygonisshowninFigure11.

    Figure 10 - The land water clas-

    sication result: a two class result

    corresponding to the two-class

    input. Both spectral and spatialinormation have been taken

    into account.

  • 8/8/2019 Shoreline ExtractionRS

    11/16

    BEACHMED-e/OpTIMAL BeachErosionMonitoring

    91

    Figure 11 - The extracted

    smoothed polygon correspond-

    ing to water.

    Finally,theborderothewaterpolygonwasautomaticallyextractedandconvertedtoalineshapeleollowingastandardGISprocedure(VLS,2007;ESRI,2005).Thislineshapeleisthenalresultothe

    shorelineextractionprocedureasitisshowninFigure12,wheretheextractedshorelinehasbeen

    superimposedontheorthorectiedIkonosimage.

    Figure 12 - Pseudocoloured

    composition RGB: 3-2-1 o the

    orthorectied Ikonos image with

    the extracted shoreline (yellow

    line) superimposed.

    Step 6: Comparisons - Validation.

    The produced shorelines (1998 Shoreline, and 2005 Shoreline) were compared and a Root Mean

    SquareError(RMSE)wascomputedtoreecttheshorelinechangeduringthis7yearsperiod.RMSEisaglobalmeasure,thusthemaximumchangewashighlightedanditispresentedbelow.TheRMSE

    wasusedasaquantitativeevaluationotheextractedshorelinesaccuracy.RMSEencompassesboth

    systematicandrandomerrorsandisdenedas[1]:

    [1]

    Where:

    si=minimumdistanceothetwolinesatapre-denedlocationi(x,y),

    n=numberomeasuringlocationsinthisstudy.

  • 8/8/2019 Shoreline ExtractionRS

    12/16

    Lipakisetal. Shorelineextractionusingsatelliteimagery

    92

    Finally,boththeimage-derivedshorelineswerecomparedwithan in situderivedshorelinewhich

    wasproducedby OANAKwiththeuseodiferentialGPS.Thethreelinesareshownin Figure13,

    wherea partothestudyareahasbeenextracted(scale1:2.000):The in situderivedshorelineis

    presentedinred,the1998Shorelineispresentedingreenandthe2005Shorelineispresentedin

    yellow.TheRMSEcalculatedusingthein situlineasbaseline,aswellastheRMSEbetweentheex-tractedshorelinesor1998and2005,areshowninTable1.

    Figure 13 - Part o the study area as a pseudocolour composition RGB: 3-2-1 o the orthorectied Ikonos image (scale

    1:2000). The in situ derived shoreline is shown in red, the 1998 Shoreline is shown in green, whereas the 2005 Shoreline

    is shown in yellow.

    Theanalysisshowedthattherewerenotseverechangesinshorelinebetween1998and2005,ex-

    ceptinsomelocationswherethechangewassubstantial.Themostimportantchangeisshownin

    Figure14,whereapartothestudyareaaroundtheriverwhichisclosetothetownoGeorgioupolis

    hasbeenextracted(scale1:2.000):bothlineshavebeensuperimposedontheIkonosorthorectied

    image.The1998Shorelineispresentedingreenandthe2005Shorelineispresentedinyellow,asbeore.ItisobviousromFigure14thattheoutallotheriverhasbeenmodiedduringthis7year

    period.Ashitoabout50mtotheESEdirectioncanbeobservedinFigure14.

    Table 1 - RMSE between a) in situ and aerial image derived shoreline (1998); b) in situ and Ikonos derived shoreline

    (2005); c) aerial image and Ikonos derived shoreline.

    Pair o Lines RMSE (m)

    Insitu1998Shoreline 3.01

    Insitu2005Shoreline 5.65

    1998Shoreline2005Shoreline 6.46

  • 8/8/2019 Shoreline ExtractionRS

    13/16

    BEACHMED-e/OpTIMAL BeachErosionMonitoring

    93

    Figure 14 - Part o the study area as a pseudocolour composition RGB: 3-2-1 o the orthorectied Ikonos image (scale

    1:2000). The 1998 Shoreline is shown in green and the 2005 Shoreline is shown in yellow. A shit o about 50m to the ESE

    direction o the river outow is observed.

