Seminar Slide Deck (PDF-7.2MB)

39
Compressibility Effects on Dielectric Barrier Discharge Actua9on and Boundary Layer Recep9vity Marie Denison, Luca Massa University of Texas at Arlington, TX Nasa Applied Modeling & Simula3on (AMS) Seminar Series NASA Ames Research Center, Moffe> Field, CA April 29, 2014

Transcript of Seminar Slide Deck (PDF-7.2MB)

Page 1: Seminar Slide Deck (PDF-7.2MB)

Compressibility  Effects  on                                                Dielectric  Barrier  Discharge  Actua9on  and                                                      Boundary  Layer  Recep9vity  

Marie  Denison,  Luca  Massa  University  of  Texas  at  Arlington,  TX  

Nasa  Applied  Modeling  &  Simula3on  (AMS)  Seminar  Series  NASA  Ames  Research  Center,  Moffe>  Field,  CA   April  29,  2014  

Page 2: Seminar Slide Deck (PDF-7.2MB)

Outline  

•  Introduc9on  •  Linear  Stability  Analysis  Framework  •  AMR  Coupled  Plasma-­‐Navier  and  Stokes  Solver    •  Discharge  Features  •  Recep9vity  Analysis  and  Design  Implica9ons  •  Summary  

2  

Page 3: Seminar Slide Deck (PDF-7.2MB)

Outline  

•  Introduc9on  •  Linear  Stability  Analysis  Framework  •  AMR  Coupled  Plasma-­‐Navier  and  Stokes  Solver    •  Discharge  Features  •  Recep9vity  Analysis  and  Design  Implica9ons  •  Summary  

3  

Page 4: Seminar Slide Deck (PDF-7.2MB)

Mo9va9on  

4  

Supersonic  flow  boundary  layer  instabili9es  •  Cross-­‐flow  dominated    laminar-­‐turbulent  transi9on  along  supersonic  cones  and  swept  wings  •  Turbulence  and  detachment  in  scramjet  inlets,  upstream  shock  propaga9on,  unstart  

Synthe9c  plasma  roughness  •  Control  of  distributed  Dielectric  Barrier  Discharge  electrodes  adapted  to  flight  condi9ons  •  For  example  subcri9cal  forcing  of  sta9onary  waves  or  boundary  layer  ernergiza9on  /  thinning  

Page 5: Seminar Slide Deck (PDF-7.2MB)

Figures  of  Merit  of  DBD  actua9on  

5  

FOM   DBD   Solid  Roughness  

Control     yes:  height,  thrust,  ac9va9on  paWern,    switch-­‐off  

no  

BL  penetra9on   volume  forcing,  horizontal/ver9cal  jets  

low  

Wall  thermal  conduc9vity  

low    (<1.5W/Km)  

depends  

Power   electric  supply,  temporary  drag  

Drag  

Weight   larger  (mat.  density,  electrodes,  wiring,  supply,  control)  

lower  

Reliability   dielectric  breakdown,    temperature  limit,  electrode  wear-­‐off          

surface  wear-­‐off  

Manufacturing  effort  and  cost  

larger   lower  

TRL   low   high  

kV  or  float  

Ground  

Page 6: Seminar Slide Deck (PDF-7.2MB)

Challenges  

6  

Y.C.  Schuele,  Ph.D.,  Univ.  of  Notre  Dame,  2011  

Physics:  •  DBD  atmospheric  gas  chemistry    •  Hea9ng,  real  gas  effects  •  Surface  reac9ons  •  Plasma-­‐Flow  energy  coupling  (Te,  Tg,  ηth,  Da)    CFD  and  Recep9vity  Analysis:  •  "Pulsing  roughness"  •  3D  Micro-­‐filamenta9on  •  Sta9s9cal  characteris9cs,    rela9on  to  surface  proper9es  •  Length  (~μm  cathode  sheath)  and  9me  scales  (ps...s)  è  model  reduc9on  •  HPC,  automated  refinement  around  discharges  •  Experimental  valida9on  of  gas  models  (flow  on/off)  

Page 7: Seminar Slide Deck (PDF-7.2MB)

