Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所...

85
Sensor Networks 金金金金金 金金金金金金金金金金金金金金 金金金金金金金 金金
  • date post

    19-Dec-2015
  • Category

    Documents

  • view

    240
  • download

    4

Transcript of Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所...

Page 1: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Sensor Networks

金仲達教授清華大學資訊系統與應用研究所

九十三學年度第一學期

Page 2: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-2

Sources “Comm ’n Sense: Research Challenges in E

mbedded Networked Sensing,” D. Estrin, http://lecs.cs.ucla.edu

“A Survey on Sensor Network,”I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, Georgia Institute of TechnologyIEEE Communications Magazine, Aug. 2002

Page 3: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-3

Introduction Mark Weiser envisioned a world in which comp

uting is pervasive What we need is to instrument the physical wo

rld with pervasive networks of sensor-rich, embedded computation

Such systems fulfill two of Weiser’s objectives: Ubiquity: by inject computation into the physical w

orld with high spatial density Invisibility: by having the nodes and collective of no

des operate autonomously

Page 4: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-4

Introduction What is required is the ability to easily deploy f

lexible sensing, computation, and actuation capabilities into our physical environments such that the devices themselves are general-purpose and can organize and adapt to support several application types

Page 5: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-5

•Embed numerous distributed devices to monitor/interact with physical world

•Exploit spatially and temporally dense, in situ, sensing and actuation

•Network these devices so that they can coordinate to perform higher-level tasks.

•Requires robust distributed systems of hundreds or thousands of devices.

Vision

Page 6: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-6

Sensor Nodes and Networks Sensor nodes = sensing, data processing, and

communicating capacity Sensor network: a large number of sensor nod

es that are densely deployed either inside the phenomenon or very close to it Sensor node position not engineered or predecide

dprotocols or algorithms must be self-organizing

Cooperative effort of sensor nodes with in network processing

Page 7: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-7

ApplicationsScientific: eco-physiology,biocomplexity mapping

Infrastructure: Contaminant flow monitoring

Engineering: adaptivestructures

www.jamesreserve.edu

Page 8: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-8

Other Applications (I) Environmental

Forest fire detection, biocomplexity mapping of the environment, flood detection, precision agriculture

Healthy Telemonitoring of human physiological data, tracki

ng and monitoring doctors and patients inside a hospital, drug administration in hospitals

Military: Monitoring friendly forces, equipment and ammuni

tion; battlefield surveillance; reconnaissance of opposing forces and terrain; targeting; battle damage assessment; nuclear, biological and chemical attack detection and reconnaissance

Page 9: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-9

Other Applications (II) Home

Home automation Smart environment

Commercial Environmental control in office buildings Interactive museums Detecting and monitoring car thefts Managing inventory control Vehicle tracking and detection Monitoring product quality Monitoring disaster areas

….

Page 10: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-10

Challenges Tight coupling to the physical world and

embedded in unattended “control systems” Different from traditional Internet, PDA, mobility

applications that interface primarily and directly with human users

Untethered, small form-factor, nodes present stringent energy constraints Living with small, finite, energy source is different from

fixed but reusable resources such as BW, CPU, storage Communications is primary consumer of energy

Sending a bit over 10 or 100 meters consumes as much energy as thousands/millions of operations

Page 11: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-11

New Design Themes Long-lived systems that can be untethered

and unattended Low-duty cycle operation with bounded latency Exploit redundancy Tiered architectures (mix of form/energy

factors) Self-configuring systems that can be

deployed ad hoc Measure and adapt to unpredictable

environment Exploit spatial diversity and density of

sensor/actuator nodes

Page 12: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-12

Approach Leverage data processing inside the

network Exploit computation near data to reduce

communication Achieve desired global behavior with

adaptive localized algorithms (i.e., do not rely on global interaction or information) Dynamic, messy (hard to model), environments

preclude pre-configured behavior Can’t afford to extract dynamic state

information needed for centralized control or even Internet-style distributed control

Page 13: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-13

Why can’t we simply adapt Internet protocols and “end to end” architecture? Internet routes data using IP addresses in

