Shaft Deflection

download Shaft Deflection

of 15

Transcript of Shaft Deflection

  • 8/13/2019 Shaft Deflection

    1/15

    Sumali, Shaft Deflection Design 1

    ABE 330 Design of Machin e Elements

    Design Of Shafts for Def lect ions

    ProblemDesign an idler shaft for an underdrive mechanism in a tractor. The shaft is labeled SIIin Fig. 1.

    SpecificationsPower transmitted, hp= 80 hp.

    Speed of shaft SII, Na2= 600 rpm;

    Radius of gear G2= 4 in. Radius of gear G3= 3.5 in.

    The pressure angle is 20o. This means radial force = tan 20

    o* tangential force.

    G1is a right-hand helical gear. (Verify that the axial force on G2is in the negative xdirection.)

    The helix angle is 15o. This means axial force = tan 15

    o* tangential force.

    Assume the indicated distances in Fig. 1 are between centers of gears or bearings.Distance between bearings B3and B4= 12 in; x3and x5minimum = 3.5 in.

    Maximum deflection slope at bearings B3and B4is 1o.

    Maximum deflection at gear G3is 1/100 in.

    SI, SII,SIIIare shafts. G1, G2, and G3are helical gears. B1, B2, B6are deep-groove ball bearings.

    Figure 1 Tractor underdrive gears, shafts and bearings.

    Include in report

    1. Free-body diagram of shaft SII. Calculate all forces and moments.a. Isometric (3-D) sketch.b. In x-y plane. Replace gears and bearings with forces and concentrated moments. Assume axial

    components of bearing forces B3y= B4y.

    c. In x-z plane.2. Bending moment diagrams of shaft SII:

    a. In x-y plane.b. In x-z plane.

    3. (Most important result) Sketch of shaft SIIwith its dimensions and positions of gears G2and G3.

    SI

    B1

    B2

    G1

    G2

    SII

    B3

    B4

    G3

    SIII

    G4B5

    B6

    x3

    4

    From

    engine

    To

    load

    x5

    zx

    y

  • 8/13/2019 Shaft Deflection

    2/15

    Sumali, Shaft Deflection Design 2

    a. Pick x3and x5according to the specifications.

    b. Calculate the diameter so that the defl ections are with in specif ications. Assume uniform diameterfor the whole shaft. If all forces and moments in one plane are much higher than forces and moments

    in the other plane, use only the high-load plane for deflection calculations.

    c. Round up the diameter to the nearest bearing internal diameter in Hamrock Table 13.6.

    4. Calculate the safety factor against yielding.

    a. Calculate the torsion in the shaft between G2and G3.

    b. At G2, and G3, combine the bending moments vectorially, e.g. at G3,2

    32

    33 zy MMM += .

    c. Calculate the bending (normal) stress at G2, and G3. (If one bending moment is much higher than theother, don't worry about calculating the smaller bending stress).

    d. Calculate the torsional (shear) stress at G2or G3(same value).e. Use Mohr's circle formula to obtain the principal stresses at G2or at G3, whichever has a higher

    bending moment.

    f. Calculate the von Mises equivalent stresse. Safety factor against yielding = yield strength/e.

    5. Plot the deflections of the shaft as a function of x:a. In the x-y plane.

    b. In the x-z plane.

  • 8/13/2019 Shaft Deflection

    3/15

    Sumali, Shaft Deflection Design 3

    Possible Solution to the shaft deflection design problem

    Free-Body Diagram of shaft-gear assembly

    Calculate tangential force F2yusing torque-power-rpm relationship.

    Calculate vertical force F2z= F2ytan(pressure angle).Calculate axial force F2x= F2ytan(helix angle).

    Calculate the reaction forces using static equilibrium equations.

    G3

    zx

    y

    F2y

  • 8/13/2019 Shaft Deflection

    4/15

    Sumali, Shaft Deflection Design 4

  • 8/13/2019 Shaft Deflection

    5/15

    Sumali, Shaft Deflection Design 5

  • 8/13/2019 Shaft Deflection

    6/15

    Sumali, Shaft Deflection Design 6

  • 8/13/2019 Shaft Deflection

    7/15

    Sumali, Shaft Deflection Design 7

  • 8/13/2019 Shaft Deflection

    8/15

    Sumali, Shaft Deflection Design 8

  • 8/13/2019 Shaft Deflection

    9/15

    Sumali, Shaft Deflection Design 9

  • 8/13/2019 Shaft Deflection

    10/15

    Sumali, Shaft Deflection Design 10

  • 8/13/2019 Shaft Deflection

    11/15

    Sumali, Shaft Deflection Design 11

    %deflab.m

    %design of shaft based on deflection

    %sumali Feb 2000

    clf; clear

    F2y=2101;

    F2z=765;

    F3y=2401;

    F3z=874;

    R2y=788;

    R2z=797;R3y=1088;