This  Work  

System  •  2D  Flat  plate    •  3-­‐species  Helium  gas    •  Eigenmode  growth  (Tollmien-­‐Schlich9ng)    Research      •  Study  of  compressibility  effects    

–  on  DBD  discharge  features  –  on  linear  recep9vity  to  DBD  perturba9on    

•  New  coupled  AMR  Plasma  Navier-­‐Stokes  solver  (1-­‐3D)  •  Adjoint  based  formula9on  of  the  compressible  boundary  layer  

recep9vity  problem  7  

Page 8: Seminar Slide Deck (PDF-7.2MB)

This  Work  

8  

2D Flat Plate Helium

M=0.5-2.0

Naver-Stokes BL Linear Stability

Navier-Stokes/Plasma AMR Solver

Direct & Adjoint operators

Modal Solutions (ω, M, Re)

Gas

Governing Equations

Geometry

Receptivity Analysis

Flow and Force effects

Discharge Features

Solver Structure

Force(x,y)

Integrated Source Term

Peak Velocity

Receptivity Coefficients

Design Aspects

Receptivity Coefficient

Mesh Convergence

Page 9: Seminar Slide Deck (PDF-7.2MB)

Outline  

•  Introduc9on  •  Linear  Stability  Analysis  Framework  •  AMR  Coupled  Plasma-­‐Navier  and  Stokes  Solver    •  Discharge  Features  •  Recep9vity  Analysis  and  Design  Implica9ons  •  Summary  

9  

Page 10: Seminar Slide Deck (PDF-7.2MB)

Linear  Stability  Framework  

•  DBD  induced  velocity  ~m/s  <<  u∞  

•  Quasi-­‐parallel  approxima9on  •  {M,  Re}  range  to  support  TS  waves  •  Non-­‐dimensionaliza9on,  a.o.  

 •  Horizontal  velocity  perturba9on  from                f(x,y)exp(-­‐iωt)  source  term  and                discrete  modes    

           where  Ak  is  the  recep9vity  coefficient  

 

10  

0 1 2 3 4 5 610−1

100

101

102

103

(Rex)−1/2× 1000

f (kH

z)

M=0.5M=0.8M=1.2M=2.0

u = Akφk (y)e− i(ω kt−α kx )

k∑

L* = xRex

, Rex =ρu∞

* xµ∞* ,ω =ω * L*

u∞*

Ak =dx f (x, y)φ̂k (y)e

− iα kx dy0

∫a

b

∫[φk ,φ̂k ] xa   xb  

y  

Source  f(x,y)  

Page 11: Seminar Slide Deck (PDF-7.2MB)

Adjoint  Eigenproblem  

•             in  Ak  is  the  adjoint  mode  to          ,  obtained  from  the  solu9on  of  the  adjoint  system  itself  derived  from  the  Euler-­‐Lagrange's  iden9ty  

 •  Interpreta9on:  

–  Assume  point  unit  force  f(x,y)=δ(x0,y0),  –  Normalize              by  max|ϕk  (y)|  and              by    

   

–  The  adjoint  mode  propaga9on  velocity  is  opposite  to  the  regular  mode        è  for  Re(α)>0,  mode  amplifica9on  is  upstream  towards  the  source  

•  The  method  allows  tes3ng  mul3ple  sources  using  the  solu3ons  of  the  homogeneous  regular  and  adjoint  eigenvalue  problems  

11  

φ. Λ ∂φ̂∂t

+ L̂(φ̂)⎛⎝⎜

⎞⎠⎟+ φ̂. f = ∂Γ(φ,φ̂)

∂t+∇.J(φ,φ̂)

φ̂k φk

Ak = φ̂k (y0 )

φ̂k [φk ,φ̂k ]= 1φk

Page 12: Seminar Slide Deck (PDF-7.2MB)

Regular  and  Adjoint  Mode  Solu9ons  

12  

M∞=0.5   M∞=2.0  

•  Chebyshev  τ-­‐QZ  method  used  to  solve  the  eigenproblems  •  At  high  M∞,  the  adjoint  mode  (unit-­‐point-­‐force  sensi9vity)  decreases  and  the  

depth  of  its  maximum  increases  

Page 13: Seminar Slide Deck (PDF-7.2MB)