Packets and Lookup tables in routers Humans get data by “naming data” to a search

engine Many levels of indirection between name and

IP address Works well for the Internet, and for support of

Person-to-Person communication Embedded, energy-constrained (un-

tethered, small-form-factor), unattended systems can’t tolerate communication overhead of indirection

Page 14: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-14

vs. Ad Hoc Networks Large number of sensor nodes (several

orders of magnitude higher) Densely deployed Prone to failures Network topology changes very frequently Mainly use a broadcast paradigm vs. point-

to-point in ad hoc networks Limited in power, computational

capacities, and memory May not have global identification (ID)

Page 15: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-15

Communication Architecture Factors of design consideration

Transmission media Production costs Power consumption Fault tolerance NW topology HW constraints Environment Scalability

Page 16: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-16

Fault Tolerance The ability to sustain sensor network function

alities without any interruption due to sensor node failures

The reliability Rk(t) or fault tolerance of a sensor node can be modeled with the Poisson distribution to capture the probability of not having a failure within the time interval (0,t) Rk(t) = exp(-λkt) , for node k

Page 17: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-17

Scalability The number of sensor nodes

10 -> 100 -> 1000 -> 10000 -> …. Depending on the application

New schemes must be able to utilize the high density

The density μ(R) = (N . π R2)/A A: region area R: radio transmission range N: the number of scattered sensor nodes

Page 18: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-18

Production Costs The cost of a single node is very important

to justify the overall cost of the network The cost of a sensor node should be much less

than US$1 The state-of-art technology allows a Bluetooth

radio system to be less than US$10 10 times more expensive the the targeted price

Page 19: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-19

Hardware 4 basic units: sensing unit, processing unit, tra

nsceiver unit, power unit Sensing: sensors, Analog-to-digital converters (ADC

s) Additional application-dependent units

Location finding system, power generator, mobilizer….

Page 20: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-20

Hardware Constraints Constraints

Size Power Operate in very high densities Low cost Dispensable Autonomous Adaptive to environment

Page 21: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-21

Sensor Network Topology Topology maintenance and change in 3 phase

s Predeployment and deployment phase

Be thrown in as a mass or placed one by one Post-deployment phase

Change in sensor nodes’ position, reachability, available energy, malfunctioning, and task details

Redeployment of additional nodes phase Additional sensor nodes can be redeployed

Page 22: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-22

Environment Nodes are densely deployed either very

close or directly inside the phenomenon to be observed

Usually work unattended in remote geographic areas in the interior of large machinery at the bottom of an ocean in a biologically or chemically contaminated

field in a battlefield beyond the enemy lines in a home or large building ….

Page 23: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-23

Transmission Media Often by wireless medium Radio:

Used by most sensors μAMPS sensor uses a Bluetooth-compatible 2.4 GHz t

ransceiver with an integrated frequency synthesizer Infrared:

License-free, robust to interference from electrical devices

cheaper and easier to build Optical: Smart Dust mote Both infrared and optical require line of sight

Page 24: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-24

Power Consumption In some application scenarios, replenishment

of power resources might be impossible Battery lifetime

In a multihop ad hoc sensor network, each node plays dual role of data originator and data router cause significant topological changes require rerouting of packets and reorganization of t

he network Power consumption

sensing, communication, and data processing

Page 25: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-25

Design Issues According to Protocol Stack Physical layer:

Simple, robust modulation, transmission, receiving

MAC protocol power-aware; minimize

collision with neighbors’ broadcasts

Network layer routing data supplied by

transport layer Transport layer

maintain flow of data

Page 26: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-26

Three Management Planes The power management plane, e.g.

Turn off its receiver after receiving a message Broadcasts low in power and cannot participate in

routing messages The mobility management plane

Detects and registers movement of sensor nodes maintain route back to the user, keep track of their

neighbor The task management plane

balances and schedules sensing tasks for a specific region

They are needed for sensor nodes to work power-efficiently, route data in a mobile network, share resources between sensor nodes

Page 27: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-27

Physical Layer Responsibility

Frequency selection, carrier frequency generation, signal detection, modulation, and data encryption.

