Semántica de LTA Ialeteya.cs.buap.mx/~jlavalle/flp/6 Semantics of LTA I.pdfContenido 1...

33
Sem´ antica de LT A I Jos´ e de Jes´ us Lavalle Mart´ ınez http://aleteya.cs.buap.mx/ ˜ jlavalle/ Benem´ erita Universidad Aut´ onoma de Puebla Facultad de Ciencias de la Computaci´ on Licenciatura en Ciencias de la Computaci´ on Fundamentos de Lenguajes de Programaci´ on CCOS 255 Oto˜ no 2020 Jos´ e de Jes´ us Lavalle Mart´ ınez (FCC-BUAP) Sem´ antica de LT A I Oto˜ no 2020 1 / 14

Transcript of Semántica de LTA Ialeteya.cs.buap.mx/~jlavalle/flp/6 Semantics of LTA I.pdfContenido 1...

Page 1: Semántica de LTA Ialeteya.cs.buap.mx/~jlavalle/flp/6 Semantics of LTA I.pdfContenido 1 Introducci´on 2 Ordenes parciales sobre´ LTA 3 Diferentes tipos de inducci´on 4 Propiedades

Semantica de LT A I

Jose de Jesus Lavalle Martınezhttp://aleteya.cs.buap.mx/˜jlavalle/

Benemerita Universidad Autonoma de PueblaFacultad de Ciencias de la Computacion

Licenciatura en Ciencias de la ComputacionFundamentos de Lenguajes de Programacion

CCOS 255

Otono 2020

Jose de Jesus Lavalle Martınez (FCC-BUAP) Semantica de LT A I Otono 2020 1 / 14

Page 2: Semántica de LTA Ialeteya.cs.buap.mx/~jlavalle/flp/6 Semantics of LTA I.pdfContenido 1 Introducci´on 2 Ordenes parciales sobre´ LTA 3 Diferentes tipos de inducci´on 4 Propiedades

Contenido

1 Introduccion

2 Ordenes parciales sobre LT A

3 Diferentes tipos de induccion

4 Propiedades de la semantica del LT A

5 Ejercicios

Jose de Jesus Lavalle Martınez (FCC-BUAP) Semantica de LT A I Otono 2020 2 / 14

Page 3: Semántica de LTA Ialeteya.cs.buap.mx/~jlavalle/flp/6 Semantics of LTA I.pdfContenido 1 Introducci´on 2 Ordenes parciales sobre´ LTA 3 Diferentes tipos de inducci´on 4 Propiedades

Motivacion I

¿Por que es importante una sintaxis y una semantica formal para el LT A?

Con respecto a la sintaxis formal, esta nos permite:

1 combinar los sımbolos del alfabeto correctamente,2 definir funciones recursivas para razonar sobre los elementos del

lenguaje.3 definir diferentes ordenes parciales entre los elementos del lenguaje,

para poder hacer demostraciones por induccion.

Jose de Jesus Lavalle Martınez (FCC-BUAP) Semantica de LT A I Otono 2020 3 / 14

Page 4: Semántica de LTA Ialeteya.cs.buap.mx/~jlavalle/flp/6 Semantics of LTA I.pdfContenido 1 Introducci´on 2 Ordenes parciales sobre´ LTA 3 Diferentes tipos de inducci´on 4 Propiedades

Motivacion I

¿Por que es importante una sintaxis y una semantica formal para el LT A?

Con respecto a la sintaxis formal, esta nos permite:

1 combinar los sımbolos del alfabeto correctamente,2 definir funciones recursivas para razonar sobre los elementos del

lenguaje.3 definir diferentes ordenes parciales entre los elementos del lenguaje,

para poder hacer demostraciones por induccion.

Jose de Jesus Lavalle Martınez (FCC-BUAP) Semantica de LT A I Otono 2020 3 / 14

Page 5: Semántica de LTA Ialeteya.cs.buap.mx/~jlavalle/flp/6 Semantics of LTA I.pdfContenido 1 Introducci´on 2 Ordenes parciales sobre´ LTA 3 Diferentes tipos de inducci´on 4 Propiedades

Motivacion I

¿Por que es importante una sintaxis y una semantica formal para el LT A?

Con respecto a la sintaxis formal, esta nos permite:1 combinar los sımbolos del alfabeto correctamente,

2 definir funciones recursivas para razonar sobre los elementos dellenguaje.

3 definir diferentes ordenes parciales entre los elementos del lenguaje,para poder hacer demostraciones por induccion.