    ReerencesBagliS.andSoilleP.(2003)-Morhological automatic extraction o Pan-European coastline rom Landsat

    ETM+ images.InternationalSymposiumonGISandComputerCartographyorCoastalZoneMan-

    agement.Genova,Italy.

    BastinL.(1997)Comparison o uzzy c-means classication, linear mixture modeling and MLC probabilities

    as tools or unmixing coarse pixels.InternationalJournaloRemoteSensing,18:36293648.

    BerberogluS.,LloydC.D.,AtkinsonP.M.andCurranP.J.(2000)-The integration o spectral and textural

    inormation using neural networks or land cover mapping in the Mediterranean.Computers&Geo-

    sciences,26:385396.

    BraudD.H.andFengW.(1998)- Semi-automated construction o the Louisiana coastline digital land/wa-

    ter boundary using Landsat Thematic Mapper satellite imagery.DepartmentoGeography&Anthro-

    pology,LouisianaStateUniversity.LouisianaAppliedOilSpillResearchandDevelopmentProgram,OSRAPDTechnicalReportSeries97-002.

    ChalabiA.,Mohd-LokmanH.,Mohd-SuanI.,KaramaliK.,KarthigeyanV.andMasitaM(2006)-Monitor-

    ing shoreline change using Ikonos image and aerial photographs: a case study o Kuala Terengganu area,

    Malaysia.In:ProceedingsotheISPRSMid-termSymposiumProceeding.Enschede,TheNetherlands.

    ChenL.C.andShyuC.C.(1998)-Automated Extraction o Shorelines rom Optical and SAR Image.In:Pro-

    ceedingoAsianConerenceonRemoteSensing(http://www.gisdevelopment.net/aars/acrs/1998/

    ps3/ps3013a.asp).

    ChrysoulakisN.(2003)-Estimation o the all-wave urban surace radiation balance by use o ASTER mul-

    tispectral imagery and in situ spatial data.JournaloGeophysicalResearch,108:4582(DOI:10.1029/

    2003JD003396).

    CongaltonR.G.(1991)-A Review o Assessing the Accuracy o Classications o Remotely Sensed Data.RemoteSensingoEnvironment,37:35-46.

  • 8/8/2019 Shoreline ExtractionRS

    14/16

    Lipakisetal. Shorelineextractionusingsatelliteimagery

    94

    DiK.,WangJ.,MaR.andLiR.(2003)-Automatic shoreline extraction rom high-resolution Ikonos satellite

    imagery.InproceedingotheAnnualASPRSConerence.Anchorage,Alaska.

    ElkoushyA.A.andTolbaR.A.(2004)-Prediction o shoreline change by using satellite aerial imagery.In:

    ProceedingotheXXISPRSCongress.Istanbul,Turkey.

    ErtezaI.A.(1998)-An automatic coastline detector or use with SAR images.SANDIAReportSAND98-2102.SandiaNationalLaboratories,Caliornia.

    ESRI(2005)-ArcGIS 9. What is ArcGIS 9.1?EnvironmentalSystemsResearchInstitute,Caliornia.

    FoodyG.M.(2000)- Estimation o sub-pixel land cover composition in the presence o untrained classes.

    Computers&Geosciences,26:469478.

    FraserC.S.,HanleyH.B.andYamakawaT.(2002a)- Three-dimensional geopositioning accuracy o Ikonos

    imagery.PhotogrammetricRecord,17:465479.

    FraserC.S.,BaltsaviasE.andGruenA.(2002b)- Processing o Ikonos imagery or sub-metre 3D positioning

    and building extraction.ISPRSJournaloPhotogrammetryandRemoteSensing,56,177194.

    FrazierP.S.andPageK.J.(2000)-Water body detection and delineation with Landsat TM data.Photo-

    grammetricEngineeringandRemoteSensing,66:147167.

    FromardF.,VegaaC.andProisyC.(2004)- Hal a century o dynamic coastal change aecting mangroveshorelines o French Guiana. A case study based on remote sensing data analyses and eld surveys .Ma-

    rineGeology,208:265280.

