shashi sdh

89
1 Confidential Information of Huawei. No Spreading without Permission. OTA000004 SDH Principle Issue 2.1

Transcript of shashi sdh

Page 1: shashi sdh

1

Confidential Information of Huawei. No Spreading without Permission.

OTA000004 SDH Principle

Issue 2.1

Page 2: shashi sdh

Internal Use

ObjectivesObjectives

Upon completion of this course, you will be able to:

Understand the basic of SDH multiplexing standard

Know the features, applications and advantages of SDH based equipment

Page 3: shashi sdh

Internal Use

Chapter1 SDH Overview

Chapter2 Frame Structure & Multiplexing

Methods

Chapter3 Overhead & Pointers

Chapter4 Logical Functional Blocks

Page 4: shashi sdh

Internal Use

ReferencesReferences

SDH Principle Manual

ITU-T G.701, G.702, G.707

Page 5: shashi sdh

Internal Use

What is SDH?---- Synchronous Digital Hierarchy---- It defines frame structure, multiplexing method, digital rates hierarchy and interface code pattern.

Emergence of SDHEmergence of SDH

Why did SDH emerge?---- Need for a system to process increasing amounts of information.---- New standard that allows mixing equipment from different suppliers.

Page 6: shashi sdh

Internal Use

Disadvantages of PDHDisadvantages of PDH

1. Interfaces

Electrical interfaces--- Only regional standards. 3 PDH rate hierarchies for PDH: European (2.048 Mb/s), Japanese, North American (1.544 Mb/s).

Optical interfaces--- No standards for optical line equipments, manufacturers develop at their will.

Plesiochronous Digital Hierarchy

Page 7: shashi sdh

Internal Use

Disadvantages of PDHDisadvantages of PDH

2. Multiplexing methods

Asynchronous Multiplexing for PDH

The location of low-rate signals in high-rate signals is not regular nor predictable.

Page 8: shashi sdh

Internal Use

Disadvantages of PDHDisadvantages of PDH

140 Mb/s34 Mb/s 34 Mb/s

8 Mb/s 8 Mb/s

2 Mb/s

140 Mb/s

de-multiplexer

de-multiplexer

de-multiplexer multiplexer

multiplexer

multiplexer

level by levelNot suitable for huge-volume transmission

Page 9: shashi sdh

Internal Use

Disadvantages of PDHDisadvantages of PDH

3. OAM function--- Weak Operation, Administration & Maintenance function.

4. No universal network management interface--- Capabilities to setup a TMN is limited.

Telecommunications Management Network

Page 10: shashi sdh

Internal Use

Advantages of SDHAdvantages of SDH

1. Interfaces

Electrical interfaces--- Can be connected to all existing PDH signals.

Optical interfaces--- Can be connected to multiple vendors’ optical transmission equipments.

Page 11: shashi sdh

Internal Use

Advantages of SDHAdvantages of SDH

---Basic rate is STM-1, other rates are multiples of the basic rate

---PDH signal to/from SDH signal---Low level SDH to/from high level SDH

2. Multiplexing method

STM-1

STM-1

STM-1

STM-4STM-1

Low rate SDH High rate SDH

622 Mbit/s 622 Mbit/s

2 Mbit/s

De-m

ultiplexing

Multiplexing

Page 12: shashi sdh

Internal Use

Advantages of SDHAdvantages of SDH

×4STM-1 155 Mb/s

STM-4 622 Mb/s

STM-16 2.5 Gb/s

×4 ×4STM-64 10 Gb/s

Low rate SDH to higher rate SDH

Page 13: shashi sdh

Internal Use

Advantages of SDHAdvantages of SDH

byte interleaved multiplexing method

4:1

STM-1A

STM-1B

STM-1C

STM-1D

A BDCBADCBA …STM-4

One Byte from STM-1 B

Page 14: shashi sdh

Internal Use

Advantages of SDHAdvantages of SDH

--- Synchronous multiplexing method and flexible mapping structure

--- Use multistage pointer to align PDH loads in SDH frame, thus, dynamic drop-and-insert capabilities

Page 15: shashi sdh

Internal Use

Advantages of SDHAdvantages of SDH

3. OAM function

--- Abundant overheads bytes for operation, administration and maintenance.