915 MHz industrial, scientific, and medical (ISM) band has been widely used

Long distance wireless communication can be expensive in terms of power

A good modulation is critical for reliable comm. Binary and M-ary modulation schemes

Ultra wideband (UWB) or impulse radio (IR) are promising

Page 28: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-28

Physical Layer Open Issues Modulation schemes

Simple and low-power modulation schemes Strategies to overcome signal propagation

effects Hardware design

Tiny, low-power, low-cost transceiver, sensing, and processing units

Power-efficient hardware management strategies

Page 29: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-29

Data Link Layer Responsibility

Multiplexing of data streams, data frame detection, medium access and error control

Reliable point-to-point and point-to-multipoint Medium Access Control protocol

creation of the network infrastructure fairly and efficiently share communication resources

Existing MAC protocols cannot be used Cellular system: infrastructure-based Bluetooth and mobile ad hoc network (MANET)

much larger number, power and radio range, frequent topology change, power conservation needed

Page 30: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-30

Some Proposed MAC Protocols

Page 31: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-31

Example MAC Protocols Self-Organizing Medium Access Control for Se

nsor Networks (SMACS) and the Eavesdrop-And-Register (EAR) Algorithm Nodes to discover their neighbors and establish co

mmunication without the need for any local or global master nodes

No necessity for networkwide synchronization using a random wake-up schedule during connecti

on phase and turning the radio off during idle time slots

EAR attempts to offer continuous service to the mobile nodes

Page 32: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-32

Data Link Open Issues MAC for mobile sensor networks

more extensive mobility in the sensor nodes and targets

Determination of lower bounds on the energy required for sensor network self-organization

Error control coding schemes Power-saving modes of operation

Page 33: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-33

Network Layer Design principles

Power efficiency Sensor networks are mostly data-centric Data aggregation is useful only when it does

not hinder the collaborative effort of the sensor nodes.

An ideal sensor network has attribute-based addressing and location awareness

Also providing internetworking with external networks

Page 34: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-34

Energy-Efficient Route Available power:PA Energy required (α)

Maximum minimum PA node route Min PA is larger than

the min PAs Maximum PA route Minimum energy route Minimum hop route

Page 35: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-35

Data Centric Route Use interest dissemination

Sinks broadcast the interest, or Sensor nodes broadcast an advertisement and

wait for a request Often require attribute-based naming

Query by using attributes of phenomenon Data aggregation

Solve the implosion and overlap problems

Page 36: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-36

Proposed Schemes Flooding

Implosion (duplicated message), overlap (both sensors detect the same event), resource blindness (not considering resource constraints)

Gossiping Relay packets to

randomly selected neighbor

Negotiation (SPIN)

Page 37: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-37

More Schemes Small minimum energy communication

network Sequential assignment routing Low-energy adaptive clustering hierarchy Directed diffusion

Page 38: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-38

Protocol Summary

Page 39: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-39

Application Layer Protocols Sensor management

nodes do not have global identifications and are infrastructureless

Providing administrative tasks Introducing the rules related to data aggregation, attribut

e-based naming, and clustering to the sensor nodes Exchanging data related to the location finding algorithms Time synchronization of the sensor nodes Moving sensor nodes Turning sensor nodes on and off Querying the sensor network configuration and the status

of nodes, and reconfiguring the sensor network Authentication, key distribution, and security in data com

munications

Page 40: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-40

Application Layer Protocols Task assignment and data advertisement

interest dissemination Advertisement of available data

Sensor query and data dissemination issue queries, respond to queries and collect incoming replies Sensor query and tasking language (SQTL) supports 3 types o

f events Receive defines events generated by a sensor node when t

he sensor node receives a message every defines events occurring periodically due to timer ti

meout expire defines events occurring when a timer is expired

Different types of SQDDP can be developed for various applications. The use of SQDDPs may be unique to each application