    GallegoF.J.(2004)-Remote sensing and land cover area estimation.InternationalJournaloRemote

    Sensing,25:3019-3047.

    GongP.andHowarthP.J.(1990)-The use o structural inormation or improving land-cover classication

    accuracies at the rural urban ringe.PhotogrammetricEngineeringandRemoteSensing,56:67-73.

    GrodeckiJ.andDialG.(2003)-Block adjustment o highresolution satellite images described by rational

    polynomials.PhotogrammetricEngineeringandRemoteSensing,69:59-68.

    HarrisP.M.andVenturaS.J.(1995)-The integration o geographic data with remotely sensed imagery to

    improve classication in an urban area.PhotogrammetricEngineeringandRemoteSensing,61:993

    998.

    HuangC.,WylieB.,HomerC.,YangL.andZylstraG.(2002)-Derivation o a tasseled cap transormation

    based on Landsat 7 ETM at-satellite refectance.InternationalJournaloRemoteSensing,23:1741-

    1748.

    KarantzalosK.andArgialasD.(2007)-Automatic shoreline mapping rom panchromatic satellite images.

    In:Proceedingso8thPan-HellenicGeographicConerence.GreekGeographicalSociety(inGreek).

    KontoesC.C.,RaptisV.,LautnerM.andOberstadlerR.(2000)-The potential o kernel classication tech-

    niques or land use mapping in urban areas using 5 m-spatial resolution IRS-1C imagery.International

    JournaloRemoteSensing,21:31453151.

    Leica(2005)-ERDAS Field Guide.LeicaGeosystems.Atlanta,Georgia,USA.

    LiR.,DiK.andMaR.(2001)-A Comparative Study o Shoreline Mapping Techniques.In:Proceedingo

    the4thInternationalSymposiumonComputerMappingandGISorCoastalZoneManagement.

    Haliax,NovaScotia,Canada.

    LiR.,DiK.andMaR.(2003)-3-D Shoreline Extraction rom Ikonos Satellite Imagery.MarineGeodesy,

    26:107115.

    LiR.(1997)-Mobile mapping: An emerging technology or spatial data acquisition.Photogrammetric

    EngineeringandRemoteSensing,63:1165-1169.

    LiuH.andJezekK.C.(2004)-Automated extraction o coastline rom satellite imagery by integrating can-

    ny edge detection and locally adaptive thresholding methods.InternationalJournaloRemoteSens-

    ing,25:937958.

    MaraiM.A.,AlmohammadH.,DeyS.,SusantoB.andKingL.(2007)- Coastal dynamic and shoreline

    mapping: multi-sourcesspatial data analysis in Semarang Indonesia.EnvironMonitoringandAssess-

    ment,DOI10.1007/s10661-007-9929-2.

    MaraiM.A.(2003)-Monitoring o the coastal zone dynamics by means o multi-temporal Landsat TM.In:ProceedingsotheannualscienticmeetingXII,Indonesianremotesensingsociety.Bandung.

  • 8/8/2019 Shoreline ExtractionRS

    15/16

    BEACHMED-e/OpTIMAL BeachErosionMonitoring

    95

    MartinL.R.G.,HowarthP.J.andHolderG.(1988)-Multispectral classication o land use at the rural-urban

    ringe using SPOT data.CanadianJournaloRemoteSensing,14:7279.

    MazianH.I.,AzizI.andAbdullahA.(1989)-Preliminary evaluation o photogrammetric-remote sensing

    approach in monitoring shoreline erosion.In:Proccedingsothe10thAsianConerenceonRemote

    SensingProceeding.KualaLumpur.MillsJ.P.,BuckleyS.J.,MitchellH.L.,ClarkeP.J.andEdwardsS.J.(2005)-A geomatics data integration

    technique or coastal change monitoring.EarthSuraceProcessesandLandorms,30:651664.

    MostaaM.M.andSoussaH.K.(2006)- Monitoring o Lake Nasser using remote sensing and GIS tech-

    niques.In:ProceedingsotheISPRSMid-termSymposium.Enschede,TheNetherlands.