--- About 5% of the total bytes are being used

Page 16: shashi sdh

Internal Use

Advantages of SDHAdvantages of SDH

4. Compatibility

package

transmit

SDHnetwork

unpacking

PDH, SDH, ATM, FDDI Signals

packing

STM-N STM-N package

receive ProcessingProcessing

PDH, SDH, ATM, FDDI Signals

Page 17: shashi sdh

Internal Use

Disadvantages of SDHDisadvantages of SDH

Low bandwidth utilization ratio.

64 E1139.264 Mbit/sE416 E134.368 Mbit/sE3128 E08.448 Mbit/sE232 E02.048 Mbit/sE1

One 64 kbit/s64 kbit/sE0ChannelsDigital Bit RateSignal

4032 E1, 192 E3, 64 E4STM-6410 Gbit/s9953.28Mbit/s1008 E1, 48 E3 or 16 E4STM-162.5 Gbit/s2488.32Mbit/s252 E1, 12 E3 or 4 E4STM-4622 Mbit/s622.08 Mbit/s

63 E1, 3 E3 or 1 E4STM-1155 Mbit/s155.52 Mbit/sSDH CapacitySDHAbbreviatedBit Rate

PDH Hierarchy

SDH Hierarchy

Page 18: shashi sdh

Internal Use

QuestionsQuestions

1. Why did SDH emerge?2. What are the advantages & disadvantages of

SDH?3. What is the basic transmission rate in SDH

and what are the other common ones?

Time to thinkSoon Coffee Time!

Page 19: shashi sdh

Internal Use

Chapter1 SDH Overview

Chapter2 Frame Structure & Multiplexing

Methods

Chapter3 Overhead & Pointers

Chapter4 Logical Functional Blocks

Page 20: shashi sdh

Internal Use

Part 2 SDH Frame Structure Part 2 SDH Frame Structure

From ITU-T G.707:

1. One frame lasts for 125 microseconds (8000 frames/s)

2. Rectangular block structure 9 rows and 270 columns(STM-1)

3. Each unit is one byte (8 bits)4. Transmission mode: Byte

by byte, row by row, from left to right, from top to bottom

Frame = 125 us

Bit rate of STM-1= 9*270*8*8000

123456789

270 Columns

9 rows

Page 21: shashi sdh

Internal Use

SDH Frame StructureSDH Frame Structure

Three parts:1. Information

Payload2. Section

Overhead3. AU-PTR

Frame = 125 us

9

MSOH

AU-PTR Information Payload

RSOH123456789

270 Columns

9 rows

Page 22: shashi sdh

Internal Use

Information PayloadInformation Payload

Information Payload

√ Also known as Virtual Container level 4 (VC-4)√ Used to transport low speed tributary signals√ Contains low rate signals and Path Overhead (POH)√ Location: rows #1 ~ #9, columns #10 ~ #270

9

MSOH

AU-PTRPayload

RSOH

270 Columns

HP

OH

1

package

package

low rate signal

LPOH, TU-PTR

LPOH, TU-PTR

9 rows

Data package

Page 23: shashi sdh

Internal Use

Section OverheadSection Overhead

Fulfills the section layer OAM functions

9

270 Columns

9 rows

Types of Section Overhead

1. RSOH monitor the regenerator section

2. MSOH monitor the multiplexing section

Location:1. RSOH: rows #1 ~ #3,

columns #1 ~ #92. MSOH: rows #5 ~ #9, columns

#1 ~ #9

123

56789

MSOH

AU-PTR Information Payload

RSOH

Page 24: shashi sdh

Internal Use

AUAU--PTRPTR

9

MSOH

AU-PTR Information Payload

RSOH

270 Columns

9 rows4

Indicates the first byte of VC4

► Location: row #4, columns #1 ~ #9

Page 25: shashi sdh

Internal Use

SDH MultiplexingSDH Multiplexing

SDH Multiplexing includes:

√ Low to high rate SDH signals (STM-1 STM-N)√ PDH to SDH signals (2M, 34M & 140M STM-N)√ Other hierarchy signals to SDH Signals (ATM STM-N)