Jose de Jesus Lavalle Martınez (FCC-BUAP) Semantica de LT A I Otono 2020 3 / 14

Page 6: Semántica de LTA Ialeteya.cs.buap.mx/~jlavalle/flp/6 Semantics of LTA I.pdfContenido 1 Introducci´on 2 Ordenes parciales sobre´ LTA 3 Diferentes tipos de inducci´on 4 Propiedades

Motivacion I

¿Por que es importante una sintaxis y una semantica formal para el LT A?

Con respecto a la sintaxis formal, esta nos permite:1 combinar los sımbolos del alfabeto correctamente,2 definir funciones recursivas para razonar sobre los elementos del

lenguaje.

3 definir diferentes ordenes parciales entre los elementos del lenguaje,para poder hacer demostraciones por induccion.

Jose de Jesus Lavalle Martınez (FCC-BUAP) Semantica de LT A I Otono 2020 3 / 14

Page 7: Semántica de LTA Ialeteya.cs.buap.mx/~jlavalle/flp/6 Semantics of LTA I.pdfContenido 1 Introducci´on 2 Ordenes parciales sobre´ LTA 3 Diferentes tipos de inducci´on 4 Propiedades

Motivacion I

¿Por que es importante una sintaxis y una semantica formal para el LT A?

Con respecto a la sintaxis formal, esta nos permite:1 combinar los sımbolos del alfabeto correctamente,2 definir funciones recursivas para razonar sobre los elementos del

lenguaje.3 definir diferentes ordenes parciales entre los elementos del lenguaje,

para poder hacer demostraciones por induccion.

Jose de Jesus Lavalle Martınez (FCC-BUAP) Semantica de LT A I Otono 2020 3 / 14

Page 8: Semántica de LTA Ialeteya.cs.buap.mx/~jlavalle/flp/6 Semantics of LTA I.pdfContenido 1 Introducci´on 2 Ordenes parciales sobre´ LTA 3 Diferentes tipos de inducci´on 4 Propiedades

Motivacion II

Con respecto a la semantica formal:

1 Elimina la ambiguedad que existirıa sin este tipo de significado.2 Nos permite razonar sobre las propiedades semanticas que tiene el

lenguaje.3 Define una funcion que es computable.

Jose de Jesus Lavalle Martınez (FCC-BUAP) Semantica de LT A I Otono 2020 4 / 14

Page 9: Semántica de LTA Ialeteya.cs.buap.mx/~jlavalle/flp/6 Semantics of LTA I.pdfContenido 1 Introducci´on 2 Ordenes parciales sobre´ LTA 3 Diferentes tipos de inducci´on 4 Propiedades

Motivacion II

Con respecto a la semantica formal:1 Elimina la ambiguedad que existirıa sin este tipo de significado.

2 Nos permite razonar sobre las propiedades semanticas que tiene ellenguaje.

3 Define una funcion que es computable.

Jose de Jesus Lavalle Martınez (FCC-BUAP) Semantica de LT A I Otono 2020 4 / 14

Page 10: Semántica de LTA Ialeteya.cs.buap.mx/~jlavalle/flp/6 Semantics of LTA I.pdfContenido 1 Introducci´on 2 Ordenes parciales sobre´ LTA 3 Diferentes tipos de inducci´on 4 Propiedades

Motivacion II

Con respecto a la semantica formal:1 Elimina la ambiguedad que existirıa sin este tipo de significado.2 Nos permite razonar sobre las propiedades semanticas que tiene el

lenguaje.

3 Define una funcion que es computable.

Jose de Jesus Lavalle Martınez (FCC-BUAP) Semantica de LT A I Otono 2020 4 / 14

Page 11: Semántica de LTA Ialeteya.cs.buap.mx/~jlavalle/flp/6 Semantics of LTA I.pdfContenido 1 Introducci´on 2 Ordenes parciales sobre´ LTA 3 Diferentes tipos de inducci´on 4 Propiedades

Motivacion II

Con respecto a la semantica formal:1 Elimina la ambiguedad que existirıa sin este tipo de significado.2 Nos permite razonar sobre las propiedades semanticas que tiene el

lenguaje.3 Define una funcion que es computable.