Page 41: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-41

Page 42: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-42

Research Areas Constructs for “in network” distributed

processing system organized around naming data, not nodes “programming” large collections of distributed

elements Localized algorithms that achieve system-

wide properties Time and location synchronization

energy-efficient techniques for associating time and space with data to support collaborative processing

Experimental infrastructure

Page 43: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-43

Constructs for in NW Processing Nodes pull, push, store named data (using tuple

space) to create effic. processing points in NW e.g. duplicate suppression, aggregation, correlation

Nested queries reduce overhead relative to “edge processing”

Complex queries support collaborative signal proc. propagate function

describing desired locations/nodes/data (e.g. ellipse for tracking)

Page 44: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-44

Self-organization with Localized Alg. Self-configuration and reconfiguration

essential to lifetime of unattended systems in dynamic, constrained energy, environment Efficient, multi-hop topology formation: node

measures neighborhood to determine participation, duty cycle, and/or power level

Beacon placement: candidate beacon measures potential reduction in localization error

Requires large solution space; not seeking unique optimal

Investigating applicability, convergence, role of selective global information

Page 45: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-45

Time and Location Synchronization Common time coordinate for in situ processing,

correlation of events Developing methods that balance communication

(energy) cost with other variables (e.g., precision, scope, lifetime, cost, form factor)

Post facto pulse synchronization Common spatial coordinate for 3-space related

tasks and network operation (e.g., geo-routing) Methods not rely on GPS or RF RSSI (due to envir.) Multi-modal localization using acoustic time of fligh

t measurements, RF synchronization, and imaging to identify bad data sources (NLOS)

Page 46: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-46

Experimental Infrastructure

PC-104+(off-the-shelf)

UCB Mote (Pister/Culler)

Software• Directed Diffusion• TinyOS (UCB/Culler)• Measurement, Simulation

Page 47: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Berkeley Motes & TinyOS孫文宏

Page 48: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-48

Berkeley Motes 1st generation

2nd generation

Page 49: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-49

System of MICA Motes

Page 50: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-50

MICA Motes Processor and radio board -

MPR300

Sensor board – MTS310

Base station/interface board - MIB300

Page 51: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-51

MICA Motes

Page 52: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-52

MICA Motes

Page 53: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-53

Sensor Board

2.25 in

1.25 in

Microphone

AccelerometerLightSensor

TemperatureSensor

Sounder Magnetometer

Page 54: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-54

Processor/Radio Board

Page 55: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-55

Processor/Radio Board

Page 56: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-56

TinyOS TinyOS = application/binary image, executabl

e on an ATmega processor event-driven, 2-level scheduling, single-shared stac

k no kernel, no process management, no memory m

anagement,no virtual memory

simple FIFOscheduler, partof the main

CommunicationActuating Sensing Communication

Application (User Components)

Main (includes Scheduler)

Hardware Abstractions

Page 57: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-57

TinyOSf:\avrgcc \cygwin \tinyos-1.x\apps {cnt_to_leds, cnt_to_rfm, sense, …}

\docs {connector.pdf, tossim.pdf, …} \tools {toscheck, inject, verify, …} \tos {shared/system components, …}

……………………..

Page 58: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-58

Programming Model Application Component

2 types: modules and configurations. Module Configuration

A configuration is a component that "wires" other components together. Every NesC application has a single top-level configuration.

Interface

Page 59: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-59

Programming Model

application:configuration

comp1:module

comp3

comp4comp2:configuration

Page 60: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-60

Reference Crossbow

http://www.xbow.comMICA Motes http://www.xbow.com/Products/Wireless_Sensor_Networks.htm

TinyOS

http://today.cs.berkeley.edu/tos/ TinyOS supporthttp://today.cs.berkeley.edu/tos/support.html TinyOS tutorial

http://today.cs.berkeley.edu/tos/tinyos-1.x/doc/tutorial/index.html

PADSFTP/TinyOS

Page 61: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Directed Diffusion: A Scalable and

Robust Communication

Paradigm for Sensor Networks

Chalermek Intanagonwiwat (USC/ISI)Ramesh Govindan (USC/ISI)

