Seminario - Würth Elektronik

54
© 2011 Wurth Midcom 1 WURTH ELECTRONICS MIDCOM 2011 SMPS EMI SEMINAR 2011 Introduction to Concepts and Techniques 1

description

Presentación de Seminario de Fuentes de Poder Conmutadas (GDL, MTY, MEX y QRO)

Transcript of Seminario - Würth Elektronik

Page 1: Seminario - Würth Elektronik

© 2011 – Wurth Midcom 1

WURTH ELECTRONICS MIDCOM

2011

SMPS EMI SEMINAR 2011

Introduction to Concepts and

Techniques 1

Page 2: Seminario - Würth Elektronik

© 2011 – Wurth Midcom 2

Our Products

Page 3: Seminario - Würth Elektronik

http://www.we-online.com/

http://www.we-online.com/web/en/passive_bauelemente_-_standard/toolbox_pbs/Toolbox.php

Wurth Electronics Midcom Inc. Headquarters Phone: (605) 886-4385 Fax: (605) 886-4486

E-Mail: [email protected] 121 Airport Drive

Watertown, SD 57201 United States

Page 4: Seminario - Würth Elektronik

© 2011 – Wurth Midcom 4

TRILOGY of Magnetics

1. Electromagnetics Fundamentals

2. Passive Components and their characterisitics

3. Principles of Filter

4. Over 300 Detailed Applications

An Excellent Resource for EMC

Page 5: Seminario - Würth Elektronik

© 2011 – Wurth Midcom 5

Basics

EMI = Electromagnetic Interference

EMC = Electromagnetic Compatibiltiy

NOT THIS: E= 𝑚𝑐2 OR THIS: HipHop Band

How much a device„s own noise affects other components

How well a device can handle noise from other components

Page 6: Seminario - Würth Elektronik

© 2011 – Wurth Midcom 6

EMI / EMC (CISPR vs. FCC)

* International Special Community on Radio Interference, Pub.22

** Federal Communications Comission, Part 15

CISPR* (22)

FCC** (15)

Non-regulatory agency, but CISPR has been adopted as part of the EMC tests and limits

Regulatory agency that sets the USA EMC tests and limits

0.15MHz to 30MHz

30MHz to 1000MHz - radiated

- conducted

0.15MHz to 30MHz

30MHz to 1000MHz - radiated

- conducted

>1000MHz - accordance to FCC

Page 7: Seminario - Würth Elektronik

© 2011 – Wurth Midcom 7

f [MHz] CISPR 22 - conducted

f [MHz] FCC 15 - conducted

f [MHz] CISPR 22 - radiated

f [MHz] FCC 15 - radiated

>1000 0.15 - 0.5

0.1 1 10 100 1000 f [MHz]

0.45 – 1.6

30 - 88 0.5 - 30

1.6 - 30

0.15 - 0.5

0.455 – 1.6

0.5 - 5

1.6 - 30

5 - 30

30 - 88

88 - 216 216 - 960

88 - 216 216 - 1000

30 - 88

30 - 88

88 - 216 216 - 960

88 - 216 216 - 1000

Class A

Class B

>1000

>1000

>1000

960-1000

0.5 1.6 5 30 88 216

• Class A

commercial, industrial, business environment equipment

• Class B

residential environment equipment

differential mode noise common mode noise

CISPR vs. FCC

Page 8: Seminario - Würth Elektronik

© 2011 – Wurth Midcom 8

Basics

30 MHz is roughly equivalent to a wavelenght of ~32 feet (10 meters)

900 MHz is roughly equivalent to a wavelenght of 1 foot (~.33 meters)

In practical terms, the wavelength of a signal and the length of its an antenna need

to be equal to radiate the signal at full power

Short little cables are unlikely

to radiate noise below 30MHz

Why 30Mhz the cutoff between the conducted and radiated emissions?

Most common house cables, wires or power lines are less than 10 meters long!