Jose de Jesus Lavalle Martınez (FCC-BUAP) Semantica de LT A I Otono 2020 4 / 14

Page 12: Semántica de LTA Ialeteya.cs.buap.mx/~jlavalle/flp/6 Semantics of LTA I.pdfContenido 1 Introducci´on 2 Ordenes parciales sobre´ LTA 3 Diferentes tipos de inducci´on 4 Propiedades

Sintaxis de LT A

Recordemos la sintaxis de LT A:

d ::= 0|1| · · · |9n ::= d|nd

e ::= n|(ei+ed)|(ei−ed)|(ei∗ed)

Jose de Jesus Lavalle Martınez (FCC-BUAP) Semantica de LT A I Otono 2020 5 / 14

Page 13: Semántica de LTA Ialeteya.cs.buap.mx/~jlavalle/flp/6 Semantics of LTA I.pdfContenido 1 Introducci´on 2 Ordenes parciales sobre´ LTA 3 Diferentes tipos de inducci´on 4 Propiedades

size(e)

Definicion 1Sea e ∈ LT A definimos el tamano de e (el numero de nodos que tiene suarbol de sintaxis abstracta), en sımbolos size(e), de la siguiente manera.

size(e) =

1 si e = d,

size(n) + size(d) + 1 si e = nd,

size(ei) + size(ed) + 1 si e = (ei � ed).

De aquı en adelante � ∈ {+,−, ∗}.

Jose de Jesus Lavalle Martınez (FCC-BUAP) Semantica de LT A I Otono 2020 6 / 14

Page 14: Semántica de LTA Ialeteya.cs.buap.mx/~jlavalle/flp/6 Semantics of LTA I.pdfContenido 1 Introducci´on 2 Ordenes parciales sobre´ LTA 3 Diferentes tipos de inducci´on 4 Propiedades

depth(e)

Definicion 2Sea e ∈ LT A definimos la profundidad de e (la profundidad que tiene suarbol de sintaxis abstracta), en sımbolos depth(e), de la siguiente manera.

depth(e) =

1 si e = d,

max{depth(n), depth(d)}+ 1 si e = nd,

max{depth(ei), depth(ed)}+ 1 si e = (ei � ed).

Jose de Jesus Lavalle Martınez (FCC-BUAP) Semantica de LT A I Otono 2020 7 / 14

Page 15: Semántica de LTA Ialeteya.cs.buap.mx/~jlavalle/flp/6 Semantics of LTA I.pdfContenido 1 Introducci´on 2 Ordenes parciales sobre´ LTA 3 Diferentes tipos de inducci´on 4 Propiedades

Subtermino inmediato

Definicion 3Sea e ∈ LT A definimos el conjunto de subterminos inmediatos de e, ensımbolos immsubt(e), de la siguiente manera.

immsubt(e) =

{} si e = d,

{n, d} si e = nd,

{ei, ed} si e = (ei � ed).

Jose de Jesus Lavalle Martınez (FCC-BUAP) Semantica de LT A I Otono 2020 8 / 14

Page 16: Semántica de LTA Ialeteya.cs.buap.mx/~jlavalle/flp/6 Semantics of LTA I.pdfContenido 1 Introducci´on 2 Ordenes parciales sobre´ LTA 3 Diferentes tipos de inducci´on 4 Propiedades

Diferentes tipos de induccion

Induccion sobre N : Si P (0) se cumple y si dado P (i) podemosdemostrar P (i + 1), entonces P (n) se cumple para todo n ∈ N. AP (i) se le llama Hipotesis de Induccion.

Induccion sobre size(e) : Si para todo termino e′ con size(e′) = 1 secumple P (e′) y si dado P (e′′) podemos demostrar que P (e′′′) consize(e′′) < size(e′′′), entonces P (e) se cumple para todo e ∈ L. AP (e′′) se le llama Hipotesis de Induccion.Induccion sobre depth(e) : Si para todo termino e′ con depth(e′) = 1se cumple P (e′) y si dado P (e′′) podemos demostrar que P (e′′′) condepth(e′′) < depth(e′′′), entonces P (e) se cumple para todo e ∈ L. AP (e′′) se le llama Hipotesis de Induccion.Induccion estructural: Si para todo termino e′ con immsubt(e′) = {}se cumple P (e′) y si para todo e′′ ∈ immsubt(e′′′) dado P (e′′)podemos demostrar que P (e′′′), entonces P (e) se cumple para todoe ∈ L. A P (e′′) se le llama Hipotesis de Induccion.