Deborah Estrin (USC/ISI and UCLA)

Page 62: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-62

The Goal Embed numerous

devices to monitor and interact with physical world

Network these devices so that they can coordinate to perform higher-level tasks

Requires robust robust distributed systems of distributed systems of tens of thousands of tens of thousands of devicesdevices

Page 63: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-63

The Challenge: Dynamics! The physical world is dynamic

Dynamic operating conditions Dynamic availability of resources

… particularly energy! Devices must adapt automatically to the

environment Too many devices for manual configuration Environmental conditions are unpredictable

Unattended and un-tethered operation is key to many applications

Page 64: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-64

Energy Is the Bottleneck Resource Communication VS Computation Cost

E R4 10 m: 5000 ops/transmitted bit 100 m: 50,000,000 ops/transmitted bit

Short distance communication => multi-hop Cannot assume global knowledge, cannot

pre-configure networks Get desired global behavior thru localized

interactions Empirically adapt to observed environment

Can leverage data processing/aggregation inside the network

Page 65: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-65

Research Theme What communication primitives can be employed i

n such unattended sensor networks? Assume no structured sensor fields, but task-specific A user of the network contact one of the sensors in the fiel

d and pose queries (interrogation): e.g., “Give me periodic reports about animal location in

region A every t seconds” Interrogation propagated to sensor nodes in region A Sensor nodes in region A are tasked to collect data Data are sent back to the users every t seconds

Dissemination mechanisms for tasks and events?

Page 66: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-66

Issues to Be Addressed Scalable to thousands of sensor nodes Sensor nodes may fail, lose battery power,

be temporarily unable to communication, …=> communication mechanisms must be robust

Minimize energy usage

=> a data dissemination mechanism for sensorsDirected Diffusion

Page 67: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-67

Directed Diffusion In-network data processing (aggregation,

caching) Distributed algorithm with localized interaction Application-aware communication primitives

expressed in terms of named data (not in terms of the nodes generating or requesting data)=> data-centric

Data generated by sensors named by attribute-value Sensor nodes need not have globally unique address,

but need to distinguish between neighbors

Page 68: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-68

Basic Ideas A node requests data by sending interests for

named data (diffusion) Gradients are set up in network to draw events Data matching the interest is drawn towards

that node along multiple reverse paths The network reinforces one or more paths Intermediate nodes can cache, transform, or

aggregate data, and may direct interests based on previously cached data

Interest/data propagation, aggregation decided by localized interactions (with local naming)

Page 69: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-69

Naming Task descriptions are named by a list of

attribute-value pairs

This specifies an interest for data matching the attributes

Page 70: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-70

Basic Directed DiffusionSetting up gradients (flooding)

Source

Sink

Interest = InterrogationGradient = Who is interested

Broadcast periodically

Data rate = 1ms

Page 71: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-71

Basic Directed Diffusion

Source

Sink

Sending data and reinforcing the best path

Low rate event Reinforcement = Increased intereste.g. 1st neighbor sending the event

Page 72: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-72

Multiple Sources and Sinks

Page 73: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-73

Directed Diffusion and Dynamics

Recoveringfrom node failure

Source

Sink

Low rate event

High rate eventReinforcement

Page 74: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-74

Directed Diffusion and Dynamics

Source

Sink

Stable path

Low rate event

High rate event

Page 75: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-75

Local Behavior Choices For propagating

interests In our example, floodIn our example, flood More sophisticated

behaviors possible: e.g. based on cached information, GPS

For data transmission Multi-path delivery with Multi-path delivery with

selective quality along selective quality along different pathsdifferent paths

probabilistic forwarding single-path delivery,

etc.

For setting up gradients data-rate gradients data-rate gradients

are set up towards are set up towards neighbors who send neighbors who send an interestan interest..

Others possible: probabilistic gradients, energy gradients, etc.