Some terms and definitions:► Mapping► Aligning► Multiplexing

Page 26: shashi sdh

Internal Use

SDH Multiplexing StructureSDH Multiplexing Structure

STM-1 AU-4

TU-3

AUG-1

TUG-3 VC-3 C-3

VC-4 C-4

TU-12 VC-12 C-12

TUG-2

×1 ×1

×3

×1

×7

×3

139264 kbit/s

34368 kbit/s

2048 kbit/s

Pointer processing

Multiplexing

MappingAligning

AUG-4

AUG-16

AUG-64

STM-4

STM-16

STM-64

×1

×1

×1

×4

×4

×4

Page 27: shashi sdh

Internal Use

SDH Tributary Multiplexing (140M)SDH Tributary Multiplexing (140M)

140 Mbit/s to STM-N

140M Rate adaptation

Add HPOH

C4

9

1 260125 μs

1

Next page

Mapping

VC4

1

9

125μs1 261

HPOH

Page 28: shashi sdh

Internal Use

SDH Tributary Multiplexing (140M)SDH Tributary Multiplexing (140M)

AddAU-PTR

AddSOH

Aligning

AU-PTR

AU-4

10 270

×1

AUG-1

MultiplexingAUG-N

1 270

RSOH

MSOH

InfoPayloadAU-PTR

9

STM-1

1 270X N

9

STM-N

AddSOH

One STM-1 frame can load only one 140Mbit/s Signal

Page 29: shashi sdh

Internal Use

SDH Tributary Multiplexing (34M)SDH Tributary Multiplexing (34M)

34 Mbit/s to STM-N

34M Rate Adaptation

Add LPOH

C3

1 849

125μs

1 1

9

VC3

LPOH

125μs1 85

Next page

Mapping

Page 30: shashi sdh

Internal Use

SDH Tributary Multiplexing (34M)SDH Tributary Multiplexing (34M)

1st align

Fillgap

×3

86

TU-3

1

H1H2H3

1

9

Aligning

1 861

9

H1H2H3

R

TUG-3

Multiplexing

POH

R R

VC-4

9

11 2613

Same procedureas 140M

Page 31: shashi sdh

Internal Use

SDH Tributary Multiplexing (2M)SDH Tributary Multiplexing (2M)

2 Mbit/s to STM-N

2M Nextpage

125μs

1 4

C12

1

9

LPOH

VC121 4

1

9

RateAdaptation

Add LPOH

Add TU-PTR

Mapping Aligning

TU12

1 41

9

TU-PTR

Page 32: shashi sdh

Internal Use

SDH Tributary Multiplexing (2M)SDH Tributary Multiplexing (2M)

×3

1 12

TUG-2

1

9

×7

Multiplexing

R R

TUG-3

1 86

1

9

Multiplexing Same procedureas 34M

Page 33: shashi sdh

Internal Use

QuestionsQuestions

1. What are the main parts of the SDH Frame structure?

2. What is the transmission speed of STM-4? How to calculate it?

Page 34: shashi sdh

Internal Use

GlossaryGlossary

► Mapping - A process used when tributaries are adapted into VCs by adding POH information

► Aligning - This process takes place when a pointer is included in a Tributary Unit (TU) or an Administrative Unit (AU), to allow the 1st byte of the VC to be located

► Multiplexing - This process is used when multiple low-order path signals are adapted into a higher-order path signal, or when high-order path signals are adapted into a Multiplexing Section

Page 35: shashi sdh

Internal Use

GlossaryGlossary

C = ContainerVC = Virtual ContainerTU = Tributary UnitAU = Administrative UnitTUG = Tributary Unit GroupAUG = Administrative Unit GroupSTM = Synchronous Transfer Module

Page 36: shashi sdh

Internal Use

Chapter1 SDH Overview

Chapter2 Frame Structure & Multiplexing

Methods

Chapter3 Overhead & Pointers

Chapter4 Logical Functional Blocks

Page 37: shashi sdh

Internal Use

Part 3 Section Overheads Part 3 Section Overheads

D3∆D2∆∆D1

F1∆E1∆∆B1

J0A2A2A2A1A1A1

AU-PTR

E2M1S1D12D11D10D9D8D7D6D5D4

K2K1B2B2B2

RSOH

MSOH

∆ = Media dependent bytesSTM-1

Page 38: shashi sdh

Internal Use

A1 and A2 BytesA1 and A2 Bytes

Framing Bytes – Indicate the beginning of the STM-N frame

The A1, A2 bytes are unscrambled

A1 = f6H (11110110), A2 = 28H (00101000)