Jose de Jesus Lavalle Martınez (FCC-BUAP) Semantica de LT A I Otono 2020 9 / 14

Page 17: Semántica de LTA Ialeteya.cs.buap.mx/~jlavalle/flp/6 Semantics of LTA I.pdfContenido 1 Introducci´on 2 Ordenes parciales sobre´ LTA 3 Diferentes tipos de inducci´on 4 Propiedades

Diferentes tipos de induccion

Induccion sobre N : Si P (0) se cumple y si dado P (i) podemosdemostrar P (i + 1), entonces P (n) se cumple para todo n ∈ N. AP (i) se le llama Hipotesis de Induccion.

Induccion sobre size(e) : Si para todo termino e′ con size(e′) = 1 secumple P (e′) y si dado P (e′′) podemos demostrar que P (e′′′) consize(e′′) < size(e′′′), entonces P (e) se cumple para todo e ∈ L. AP (e′′) se le llama Hipotesis de Induccion.

Induccion sobre depth(e) : Si para todo termino e′ con depth(e′) = 1se cumple P (e′) y si dado P (e′′) podemos demostrar que P (e′′′) condepth(e′′) < depth(e′′′), entonces P (e) se cumple para todo e ∈ L. AP (e′′) se le llama Hipotesis de Induccion.Induccion estructural: Si para todo termino e′ con immsubt(e′) = {}se cumple P (e′) y si para todo e′′ ∈ immsubt(e′′′) dado P (e′′)podemos demostrar que P (e′′′), entonces P (e) se cumple para todoe ∈ L. A P (e′′) se le llama Hipotesis de Induccion.

Jose de Jesus Lavalle Martınez (FCC-BUAP) Semantica de LT A I Otono 2020 9 / 14

Page 18: Semántica de LTA Ialeteya.cs.buap.mx/~jlavalle/flp/6 Semantics of LTA I.pdfContenido 1 Introducci´on 2 Ordenes parciales sobre´ LTA 3 Diferentes tipos de inducci´on 4 Propiedades

Diferentes tipos de induccion

Induccion sobre N : Si P (0) se cumple y si dado P (i) podemosdemostrar P (i + 1), entonces P (n) se cumple para todo n ∈ N. AP (i) se le llama Hipotesis de Induccion.Induccion sobre size(e) : Si para todo termino e′ con size(e′) = 1 secumple P (e′) y si dado P (e′′) podemos demostrar que P (e′′′) consize(e′′) < size(e′′′), entonces P (e) se cumple para todo e ∈ L. AP (e′′) se le llama Hipotesis de Induccion.

Induccion sobre depth(e) : Si para todo termino e′ con depth(e′) = 1se cumple P (e′) y si dado P (e′′) podemos demostrar que P (e′′′) condepth(e′′) < depth(e′′′), entonces P (e) se cumple para todo e ∈ L. AP (e′′) se le llama Hipotesis de Induccion.

Induccion estructural: Si para todo termino e′ con immsubt(e′) = {}se cumple P (e′) y si para todo e′′ ∈ immsubt(e′′′) dado P (e′′)podemos demostrar que P (e′′′), entonces P (e) se cumple para todoe ∈ L. A P (e′′) se le llama Hipotesis de Induccion.

Jose de Jesus Lavalle Martınez (FCC-BUAP) Semantica de LT A I Otono 2020 9 / 14

Page 19: Semántica de LTA Ialeteya.cs.buap.mx/~jlavalle/flp/6 Semantics of LTA I.pdfContenido 1 Introducci´on 2 Ordenes parciales sobre´ LTA 3 Diferentes tipos de inducci´on 4 Propiedades

Diferentes tipos de induccion

Induccion sobre N : Si P (0) se cumple y si dado P (i) podemosdemostrar P (i + 1), entonces P (n) se cumple para todo n ∈ N. AP (i) se le llama Hipotesis de Induccion.Induccion sobre size(e) : Si para todo termino e′ con size(e′) = 1 secumple P (e′) y si dado P (e′′) podemos demostrar que P (e′′′) consize(e′′) < size(e′′′), entonces P (e) se cumple para todo e ∈ L. AP (e′′) se le llama Hipotesis de Induccion.Induccion sobre depth(e) : Si para todo termino e′ con depth(e′) = 1se cumple P (e′) y si dado P (e′′) podemos demostrar que P (e′′′) condepth(e′′) < depth(e′′′), entonces P (e) se cumple para todo e ∈ L. AP (e′′) se le llama Hipotesis de Induccion.