Page 9: Seminario - Würth Elektronik

© 2011 – Wurth Midcom 9

Differential–Mode signal

Types of Noise Signals

switching

supply

switching

supply

connection chassis &

Earth GND

connection chassis &

Earth GND

Common–Mode signal

• Noise flows along both lines

in the same direction

• returns by some parasitics path

through system GND

• Noise flows into one line and

exits through another

•Independent from GND

Page 10: Seminario - Würth Elektronik

© 2011 – Wurth Midcom 10

f [MHz] CISPR 22 - conducted

f [MHz] FCC 15 - conducted

f [MHz] CISPR 22 - radiated

f [MHz] FCC 15 - radiated

>1000 0.15 - 0.5

0.1 1 10 100 1000 f [MHz]

0.45 – 1.6

30 - 88 0.5 - 30

1.6 - 30

0.15 - 0.5

0.455 – 1.6

0.5 - 5

1.6 - 30

5 - 30

30 - 88

88 - 216 216 - 960

88 - 216 216 - 1000

30 - 88

30 - 88

88 - 216 216 - 960

88 - 216 216 - 1000

Class A

Class B

>1000

>1000

>1000

960-1000

0.5 1.6 5 30 88 216

• Class A

commercial, industrial, business environment equipment

• Class B

residential environment equipment

differential mode noise common mode noise

CISPR vs. FCC

Page 11: Seminario - Würth Elektronik

© 2011 – Wurth Midcom 11

Shields radiated noise

Common types of noise countermeasures

Page 12: Seminario - Würth Elektronik

© 2011 – Wurth Midcom 12

Filtering for conducted and radiated noise

Common types of noise countermeasures

Low Pass Filter

High Pass Filter

Band Reject Filter

Band Pass Filter

Page 13: Seminario - Würth Elektronik

© 2011 – Wurth Midcom 13

Field model

N

O

R

T

H

S

O

U

T

H

Magnetic field H

Current I

The Magnetic Field (H)

13

Page 14: Seminario - Würth Elektronik

© 2011 – Wurth Midcom 14

averageR

IHHH

221 1B 2B?

Current I

averageR

1H2H

averageR

The Magnetic Flux (B)

14

Page 15: Seminario - Würth Elektronik

© 2011 – Wurth Midcom 15

The Magnetic Field

15

The H field corresponds to what is called the magnetic field strength. It is measured in amps / meter (A/m).

In free space or in air the B field represents magnetic flux density which is

given in units of Tesla by B = μₒ H where μₒ is the absolute

magnetic permeability of free space

More magnetic flux can be produced by the same H value in certain (magnetic) materials, notably iron, and this is accounted by introducing another factor, the

relative permeability μr, giving B = μₒμr H for magnetic

materials.

Page 16: Seminario - Würth Elektronik

© 2011 – Wurth Midcom 16

What is Permeability? µ

H

Br

0

1

Typical permeability µr :

50 ~ 150

40 ~ 1500

300 ~ 20000

Relative Permeability

Describes the capacity of concentration of the

magnetic flux in the material

Is a factor of energy needed to magnetize

• Iron power / Superflux :

• Nickel Zinc :

• Manganese Zinc :

16

Page 17: Seminario - Würth Elektronik

© 2011 – Wurth Midcom 17

R

IH

2

R

INH

2

l

INH

Straight wire

Toroidal

l

R

R

Rod choke

The magnetic field strength

depends on:

• dimensions

• Number of turns

• current

but

NOT ON THE MATERIAL

THROUGH WHICH IT

FLOWS

The Magnetic Field (H)

17

Page 18: Seminario - Würth Elektronik

© 2011 – Wurth Midcom 18

Air (Ceramic)

Rod core ferrite Ring core ferrite

N

O

R

T

H

S

O

U

T

H

The Magnetic Field (B)

N

O

R

T

H

S

O

U

T

H

N

O

R

T

H

S

O

U

T

H

HB r 0HB r 0

Induction in air:

Linear function because µr = 1

(a constant)

Induction in Ferrite:

Non-linear function, because the relative

permeability depends on:

HB 0

Frequency

Temperature Material

Current

Pressure

18

Page 19: Seminario - Würth Elektronik

Reluctance ( A measure of stored magnetic energy)