In STM-N: (3XN) A1 bytes, (3XN) A2 bytes

STM-N STM-N STM-N STM-N STM-N STM-N

Finding frame head

Page 39: shashi sdh

Internal Use

A1 and A2 BytesA1 and A2 Bytes

Framing

Nextprocess

FindA1,A2

OOF

LOF

N

Y

AIS

over 3ms

Page 40: shashi sdh

Internal Use

D1 ~ D12 BytesD1 ~ D12 Bytes

Data Communications Channels (DCC) Bytes

RS-DCC – D1 ~ D3 – 192 kbit/s (3X64 kbit/s)

MS-DCC – D4 ~ D12 – 576 kbit/s (9X64kbit/s)

TMNDCC channel

NE NE NENE

OAM Information: Operation, Administration and maintenance

Page 41: shashi sdh

Internal Use

E1 and E2 BytesE1 and E2 Bytes

Digital telephone channelE1-RS, E2-MS

E1 and E2

NE NE NENE

Orderwire Bytes

E1 – RS Orderwire Byte – RSOH orderwire message

E2 – MS Orderwire Byte – MSOH orderwire message

Page 42: shashi sdh

Internal Use

B1 ByteB1 Byte

Bit interleaved Parity Code (BIP-8) Byte –A parity code (even parity), used to check the

transmission errors over the RSB1 BBE is represented by RS-BBE( performance event)

Tx

2#STM-N

Rx

1#STM-NCalculateB1, B2

1#STM-N

2#STM-N

Verify B1 B2

STM-NA1 00110011A2 11001100A3 10101010A4 00001111

B 01011010

BIP-8

Page 43: shashi sdh

Internal Use

B2 ByteB2 Byte

Bit interleaved Parity Code (MS BIP-24) Byte

This bit interleave parity NX24 code is used to check the bit errors over the MS

B2 BBE is represented by MS-BBE( performance event)

The mechanism of B2 is same like B1

Page 44: shashi sdh

Internal Use

M1 ByteM1 Byte

Tx Rx

Traffic

GenerateMS-FEBBE

Find B2 bit errorsGenerate MS-BBE

Return M1

Multiplexing Section Remote Error Indication Byte A return message from Rx to Tx ,when Rx find B2 bit errorsA count of BIP-24xN (B2) bit errorsTx generate corresponding performance event MS-FEBBE

Page 45: shashi sdh

Internal Use

K1 and K2( b1K1 and K2( b1--b5) b5)

Automatic Protection Switching (APS ) bytes

Transmitting APS protocol

Used for network multiplexing protection switch function

Page 46: shashi sdh

Internal Use

K2 (b6 ~ b8)K2 (b6 ~ b8)

Rx detects K2 (b6-b8)="111" generate MS-AIS alarm

Rx detects K2 (b6-b8)="110" generate MS-RDI alarm

GenerateMS-AIS

Start

DetectK2(b6-

b8)

Return MS-RDI

GenerateMS-RDI

111

110

Page 47: shashi sdh

Internal Use

S1 ByteS1 Byte

Synchronization Status Message Byte (SSMB): S1 (b5~ Synchronization Status Message Byte (SSMB): S1 (b5~ b8)b8)Value indicates the sync. levelValue indicates the sync. level

G.813 (Sync. Equipment Timing Clock)G.813 (Sync. Equipment Timing Clock)1011

Do not use for sync.Do not use for sync.1111

SSUSSU--B (G.812 local)B (G.812 local)1000SSUSSU--A (G.812 transit)A (G.812 transit)0100

G.811 PRCG.811 PRC0010

Quality unknown (existing sync. Network)Quality unknown (existing sync. Network)0000

Meaningbits 5 ~ 8

Page 48: shashi sdh

Internal Use

Path OverheadsPath Overheads

N1

K3

F3

H4

F2

G1

C2

B3

J1 VC-n Path Trace Byte

Path BIP-8

Path Signal Label

Path Status

Path User Channel

TU Multiframe Indi

Path User Channel

AP Switching

Network Operator

Higher Order Path OverheadHigher Order Path Overhead

1 2 3 4 5 6 7 8 9 10

Page 49: shashi sdh

Internal Use

Path trace byte: J1Path trace byte: J1

Next process

Detect J1

Match

HP-TIM

YN

> The first byte of VC-4> User-programmable> The received J1 should

match with the expected J1

Page 50: shashi sdh

Internal Use

B3 ByteB3 Byte

Next process

Verify B3

correct

HP-BBE

YN

> Path bit paritycode byte (even parity code)