Induccion estructural: Si para todo termino e′ con immsubt(e′) = {}se cumple P (e′) y si para todo e′′ ∈ immsubt(e′′′) dado P (e′′)podemos demostrar que P (e′′′), entonces P (e) se cumple para todoe ∈ L. A P (e′′) se le llama Hipotesis de Induccion.

Jose de Jesus Lavalle Martınez (FCC-BUAP) Semantica de LT A I Otono 2020 9 / 14

Page 20: Semántica de LTA Ialeteya.cs.buap.mx/~jlavalle/flp/6 Semantics of LTA I.pdfContenido 1 Introducci´on 2 Ordenes parciales sobre´ LTA 3 Diferentes tipos de inducci´on 4 Propiedades

Semantica de LT A

Recordemos la semantica de LT A.

JK : LT A → Z

J0K = 0, . . . , J9K = 9JndK = ((JnK∗10)+JdK)

J(ei+ed)K = (JeiK+JedK)J(ei−ed)K = (JeiK−JedK)J(ei∗ed)K = (JeiK∗JedK)

Jose de Jesus Lavalle Martınez (FCC-BUAP) Semantica de LT A I Otono 2020 10 / 14

Page 21: Semántica de LTA Ialeteya.cs.buap.mx/~jlavalle/flp/6 Semantics of LTA I.pdfContenido 1 Introducci´on 2 Ordenes parciales sobre´ LTA 3 Diferentes tipos de inducci´on 4 Propiedades

Todo termino aritmetico tiene un significado

Teorema 4

Para todo e ∈ LT A, existe z ∈ Z tal que JeK = z.

Demostracion: por induccion sobre el tamano de e.

Hipotesis de induccion: Si size(e) = k, entonces JeK = ze.e = d : JdK = zd.

e = nd : JndK = ((JnK∗10)+JdK), por la definicion de size:size(n) < size(nd), ası por hipotesis de induccion tenemos:JnK = zn, de tal manera que ((JnK∗10)+JdK) =((zn ∗ 10) + zd) ∈ Z.

e = (ei�ed) : Donde � ∈ {+,−, ∗}. J(ei�ed)K = (JeiK�JedK), nuevamentepor la definicion de size: size(ei) < size((ei�ed)) ysize(ed) < size((ei�ed)), aplicando la hipotesis de inducciondos veces, tenemos: JeiK = zei y JedK = zed

, de tal maneraque (JeiK�JedK) = (zei � zed

) ∈ Z.

Jose de Jesus Lavalle Martınez (FCC-BUAP) Semantica de LT A I Otono 2020 11 / 14

Page 22: Semántica de LTA Ialeteya.cs.buap.mx/~jlavalle/flp/6 Semantics of LTA I.pdfContenido 1 Introducci´on 2 Ordenes parciales sobre´ LTA 3 Diferentes tipos de inducci´on 4 Propiedades

Todo termino aritmetico tiene un significado

Teorema 4

Para todo e ∈ LT A, existe z ∈ Z tal que JeK = z.

Demostracion: por induccion sobre el tamano de e.

Hipotesis de induccion: Si size(e) = k, entonces JeK = ze.e = d : JdK = zd.

e = nd : JndK = ((JnK∗10)+JdK), por la definicion de size:size(n) < size(nd), ası por hipotesis de induccion tenemos:JnK = zn, de tal manera que ((JnK∗10)+JdK) =((zn ∗ 10) + zd) ∈ Z.

e = (ei�ed) : Donde � ∈ {+,−, ∗}. J(ei�ed)K = (JeiK�JedK), nuevamentepor la definicion de size: size(ei) < size((ei�ed)) ysize(ed) < size((ei�ed)), aplicando la hipotesis de inducciondos veces, tenemos: JeiK = zei y JedK = zed

, de tal maneraque (JeiK�JedK) = (zei � zed

) ∈ Z.

Jose de Jesus Lavalle Martınez (FCC-BUAP) Semantica de LT A I Otono 2020 11 / 14

Page 23: Semántica de LTA Ialeteya.cs.buap.mx/~jlavalle/flp/6 Semantics of LTA I.pdfContenido 1 Introducci´on 2 Ordenes parciales sobre´ LTA 3 Diferentes tipos de inducci´on 4 Propiedades

Todo termino aritmetico tiene un significado

Teorema 4

Para todo e ∈ LT A, existe z ∈ Z tal que JeK = z.