    PCI(2003)-OrthoEngine User Guide.PCIGeomatics.Ontario,Canada.

    RiddM.K.andLiuJ.(1998)-A comparison o our algorithms or change detection in an urban environ-

    ment.RemoteSensingoEnvironment,63:95100.

    RyanT.W.,SementilliP.J.,YuenP.andHuntB.R.(1991)-Extraction o shoreline eatures by neural nets and

    image processing.PhotogrammetricEngineeringandRemoteSensing,57:947-955.

    ScottJ.W.,MooreL.R.,HarrisW.M.andReedM.D.(2003)-Using the Landsat 7 Enhanced Thematic Mapper

    Tasseled Cap Transormation to Extract Shoreline.Open-FileReportOF03-272U.S.GeologicalSurvey.ShawB.andAllenJ.R.(1995)-Analysis o a dynamic shoreline at Sandy Hook, New Jersey, using a geo-

    graphic inormation system.In:ProceedingsoASPRS/ACSM.pp.382-391.

    SteanovW.L.,RamseycM.S.andChristensenP.R.(2001)- Monitoring urban land cover change: An ex-

    pert system approach to land cover classication o semiarid to arid urban centers.RemoteSensingo

    Environment,77:173185.

    StuckensJ.,CoppinP.R.andBauerM.E.(2000)- Integrating contextual inormation with per-pixel classi-

    cation or improved land cover classication.RemoteSensingoEnvironment,71:282296.

    ToutinTh.(2004)-Review article: Geometric processing o remote sensing images: models, algorithms and

    methods.InternationalJournaloRemoteSensing,25,18931924

    ToutinTh.(2003a)-Block bundle adjustment o Ikonos in-track images.InternationalJournaloRemote

    Sensing,24:851857.

    ToutinTh.(2003b)-Error tracking in Ikonos geometric processing using a 3D parametric modelling .Pho-

    togrammetricEngineeringandRemoteSensing,69:4351.

    TrebossenH.,DefontainesB.,ClasseauN.,KouameJ.andRudantJ.-P.(2005)-Monitoring coastal evo-

    lution and associated littoral hazards o French Guiana shoreline with radar images.ComptesRendus

    Geosciences,337:1140-1153.

    VogelmannJ.E.,SohlT.andHowardS.M.(1998)-Regional characterization o land cover using multiple

    sources o data.PhotogrammetricEngineeringandRemoteSensing,64:4557.

    VLS(2007)- Feature Analyst Version 4.1 or Imagine.ReerenceManual.VisualLearningSystemsInc.

    Missoula,USA.

    WangK.D.J.,MaR.andLiR.(2003)-Automatic shoreline extraction rom high resolution Ikonos satellite

    imagery.In:ProceedingsotheASPRSAnnualConerence.Anchorage,Alaska.

    WhitheK.andElAsmarH.M.(1999)- Monitoring changing position o coastline using thematic mapper

    imagery, an example rom the Nile Delta.Geomorphology,29:93105.

    Wu T.D. and Lee M.T. (2007) - Geological Lineament and Shoreline Detection in SAR Images.

    Proceedings o IEEE Geosciences and Remote Sensing Symposium (IGARSS 2007). Barcelona,

    Spain.

    ZakariyaR.,RosnanY.,SaidinS.A.,YahayaM.H.,KasawaniI.andLokmanH.(2006)-Shoreline detection

    and changes or Terengganu river mouth rom satellite imagery (Landsat 5 and Landsat 7).Journalo

    SustainabilityScienceandManagement,1:47-57.

    ZangJ.andFoodyG.M.(1998)-A uzzy classication o sub-urban land cover rom remotely sensed im-

    agery.InternationalJournaloRemoteSensing,19:2721-2738.

    ZhouG.andLiR.(2000)-Accuracy Evaluation o Ground Points rom IKONOS High-Resolution Satellite

    Imagery.PhotogrammetricEngineeringandRemoteSensing,66:1103-1112.

  • 8/8/2019 Shoreline ExtractionRS

    16/16