Comparison  to  incompressible  case  

13  

•  D.C.  Hill's  results  (J.  Fluid  Mech.  '95)    data  well  reproduced  @  M∞=0.1  (lines)  •  At  M∞=0.8  (symbols),  the  mode  depth  increases  and  its  amplitude  decreases              F=  ω/√(Rex)  

Page 14: Seminar Slide Deck (PDF-7.2MB)

Adjoint  modes  

•  Up  to  3x  depth  increase  and    1/9x  amplitude  decrease  over  M∞  range  •  Recep9vity  benefit  in  matching  the  source  and  adjoint  profiles  

14  

0 0.05 0.1

1

2

3

4

5

6

y @ m

ax. a

mplitu

de

ω

M=0.5

Rex=2x105

Rex=4x105

Rex=8x105

0 0.05 0.10

2

4

6

8

10

12

max.

ampli

tude

ω

M=0.5

Rex=2x105

Rex=4x105

Rex=8x105

0 0.05 0.1

1

2

3

4

5

6

ω

M=0.8

Rex=2x105

Rex=4x105

Rex=8x105

0 0.05 0.10

2

4

6

8

10

12

ω

M=0.8

Rex=2x105

Rex=4x105

Rex=8x105

0 0.05 0.1

1

2

3

4

5

6

ω

M=1.2

Rex=2x105

Rex=4x105

Rex=8x105

0 0.05 0.10

2

4

6

8

10

12

ω

M=1.2

Rex=2x105

Rex=4x105

Rex=8x105

0 0.05 0.1

1

2

3

4

5

6

ω

M=2

Rex=2x105

Rex=4x105

Rex=8x105

0 0.05 0.10

2

4

6

8

10

12

ω

M=2

Rex=2x105

Rex=4x105

Rex=8x105

Student Version of MATLAB

Page 15: Seminar Slide Deck (PDF-7.2MB)

Outline  

•  Introduc9on  •  Linear  Stability  Analysis  Framework  •  AMR  Coupled  Plasma-­‐Navier  and  Stokes  Solver    •  Discharge  Features  •  Recep9vity  Analysis  and  Design  Implica9ons  •  Summary  

15  

Page 16: Seminar Slide Deck (PDF-7.2MB)

System  and  Regimes  

•  2D  Flat  plate  –  1mm  dielectric  thickness,  3.5  dielectric  constant  –  1.2cm  electrode  width  –  2.45cm  distance  between  downstream  plate  edge  and  electrode  edge...  

•  Flow  –  M∞  =  0.5  to  2.0  –  Re  =  2x105  to  8x105  –  Self-­‐similar  profile  at  inflow  boundary  –  ...  Momentum  thickness  for  effec9ve  xd  

•  Gas  –  Simplified  helium  chemistry  (He,  He+,  e-­‐)  –  Constant  electron  temperature  (1eV)  –  impact  ioniza9on  and  recombina9on  rates  per  S.  Roy,  Phys.  of  Plasmas,  Vol.  13,  '06  –  Reduced  electric  field  dependent  mobili9es  

xd = Re µ∞

ρ∞u∞

1.2cm  

1.2cm  

1mm  x  

y  

16  

Page 17: Seminar Slide Deck (PDF-7.2MB)

AMR  Solver  

•  Governing  equa9ons  

•  Wall  boundary  condi9ons  –  2,828V  at  the  cathode,  f  =  5kHz  –  adiaba9c  surface  –  secondary  emission  at  the  cathode  (coeff.=0.26)  –  thermal  flux  and  relevant  charged  species  dri�  towards  the  wall  –  gas/dielectric  interface  charge  from  the  species  flux  towards  the  wall              Dielectric  displacement  by  stencil  manipula9on  at  the  1D  embedded  boundary  

17  

continuity: ∂nj∂t

+∇.Fj = Gj ,kk∑

drift-diffusion: Fj = nju j = sign(Z j )njµ jE− Dj∇nj + njVj

Poisson: ε ∇.E = Z jqjnjj∑ E   E  

n  

i  

e  

n  

i  

e  

dσ s

dt= qZ jFj

j∑ .n, εdEd − εgEg( ).n =σ s

Page 18: Seminar Slide Deck (PDF-7.2MB)