    R3z=842;

    F2x=563;

    F3x=643;

    R2=4;

    R3=3.5;

    M2=F2x*R2;

    M3=F3x*R3;

    dx=0.1; Imax=121;

    %Bending Moment in x-z plane

    for i=1:Imax;

    x(i)=(i-1)*dx;

    My(i)=-R3z*(x(i));end

    for i=36:Imax; My(i)=My(i)+F3z*(x(i)-3.5)-M3;end

    for i=86:Imax; My(i)=My(i)+F2z*(x(i)-8.5)+M2;end

    plot(x,My);

    grid; title('Bending Moment in x-z plane');

    xlabel('x (in)'); ylabel('M (lb.in)');

    %Deflection in x-z plane

    C1=(-R3z/6*12^3+F3z/6*8.5^3-M3/2*8.5^2+F2z/6*3.5^3+M2/2*3.5^2)/12;

    for i=1:Imax;

    z(i)=R3z/6*(x(i))^3+C1*x(i);

    end

    for i=36:Imax; z(i)=z(i)-F3z/6*(x(i)-3.5)^3+M3/2*(x(i)-3.5)^2;end

    for i=86:Imax; z(i)=z(i)-F2z/6*(x(i)-8.5)^3-M2/2*(x(i)-8.5)^2;end

    EI1=(R3z/6*3.5^3+C1*3.5)/(-0.01);

    E=30e6;

    I1=EI1/E;

    d1=2*(4*I1/pi)^0.25;

    %d turns out to be 1.4 in. Round it up to 40 mm to fit bearing

    d=40/25.4;

    I=pi/4*(d/2)^4;

    EI=E*I;

    z1=z/EI1;

    z=z/EI;

    figure

    plot(x,z,'-',x,z1,':');legend('d=1.575in','d=1.40in');

    grid; title('Deflection in x-z plane');

    xlabel('x (in)'); ylabel('z (in)');

    %Slope in x-z plane

    for i=1:Imax;

    thetay(i)=R3z/2*(x(i))^2+C1;

    end

    for i=36:Imax; thetay(i)=thetay(i)-F3z/2*(x(i)-3.5)^2+M3*(x(i)-3.5);end

    for i=86:Imax; thetay(i)=thetay(i)-F2z/2*(x(i)-8.5)^2-M2*(x(i)-8.5);end

    thetay=thetay/EI;

  • 8/13/2019 Shaft Deflection

    12/15

    Sumali, Shaft Deflection Design 12

    figure

    plot(x,thetay*180/pi);

    grid; title('Slope in x-z plane');

    xlabel('x (in)'); ylabel('Theta y (deg)');

    %Bending Moment in x-y plane

    for i=1:Imax;

    Mz(i)=-R3y*(x(i));

    end

    for i=36:Imax; Mz(i)=Mz(i)+F3y*(x(i)-3.5);end

    for i=86:Imax; Mz(i)=Mz(i)-F2y*(x(i)-8.5);end

    figureplot(x,Mz);

    grid; title('Bending Moment in x-y plane');

    xlabel('x (in)'); ylabel('M (lb.in)');

    %Deflection in x-y plane

    C1y=(-R3y/6*12^3+F3y/6*8.5^3-F2y/6*3.5^3)/12;

    for i=1:Imax;

    y(i)=R3y/6*(x(i))^3+C1y*x(i);

    end

    for i=36:Imax; y(i)=y(i)-F3y/6*(x(i)-3.5)^3;end

    for i=86:Imax; y(i)=y(i)+F2y/6*(x(i)-8.5)^3;end

    EI2=(R3y/6*3.5^3+C1y*3.5)/(-0.01);

    E=30e6;I2=EI2/E;

    d2=2*(4*I2/pi)^0.25;

    %d turns out to be 1.026 in. So keep d=40 mm from the x-z plane calculation

    y=y/EI;

    figure

    plot(x,y);

    grid; title('Deflection in x-y plane');

    xlabel('x (in)'); ylabel('y (in)');

    %Slope in x-y plane

    for i=1:Imax;

    thetaz(i)=R3y/2*(x(i))^2+C1y;

    end

    for i=36:Imax; thetaz(i)=thetaz(i)-F3y/2*(x(i)-3.5)^2;endfor i=86:Imax; thetaz(i)=thetaz(i)+F2y/2*(x(i)-8.5)^2;end

    thetaz=thetaz/EI;

    figure

    plot(x,thetaz*180/pi);

    grid; title('Slope in x-y plane');

    xlabel('x (in)'); ylabel('Theta z (deg)');

  • 8/13/2019 Shaft Deflection

    13/15

    Sumali, Shaft Deflection Design 13

  • 8/13/2019 Shaft Deflection

    14/15

    Sumali, Shaft Deflection Design 14

  • 8/13/2019 Shaft Deflection

    15/15

    Sumali, Shaft Deflection Design 15