Demostracion: por induccion sobre el tamano de e.Hipotesis de induccion: Si size(e) = k, entonces JeK = ze.

e = d : JdK = zd.

e = nd : JndK = ((JnK∗10)+JdK), por la definicion de size:size(n) < size(nd), ası por hipotesis de induccion tenemos:JnK = zn, de tal manera que ((JnK∗10)+JdK) =((zn ∗ 10) + zd) ∈ Z.

e = (ei�ed) : Donde � ∈ {+,−, ∗}. J(ei�ed)K = (JeiK�JedK), nuevamentepor la definicion de size: size(ei) < size((ei�ed)) ysize(ed) < size((ei�ed)), aplicando la hipotesis de inducciondos veces, tenemos: JeiK = zei y JedK = zed

, de tal maneraque (JeiK�JedK) = (zei � zed

) ∈ Z.

Jose de Jesus Lavalle Martınez (FCC-BUAP) Semantica de LT A I Otono 2020 11 / 14

Page 24: Semántica de LTA Ialeteya.cs.buap.mx/~jlavalle/flp/6 Semantics of LTA I.pdfContenido 1 Introducci´on 2 Ordenes parciales sobre´ LTA 3 Diferentes tipos de inducci´on 4 Propiedades

Todo termino aritmetico tiene un significado

Teorema 4

Para todo e ∈ LT A, existe z ∈ Z tal que JeK = z.

Demostracion: por induccion sobre el tamano de e.Hipotesis de induccion: Si size(e) = k, entonces JeK = ze.

e = d : JdK = zd.

e = nd : JndK = ((JnK∗10)+JdK), por la definicion de size:size(n) < size(nd), ası por hipotesis de induccion tenemos:JnK = zn, de tal manera que ((JnK∗10)+JdK) =((zn ∗ 10) + zd) ∈ Z.

e = (ei�ed) : Donde � ∈ {+,−, ∗}. J(ei�ed)K = (JeiK�JedK), nuevamentepor la definicion de size: size(ei) < size((ei�ed)) ysize(ed) < size((ei�ed)), aplicando la hipotesis de inducciondos veces, tenemos: JeiK = zei y JedK = zed

, de tal maneraque (JeiK�JedK) = (zei � zed

) ∈ Z.

Jose de Jesus Lavalle Martınez (FCC-BUAP) Semantica de LT A I Otono 2020 11 / 14

Page 25: Semántica de LTA Ialeteya.cs.buap.mx/~jlavalle/flp/6 Semantics of LTA I.pdfContenido 1 Introducci´on 2 Ordenes parciales sobre´ LTA 3 Diferentes tipos de inducci´on 4 Propiedades

Todo termino aritmetico tiene un significado

Teorema 4

Para todo e ∈ LT A, existe z ∈ Z tal que JeK = z.

Demostracion: por induccion sobre el tamano de e.Hipotesis de induccion: Si size(e) = k, entonces JeK = ze.

e = d : JdK = zd.

e = nd : JndK = ((JnK∗10)+JdK), por la definicion de size:size(n) < size(nd), ası por hipotesis de induccion tenemos:JnK = zn, de tal manera que ((JnK∗10)+JdK) =((zn ∗ 10) + zd) ∈ Z.

e = (ei�ed) : Donde � ∈ {+,−, ∗}. J(ei�ed)K = (JeiK�JedK), nuevamentepor la definicion de size: size(ei) < size((ei�ed)) ysize(ed) < size((ei�ed)), aplicando la hipotesis de inducciondos veces, tenemos: JeiK = zei y JedK = zed

, de tal maneraque (JeiK�JedK) = (zei � zed

) ∈ Z.

Jose de Jesus Lavalle Martınez (FCC-BUAP) Semantica de LT A I Otono 2020 11 / 14

Page 26: Semántica de LTA Ialeteya.cs.buap.mx/~jlavalle/flp/6 Semantics of LTA I.pdfContenido 1 Introducci´on 2 Ordenes parciales sobre´ LTA 3 Diferentes tipos de inducci´on 4 Propiedades

Todo termino aritmetico tiene un significado

Teorema 4

Para todo e ∈ LT A, existe z ∈ Z tal que JeK = z.