Page 20: Seminario - Würth Elektronik

Characteristics Magnetic Parameters H and B (Linear & Hysterises Models)

Page 21: Seminario - Würth Elektronik

Area of Operation for a Flyback Transformer

Page 22: Seminario - Würth Elektronik

Area of Operation for a Filter Inductor

Page 23: Seminario - Würth Elektronik

The Ideal Transformer

Page 24: Seminario - Würth Elektronik

The air gap and its purpose

Page 25: Seminario - Würth Elektronik

The air gap and its purpose

Page 26: Seminario - Würth Elektronik

© 2011 – Wurth Midcom 26

Saturation Current (power inductor)

Page 27: Seminario - Würth Elektronik

© 2011 – Wurth Midcom 27

Permeability and Core Material Properties

Permeability depends on temperature

µr = ? 1 +15 %

-20 %

-50 50 150 250

1000

T / °C

500 540

670

770

-40°C 23°C 85°C

µr

27

Curie

Temperature

Page 28: Seminario - Würth Elektronik

© 2011 – Wurth Midcom 28

Permeability – complex Permeability

Impedance of winding with

core material

Impedance of winding

without corematerial Core material

R

L0L

|||

|||

j

j

jXRjLjZ

j

|||

0

|||

jXRjLjZ

j

|||

0

|||

jXRjLjZ

j

|||

0

|||

Page 29: Seminario - Würth Elektronik

© 2011 – Wurth Midcom 29

1

10

100

1000

10000

1 10 100 1000 10000

Reihe1

µ`

µ``

µr=350

f/MHz

||

0LR |

0LjX L

Frequency dependent

core losses (hysteresis & eddy current losses)

Inductance reactance (energy storage)

jXRjLjZ

j

|||

0

|||

Permeability – complex permeability

29

Page 30: Seminario - Würth Elektronik

© 2011 – Wurth Midcom 30

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0,01 0,1 1 10 100 1000

Core Material Properties and Applications ( Inductors for Storage)

f/MHz

XL(NiZn) XL(MnZn) XL(Fe)

Imp

ed

ance

„0“-200kHz „0“-10MHz „0“-40MHz

30

Page 31: Seminario - Würth Elektronik

© 2011 – Wurth Midcom 31

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0,01 0,1 1 10 100 1000

f/MHz

R (NiZn) R (MnZn) R (Fe)

Imp

ed

ance

200kHz-

4MHz

3-60MHz 20-

2000MHz

31

Core Material Properties and Applications ( Inductors for Filtering)

Page 32: Seminario - Würth Elektronik

© 2011 – Wurth Midcom 32

Reduction of noise

• From device to environment

• From environment to device

Conclusion:

• “Almost” no influencing of the signal

• High attenuation of noise

Differential mode

Common mode

Common Mode Filter

32

Page 33: Seminario - Würth Elektronik

© 2011 – Wurth Midcom 33

Source Load Signal path

Common mode

VCC

GND

D-

D+

e.g.: USB

Filtering

Common Mode Filter – Signal theories

33

Page 34: Seminario - Würth Elektronik

© 2011 – Wurth Midcom 34

When will be the signal attenuated?

• the Differential mode-Impedance will also attenuate the signal

1

10

100

1000

10000

1 10 100 1000

• The CommonMode-Impedance attenuates just the noise

f/MHz

Common Mode Filter Attenuation feautures

34

Page 35: Seminario - Würth Elektronik

© 2011 – Wurth Midcom 35

Common mode choke - construction

bifilar sectional

35

Page 36: Seminario - Würth Elektronik

© 2011 – Wurth Midcom 36

Bifilar Sectional

• Less differential impedance

• High capacitive coupling

• Less leakage inductance

• Low capacitive coupling

• High leakage inductance

• High differential impedance

• Data lines

USB, Fire-wire, CAN, etc.