> Used to detect bit errors

Mechanism is same like B1and B2

Page 51: shashi sdh

Internal Use

Signal label byte: C2Signal label byte: C2

> Specifies the mapping type in the VC-N

> 00 H Unequipped02 H TUG structure13 H ATM mapping

The received C2 should match with the expected C2

Detect C2

00H

HP-UNEQMatch

HP-SLMNext process

Insert AIS downward

N Y

NY

Page 52: shashi sdh

Internal Use

Path Status Byte: G1Path Status Byte: G1

Detect receiving VC4

HP-UNEQHP-TIMHP-SLM

Return HP-RDI

HP-BBE

ReturnHP-REI

Next process

N Y

N Y

Return performance message from Rx to Tx

> HP-REI b1 ~ b4

> HP-RDI b5

Page 53: shashi sdh

Internal Use

Path OverheadsPath Overheads

VC-12VC-12VC-12VC-12

K4N2J2V51

9

1 4

500μs VC-12 multiframe

Low Order Path OverheadLow Order Path Overhead

Page 54: shashi sdh

Internal Use

Path Overhead BytesPath Overhead Bytes

V5> First byte of the multiframe> Indicated by TU-PTR> Functions: Error checking, Signal Label and Path Status of VC-12

b1 ~ b2 Error Performance Monitoring (BIP-2)b3 Return Error detected in VC-12 (LP-REI)b4 Return Failure declared in VC-12 (LP-

RFI)b5 ~ b7 Signal Label for VC-12b8 Indicate Defect in VC-12 path (LP-RDI)

Page 55: shashi sdh

Internal Use

Path Overhead BytesPath Overhead Bytes

Next process

Verify b1 b2

match

LP-BBE

YN

Detect V5

Return LP-REI (b3)

Detect b5-b7

000

LP-UNEQMatch

LP-SLMNext

process

N Y

NY

Return LP-RDI (b8)

Page 56: shashi sdh

Internal Use

PointersPointers

Pointers

AU-PTR TU-PTR

Page 57: shashi sdh

Internal Use

AUAU--PTRPTR

RSOH

H1YYH2FF H3H3H3

H1YYH2FFH3H3H3

MSOH

RSOH

MSOH

0— — 1— — ------ 86— —

696— — 697— — ------782— —

0— — 1— — ------ 86— —

1 9 270

1

4

91

4

9

125us

250us

522— —435— — 436— — ------ 521— —

523— — -----608— —

Negativejustification

Positivejustification

Page 58: shashi sdh

Internal Use

TUTU--PTRPTR

V4V3V2V1

VC-12VC-12VC-12VC-12

1

9

500μs VC-12 multiframe

TU POINTERSTU POINTERS

11 44

Page 59: shashi sdh

Internal Use

QuestionsQuestions

Which byte is used to monitor the MS-AIS and MS-RDI?

What is the mechanism for R-LOF generation?

Which bytes implement the RS(MS/HP) error monitoring?

Page 60: shashi sdh

Internal Use

Chapter1 SDH Overview

Chapter2 Frame Structure & Multiplexing

Methods

Chapter3 Overhead & Pointers

Chapter4 Logical Functional Blocks

Page 61: shashi sdh

Internal Use

Part 4 Common SDH NE Part 4 Common SDH NE

TM (Terminal Multiplexer)Two ports device: Line Port (Optical Port), Tributary PortUsed in the terminal station of a networkCross-connect function: TU LU

TMTM

E1E1

E3E3

E4E4

STMSTM--MM

STMSTM--NN WW

Note: M<NNote: M<NHuaHua WeiWeiDefaultDefault

Page 62: shashi sdh

Internal Use

Common SDH NECommon SDH NE

ADM (Add and Drop Multiplexer)Three ports device: Tributary Port, Line Port West (Left), Line Unit

East (Right)Used as an intermediate station, the most important NE typeCross-connect function: TU LU (W/E), LU (W) LU (E)

ADMADM

E1E1

E3E3

E4E4

STMSTM--MM

STMSTM--NNEE

Note: M<NNote: M<N

STMSTM--NN WW

Page 63: shashi sdh

Internal Use

Common SDH NECommon SDH NE

Applications of TM & ADMApplications of TM & ADM

ADMADM

E1E1

E3E3

E4E4

STMSTM--MM

STMSTM--NNEE

Note: M<NNote: M<N

STMSTM--NNWW

TM ADM ADM TM

chain

ADM

ADM

ADM ADM

ring

Page 64: shashi sdh

Internal Use

Common SDH NECommon SDH NE

REGTwo ports device: LU (W) & LU (E)