Demostracion: por induccion sobre el tamano de e.Hipotesis de induccion: Si size(e) = k, entonces JeK = ze.

e = d : JdK = zd.

e = nd : JndK = ((JnK∗10)+JdK), por la definicion de size:size(n) < size(nd), ası por hipotesis de induccion tenemos:JnK = zn, de tal manera que ((JnK∗10)+JdK) =((zn ∗ 10) + zd) ∈ Z.

e = (ei�ed) : Donde � ∈ {+,−, ∗}. J(ei�ed)K = (JeiK�JedK), nuevamentepor la definicion de size: size(ei) < size((ei�ed)) ysize(ed) < size((ei�ed)), aplicando la hipotesis de inducciondos veces, tenemos: JeiK = zei y JedK = zed

, de tal maneraque (JeiK�JedK) = (zei � zed

) ∈ Z.Jose de Jesus Lavalle Martınez (FCC-BUAP) Semantica de LT A I Otono 2020 11 / 14

Page 27: Semántica de LTA Ialeteya.cs.buap.mx/~jlavalle/flp/6 Semantics of LTA I.pdfContenido 1 Introducci´on 2 Ordenes parciales sobre´ LTA 3 Diferentes tipos de inducci´on 4 Propiedades

El significado de un termino aritmetico es unico I

Teorema 5

Sea e ∈ LT A, si JeK = z′ y JeK = z′′ entonces z′ = z′′.

Demostracion: por induccion sobre el tamano de e.

Hipotesis de induccion: Si size(e) = k y JeK = z′ y JeK = z′′ entoncesz′ = z′′.

e = d : Si JdK = z′d y JdK = z′′

d entonces claramente z′d = z′′

d .e = nd : JndK = ((JnK ∗ 10) + JdK) = ((z′

n ∗ 10) + zd) yJndK = ((JnK ∗ 10) + JdK) = ((z′′

n ∗ 10) + zd), por ladefinicion de size: size(n) < size(nd), aplicando lahipotesis de induccion tenemos z′

n = z′′n, ası que

((z′n ∗ 10) + zd) = ((z′′

n ∗ 10) + zd).

Jose de Jesus Lavalle Martınez (FCC-BUAP) Semantica de LT A I Otono 2020 12 / 14

Page 28: Semántica de LTA Ialeteya.cs.buap.mx/~jlavalle/flp/6 Semantics of LTA I.pdfContenido 1 Introducci´on 2 Ordenes parciales sobre´ LTA 3 Diferentes tipos de inducci´on 4 Propiedades

El significado de un termino aritmetico es unico I

Teorema 5

Sea e ∈ LT A, si JeK = z′ y JeK = z′′ entonces z′ = z′′.

Demostracion: por induccion sobre el tamano de e.

Hipotesis de induccion: Si size(e) = k y JeK = z′ y JeK = z′′ entoncesz′ = z′′.

e = d : Si JdK = z′d y JdK = z′′

d entonces claramente z′d = z′′

d .e = nd : JndK = ((JnK ∗ 10) + JdK) = ((z′

n ∗ 10) + zd) yJndK = ((JnK ∗ 10) + JdK) = ((z′′

n ∗ 10) + zd), por ladefinicion de size: size(n) < size(nd), aplicando lahipotesis de induccion tenemos z′

n = z′′n, ası que

((z′n ∗ 10) + zd) = ((z′′

n ∗ 10) + zd).

Jose de Jesus Lavalle Martınez (FCC-BUAP) Semantica de LT A I Otono 2020 12 / 14

Page 29: Semántica de LTA Ialeteya.cs.buap.mx/~jlavalle/flp/6 Semantics of LTA I.pdfContenido 1 Introducci´on 2 Ordenes parciales sobre´ LTA 3 Diferentes tipos de inducci´on 4 Propiedades

El significado de un termino aritmetico es unico I

Teorema 5

Sea e ∈ LT A, si JeK = z′ y JeK = z′′ entonces z′ = z′′.

Demostracion: por induccion sobre el tamano de e.Hipotesis de induccion: Si size(e) = k y JeK = z′ y JeK = z′′ entonces

z′ = z′′.

e = d : Si JdK = z′d y JdK = z′′

d entonces claramente z′d = z′′

d .e = nd : JndK = ((JnK ∗ 10) + JdK) = ((z′

n ∗ 10) + zd) yJndK = ((JnK ∗ 10) + JdK) = ((z′′

n ∗ 10) + zd), por ladefinicion de size: size(n) < size(nd), aplicando lahipotesis de induccion tenemos z′

n = z′′n, ası que

((z′n ∗ 10) + zd) = ((z′′

n ∗ 10) + zd).