For reinforcement reinforce paths, or parts reinforce paths, or parts

thereof, based on thereof, based on observed delaysobserved delays, losses, variances etc.

other variants: inhibit certain paths because resource levels are low

Page 76: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-76

Simulation Study of Diffusion Key metric

Average Dissipated Energy per event delivered indicates energy efficiency and network lifetime

Compare diffusion to flooding centrally computed tree (omniscient multicast)

Page 77: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-77

Diffusion Simulation Details -2Simulator: ns - NNNNN:50 250 :40 :1.9510 -3 nodes/m2 NN NNNNNNN(9.8 ) MAC: Modified Contention-based MAC NNNNNNN NNNNN:[ 2000]

660 mW in transmission, 395 mW in reception, and 35 mw in idle

Page 78: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-78

Diffusion Simulation Surveillance application

5 sources are randomly selected within a 70m x 70m corner in the field

5 sinks are randomly selected across the field NNNN NN N NNNNNNNNNN2 / NNNNNNNNNN0 . 0 2 / Eventsize: 64byt es NNNNN:36 All sources send the same location estimate for

base experiments

Page 79: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-79

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 50 100 150 200 250 300

Ave

rag

e D

issi

pat

ed E

ner

gy

(Jo

ule

s/N

od

e/R

ecei

ved

Eve

nt)

Network Size

DiffusionDiffusion

Omniscient MulticastOmniscient MulticastFloodingFlooding

Standard 802.11 is dominated by idle Standard 802.11 is dominated by idle energyenergy

Average Dissipated Energy (Standard 802.11 Energy M

odel)

Page 80: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-80

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0 50 100 150 200 250 300

Ave

rag

e D

issi

pat

ed E

ner

gy

(Jo

ule

s/N

od

e/R

ecei

ved

Eve

nt)

Network Size

DiffusionDiffusion

Omniscient MulticastOmniscient Multicast

FloodingFlooding

Diffusion can outperform flooding and even Diffusion can outperform flooding and even omniscient multicast. WHY ?omniscient multicast. WHY ?

Average Dissipated Energy (Sensor Radio Energy Model

)

Page 81: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-81

Impact of In-network Processing

0

0.005

0.01

0.015

0.02

0.025

0 50 100 150 200 250 300

Ave

rag

e D

issi

pat

ed E

ner

gy

(Jo

ule

s/N

od

e/R

ecei

ved

Eve

nt)

Network Size

Diffusion With Diffusion With SuppressionSuppression

Diffusion Without Diffusion Without SuppressionSuppression

Application-level suppression allows diffusion to Application-level suppression allows diffusion to reduce traffic and to surpass omniscient multicast.reduce traffic and to surpass omniscient multicast.

Page 82: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-82

Impact of Negative Reinforcement

0

0.002

0.004

0.006

0.008

0.01

0.012

0 50 100 150 200 250 300

Ave

rag

e D

issi

pat

ed E

ner

gy

(Jo

ule

s/N

od

e/R

ecei

ved

Eve

nt)

Network Size

Diffusion With Negative Diffusion With Negative ReinforcementReinforcement

Diffusion Without Diffusion Without Negative ReinforcementNegative Reinforcement

Reducing high-rate paths in steady state is criticalReducing high-rate paths in steady state is critical

Page 83: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-83

Summary of Diffusion Results Under the investigated scenarios, diffusion out

performed omniscient multicast and flooding - Application level data dissemination has the p

otential to improve energy efficiency significantly Duplicate suppression is only one simple example o

ut of many possible ways. Aggregation (in progress)

All layers have to be carefully designed Not only network but also MAC and application level

Experimentation on our testbed in progress

Page 84: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-84

M MMM Information SCADDS project

http://www.isi.edu/scadds

- 2ns : network simulator (with diffusion su) - -http://www.isi.edu/nsnam/dist/ns src snapshot.t

ar.gz

NNN NNNNNNN NNN NNNNNNNN http://www.isi.edu/scadds/testbeds.html

Page 85: Sensor Networks 金仲達教授 清華大學資訊系統與應用研究所 九十三學年度第一學期. Pervasive ComputingSensor Networks-1 Sources “Comm ’n Sense: Research

Pervasive Computing Sensor Networks-85