Used due to the long distance between MultiplexersO/E, Signal regenerating

REGREGWW EE

STMSTM--NN STMSTM--NN

Page 65: shashi sdh

Internal Use

Common SDH NECommon SDH NE

DXCMulti-port deviceUsed to interconnect larger number of STM-N signalsCan be used for the grooming (consolidating & segregating)

of STM-NsUsed in complex & backbone networkDXC m/n (m ≥ n) m represent highest cross-connect raten represent lowest cross-connect rate

140Mb/s155Mb/s

42.5Gb/s622Mb/s34Mb/s8Mb/s2Mb/s64kb/srate653210m or n

Page 66: shashi sdh

Internal Use

SDH Logical Functional BlocksSDH Logical Functional Blocks

ITU-T recommends a unified basic functional block standard

Page 67: shashi sdh

Internal Use

Logical Functional Block for SDH Logical Functional Block for SDH EquipmentEquipment

STM A B C D E F

F

FG

GH HI

NP

G.703

G.703

140Mb/s

2Mb/s34Mb/s

Note: Taking 2Mb/sas example

SPI RST

TTF

MSPMST MSA

HPCPPI

PPI

LPA

LPA

HPT

HPTLPT LPC HPA

OHA OHA InterfaceSEMF MCF

Q InterfaceF Interface

D4—D12 D1—D3

External SynchronousSignal Interface

HOA

HOI

LOI

w

L

JK

M

SETS SETPI

Page 68: shashi sdh

Internal Use

SPI Functional BlockSPI Functional Block

SPI: Synchronous Physical InterfaceImplements interface functionO/E, extracts timing signal from

STM-NMonitors corresponding alarm

SPI

ReceivingA B

O/EExtractTimingSignal

Receive FailR-LOS

TransmittingB A

E/O

Page 69: shashi sdh

Internal Use

RST Functional BlockRST Functional Block

RST: Regenerator Section Termination

Processes RS overheadsProcesses RSOH in Rx

directionWrites RSOH in Tx direction

Receiving

B C

R-LOSPut all “1” at C

FramingA1, A2

FailR-OOF, R-LOFAll “1” at C

NormalUnscramble

Process E1, D1~D3

Verify B1RS-BBE

Page 70: shashi sdh

Internal Use

RST Functional BlockRST Functional Block

TransmittingC B

WritesRSOH

Calculates B1

Add E1D1-D3

ScramblesSTM-N frame

Page 71: shashi sdh

Internal Use

MST Functional BlockMST Functional Block

MST: Multiplex SectionTermination

Processes MSOHReceiving

C D

Extract APS

K1, K2 (b1-b5)Detect

K2 (b6-b8)

110MS-RDI

111MS-AIS

All “1” at D

DetectB2

AbnormalMS-BBE

OverflowMS-EXC (B2)All “1” at D

Page 72: shashi sdh

Internal Use

MST Functional BlockMST Functional Block

TransmittingD→C

Write MSOH

Receiving MS-BBEReturn M1 MS-REI

Receiving MS-AISReturn K2 110 MS-RDI

Page 73: shashi sdh

Internal Use

MST Functional BlockMST Functional Block

MST RST SPI MSTRSTSPI

RS (regenerator section)MS (multiplex section)

Concept of RS, MS

Page 74: shashi sdh

Internal Use

MSP Functional BlockMSP Functional Block

MSP: Multiplex Section Protection Implements MS layer protection switchSwitch conditions: R-LOS, R-LOF, MS-AIS alarm