Jose de Jesus Lavalle Martınez (FCC-BUAP) Semantica de LT A I Otono 2020 12 / 14

Page 30: Semántica de LTA Ialeteya.cs.buap.mx/~jlavalle/flp/6 Semantics of LTA I.pdfContenido 1 Introducci´on 2 Ordenes parciales sobre´ LTA 3 Diferentes tipos de inducci´on 4 Propiedades

El significado de un termino aritmetico es unico I

Teorema 5

Sea e ∈ LT A, si JeK = z′ y JeK = z′′ entonces z′ = z′′.

Demostracion: por induccion sobre el tamano de e.Hipotesis de induccion: Si size(e) = k y JeK = z′ y JeK = z′′ entonces

z′ = z′′.e = d : Si JdK = z′

d y JdK = z′′d entonces claramente z′

d = z′′d .

e = nd : JndK = ((JnK ∗ 10) + JdK) = ((z′n ∗ 10) + zd) y

JndK = ((JnK ∗ 10) + JdK) = ((z′′n ∗ 10) + zd), por la

definicion de size: size(n) < size(nd), aplicando lahipotesis de induccion tenemos z′

n = z′′n, ası que

((z′n ∗ 10) + zd) = ((z′′

n ∗ 10) + zd).

Jose de Jesus Lavalle Martınez (FCC-BUAP) Semantica de LT A I Otono 2020 12 / 14

Page 31: Semántica de LTA Ialeteya.cs.buap.mx/~jlavalle/flp/6 Semantics of LTA I.pdfContenido 1 Introducci´on 2 Ordenes parciales sobre´ LTA 3 Diferentes tipos de inducci´on 4 Propiedades

El significado de un termino aritmetico es unico I

Teorema 5

Sea e ∈ LT A, si JeK = z′ y JeK = z′′ entonces z′ = z′′.

Demostracion: por induccion sobre el tamano de e.Hipotesis de induccion: Si size(e) = k y JeK = z′ y JeK = z′′ entonces

z′ = z′′.

e = d : Si JdK = z′d y JdK = z′′

d entonces claramente z′d = z′′

d .

e = nd : JndK = ((JnK ∗ 10) + JdK) = ((z′n ∗ 10) + zd) y

JndK = ((JnK ∗ 10) + JdK) = ((z′′n ∗ 10) + zd), por la

definicion de size: size(n) < size(nd), aplicando lahipotesis de induccion tenemos z′

n = z′′n, ası que

((z′n ∗ 10) + zd) = ((z′′

n ∗ 10) + zd).

Jose de Jesus Lavalle Martınez (FCC-BUAP) Semantica de LT A I Otono 2020 12 / 14

Page 32: Semántica de LTA Ialeteya.cs.buap.mx/~jlavalle/flp/6 Semantics of LTA I.pdfContenido 1 Introducci´on 2 Ordenes parciales sobre´ LTA 3 Diferentes tipos de inducci´on 4 Propiedades

El significado de un termino aritmetico es unico II

Demostracion: por induccion sobre el tamano de e.Hipotesis de induccion: Si size(e) = k y JeK = z′ y JeK = z′′ entonces

z′ = z′′.e = (ei � ed) : Donde � ∈ {+,−, ∗}. J(ei � ed)K = (JeiK � JedK) =

(z′ei� z′

ed) y J(ei � ed)K = (JeiK � JedK) = (z′′

ei� z′′

ed), por la

definicion de size: size(ei) < size((ei � ed)) ysize(ed) < size((ei � ed)), aplicando la hipotesis deinduccion dos veces tenemos z′

ei= z′′

eiy z′

ed= z′′

ed,

concluyendo que (z′ei� z′

ed) = (z′′

ei� z′′

ed).

Jose de Jesus Lavalle Martınez (FCC-BUAP) Semantica de LT A I Otono 2020 13 / 14

Page 33: Semántica de LTA Ialeteya.cs.buap.mx/~jlavalle/flp/6 Semantics of LTA I.pdfContenido 1 Introducci´on 2 Ordenes parciales sobre´ LTA 3 Diferentes tipos de inducci´on 4 Propiedades

Ejercicios

1 Implemente en ML las funciones size, depth y immsubt (utilice lostipos de datos que previamente hemos definido para implementarLT A).

2 Pruebe sus funciones con las siguientes expresiones (traduzca primerocada expresion a un elemento del tipo exar):

1 (23 + 50), (28 ∗ 15).2 (9− (5 ∗ 2)), (23 ∗ (8 + 2)).

3 Demuestre por induccion sobre depth e induccion estructural losTeoremas 4 y 5.

Jose de Jesus Lavalle Martınez (FCC-BUAP) Semantica de LT A I Otono 2020 14 / 14