• Power supply

• Measuring lines

• Sensor lines

• Power supply input /output filter

CMC for mains power

• High voltage application

• Measuring lines

• Switching power supply decoupling

Common mode choke - construction

36

Page 37: Seminario - Würth Elektronik

© 2011 – Wurth Midcom 37

1

10

100

1000

10000

1 10 100 1000

WE-SL2 744227

bifilar winding WE-SL2 744227S

sectional winding

f/MHz

Common mode choke - construction

37

Page 38: Seminario - Würth Elektronik

© 2011 – Wurth Midcom 38

e.g. 74271712

WE-split ferrite – Is it a CMC?

comparable with bifilar winding CMC

• both will absorb Common Mode interferences

• Yes, CMC with one winding

Common mode choke - construction

38

Page 39: Seminario - Würth Elektronik

© 2011 – Wurth Midcom 39

Increase the number of turns means:

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1 10 100 1000f/MHz

Common mode choke: ferrite core

39

Page 40: Seminario - Würth Elektronik

Why Filter? – example: Fly back-Converter

Which filter we need?

L1

N

PE

Parasitic capacities

e.g.: collector to cooling element

40

Lorandt Fölkel © Würth Elektronik eiSos 2011

Page 41: Seminario - Würth Elektronik

Transformers

Page 42: Seminario - Würth Elektronik

Transformers and EMI

• Center leg gap only

– Windings shield

• No gaps in outer legs

– Nothing to shield

No Gaps here

Gap here

No external gaps

Page 43: Seminario - Würth Elektronik

Inductors and EMI

Drum core style

Very large gap

Much radiation

Not a good solution!

Page 44: Seminario - Würth Elektronik

Transformers for EMI – Gap issues

• Gap must be perpendicular to flux lines

• Uneven gaps are inefficient. => Why?

– Core saturates at minimum gap

– Requires a larger gap

• Also larger gap – More potential EMI

Page 45: Seminario - Würth Elektronik

Transformers and EMI – Internal shields

• Shield both conducted and radiated noise

• Copper foil or wound magnet wire?

• Copper foil shields – Expensive, => Why?

– Must build shield

– Must be covered with tape

– Winding machine stopped to apply

• All shields take away from winding area

Internal

shield

Page 46: Seminario - Würth Elektronik

Transformers and EMI

Y-Cap termination

• Y-Cap across transformer reduces noise

• Tune the capacitor for optimum loss vs. noise

reduction

• Capacitor usually in the 470pF to 4.7nF range

• Place as close to transformer as possible

Noise couples through the transformer via

CParasitic

• Noise seeks path to primary circuit

• Without path, noise may become conducted

emissions

Page 47: Seminario - Würth Elektronik

Transformers for EMI – Power Supply

Current Compensated

Choke WE-FC Transformer

Output filter

WE-TI

Switch IC

Y-Cap Snubber

Page 48: Seminario - Würth Elektronik

Transformers for EMC – Schematic

Current Compensated

Choke WE-FC

Transformer Output filter

WE-TI

Snubber

Switch IC

Y-Cap

Page 49: Seminario - Würth Elektronik

Transformers for EMC – Example 1

EMC- Test Failed

Peak

Avg.

QPeak

Avg.

• With adjusted Snubber

• Without common mode choke

• Without adjusted Y-Cap

Page 50: Seminario - Würth Elektronik

Transformers for EMC – Example 2

• With adjusted Snubber

• With common mode choke

• Without adjusted Y-Cap

EMC- Test Failed

Peak

Avg.

QPeak

Avg.

Page 51: Seminario - Würth Elektronik

Transformers for EMC – Example 3

EMC- Passed

• With adjusted Snubber

• With common mode choke

• Without adjusted Y-Cap

Peak

Avg.

QPeak

Avg.

Page 52: Seminario - Würth Elektronik

Transformers for EMC – Example 4

EMC- Passed

Peak

Avg.

QPeak

Avg.

• Without adjusted Snubber

• With common mode choke

• Without adjusted Y-Cap

Page 53: Seminario - Würth Elektronik

Transformer for EMC – Conclusion for this power supply

• Necessary to pass EMI:

– Current compensated Choke

(CMC)

– Y-Caps

• Not necessary to pass EMI

– Optimized Snubber

Page 54: Seminario - Würth Elektronik

Simple EMI detector