Main

Stand-by

TM TM

Network topology Functional Block

MSA

MSA

MSP

MSP

MST MST

MST MST

Main Signal Path

Stand-by Signal Path

Page 75: shashi sdh

Internal Use

MSA Functional BlockMSA Functional Block

MSA: Multiplexing Section Adaptation

Implements AUG to VC-4 or VC-4 to AUG conversion

ReceivingE F

De-interleavedAUG N×AU-4

ReadAU-PTR

H1H2H3 are all “1”AU-AIS

All “1” at F

Invalid pointer or 8 NDFAU-LOP

All “1” at F

Page 76: shashi sdh

Internal Use

MSA Functional BlockMSA Functional Block

TransmittingF E

WritesAU-PTR

Byte interleavedN×AU- 4 AUG

Page 77: shashi sdh

Internal Use

Functional BlocksFunctional Blocks

HPC: High-Order Path Cross-connection

HPT: High-Order Path TerminationProcesses HPOH in VC-4

Page 78: shashi sdh

Internal Use

Verify B3Invalid HP-BBE

HPT Functional BlockHPT Functional Block

ReceivingF G

Detect J1Mismatch

HP-TIM

Detect C2Mismatch

HP-SLM00H: HP-UNEQ

All “1” at G

Transmit H4to HPA

All “1” at G

Page 79: shashi sdh

Internal Use

HPT Functional BlockHPT Functional Block

TransmittingG F

Write HO-POH Receiving HP-BBEReturn HP-REI (G1)

Receiving HP-TIM, HP-SLM, HP-UNEQReturn HP-RDI (G1)

Page 80: shashi sdh

Internal Use

Functional BlockFunctional Block

HOI: High-Order Interface (HPT, LPA, PPI)140 M --- VC-4

HOA: High-Order Assemble (HPT, HPA)VC-12 --- VC-4

LPC: Low-Order Path ConnectionFor VC-12 & VC-3 Cross-connect MatrixOnly chooses route, does not process signals

LPT: Low-Order Path AdaptationReal-Time Monitoring of Low-Order VC-12

Page 81: shashi sdh

Internal Use

Functional BlockFunctional Block

LPA: Low-Order Path AdaptationImplements pack/unpack and restores original signalPDH <---> C

PPI: PDH Physical InterfaceExtract PDH tributary signal timingCode pattern conversionInterface between device and PDH line

Page 82: shashi sdh

Internal Use

PPI Functional BlockPPI Functional Block

PPI

ReceivingL MJ K

Code patternconversion

TransmittingM LK J

Code patternconversion

Extract timing

No input signalT-ALOS,EX-TLOS

Page 83: shashi sdh

Internal Use

HPA Functional BlockHPA Functional Block

ReceivingG H

De-interleavedC4 63XTU-12

ReadTU-PTR

V1V2V3 are all “1”TU-AIS

All “1” at H

Invalid pointer or 8 NDFTU-LOP

All “1” at H

HPA: High order Path Adaptation

Implements C4 to VC-12 conversion

Page 84: shashi sdh

Internal Use

HPA Functional BlockHPA Functional Block

TransmittingH G

TransmittingH G

Write PointerTU-PTR, VC-12 TU12

Write PointerTU-PTR, VC-12 TU12

Byte InterleaveTU12 C-4

Byte InterleaveTU12 C-4

Page 85: shashi sdh

Internal Use

LPT Functional BlockLPT Functional Block

LPT

ReceivingH I

Detect V5LP-BBE

LP-SLM, LP-UNEQ

TransmittingI H

Write LO-POHReceive LP-BBE, Return LP-REI

Receive LP-SLM, UNEQ, Return LP-RDI

LPT: Low-Order Path TerminationProcess LO-POH

Page 86: shashi sdh

Internal Use

Auxiliary Functional BlocksAuxiliary Functional Blocks

SEMF: Synchronous Equipment Management FunctionMonitoring center of the whole equipmentImplements OAM of local equipment and other equipment

MCF: Message Communication FunctionProvides D1~D3 Interface for communication

Implements network management termination interface to equipment: f/Qx

Page 87: shashi sdh

Internal Use

Auxiliary Functional BlocksAuxiliary Functional Blocks

SETS: Synchronous Equipment Timing SourceProvides local timing clock signal to other functional

blocksProvides timing clock signal to other equipment

SETPI: Synchronous Equipment Timing Physical InterfaceProvides external interface of SETSExternal timing clock signal and output timing clock

signalOHA: Overhead Access

Processes order wire messages E1, E2, F1

Page 88: shashi sdh

Internal Use

Alarm Flow ChartAlarm Flow Chart

TU-AIS

AU-AIS HPHP--UNEQUNEQ HP-TIM HP-SLMAU-LOP

R-LOS R-LOF

MSMS--AISAISMSMS--EXCEXC

Page 89: shashi sdh

Internal Use