AMR  Solver  

•  Univ.  of  Berkeley's  Chombo  Adap9ve  Mesh  Refinement  C++  numerical  framework  for  the  solu9on  of  PDEs  –  block  structured  –  embedded  boundary  –  hierarchy  of  rectangular  la�ces  

communica9ng  through  ghost  cells  –  graph  represen9ng  the  irregular  cells  –  physics-­‐based  automated  tagging  and  

refinement  •  Two  independent  meshes  for  flow  and  

plasma,  synchronized  at  coarse  9me  steps  •  Implemented  on  Texas  Advanced  Compu9ng  

Center  (TACC),  Stampede  HPC  system     18  

P.  Collela  et  al,  Chombo  SoYware  Package  for  AMR  Applica3ons  Design  Document,  March  2012    

 

Page 19: Seminar Slide Deck (PDF-7.2MB)

19  

Plasma SolverLevel operations for

advection, diffusion and reactions

Navier-Stokes SolverLevel operations for continuity,

momentum and energy

Initialization- Similarity boundary layer u, v, ρ, !- Ne, N(background)- Tg, (Te, ee)

Gamma GasPolytropic approximation

Godunov method with van Leer splitting

Viscous fluxesSutherland viscosity relationCell centered finite difference

AdvectionGodunov with

van Leer splitting

Diffusive termsImplicit backward Euler

Electric field

Body forcesGas source energy

Time advance

Velocity, P, Tg

Plasma PhysicsGas model

Reaction rates Chemical source terms

(Electron source energy)Transport coefficients Wall boundary fluxes

Species concentrations(Electron Energy ee, Te)

Wall charge

Reactive terms5th order stiff ODE

solver

ODE solver

AMR    solver  

Page 20: Seminar Slide Deck (PDF-7.2MB)

Adap9ve  Mesh  Refinement  

•  M∞=0.8,  Re=0.8x106  •  7  refinement  levels  for  the  species  

–  thresholds:  E>2.5x106  V/m,  |F|>250N/m3,  ne=1x10-­‐9mol/m3  

•  4  refinement  levels  for  vor9city,  threshold  |ω|/u∞>200m-­‐1  •  CFL  in  the  last  periods  =  CFLa*(1+M∞)~0.28  

20  

Page 21: Seminar Slide Deck (PDF-7.2MB)

Convergence    

•  Periodic  solu9on  a�er  2-­‐3  periods  in  studied  M∞  range  •  Solu9on  converged  within  2-­‐5%  with  7  species  levels  •  Max.  nr  of  grid  points  at  ~  0.7  T  (@Vmax),  following  the  induced  velocity  

3.3 3.4 3.5 3.6 3.7 3.8 3.9 40.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

t/Tperiod

Max

stre

amw

ise

velo

city

Δ xmin = 15.625 µΔ xmin = 7.8125 µΔ xmin = 3.9063 µ

3.2 3.4 3.6 3.8 4 4.20

1

2

3

4

5

6

7 x 105

t/Tperiod

Num

ber o

f grid

poi

nts

Δ xmin = 7.8125 µΔ xmin = 3.9063 µ

21  

Page 22: Seminar Slide Deck (PDF-7.2MB)

Outline  

•  Introduc9on  •  Linear  Stability  Analysis  Framework  •  AMR  Coupled  Plasma-­‐Navier  and  Stokes  Solver    •  Discharge  Features  •  Recep9vity  Analysis  and  Design  Implica9ons  •  Summary  

22  

Page 23: Seminar Slide Deck (PDF-7.2MB)

Integrated  source  term  

23  

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

1

2

3

4

5

6x 10−3

t/Tperiod

Inte

grat

ed s

ourc

e [N

/m]

M = 1.2

Rex = 2 105

Rex = 4 105

Rex = 8 105

0 0.2 0.4 0.6 0.8 10

1

2

3

4

5

6

x 10−3

t/Tperiod

Inte

grat

ed s

ourc

e [N

/m]

Rex = 4 × 105

M∞=0.5M∞=0.8M∞=1.2M∞=2

•  Monotonic  integrated  source  term                                                                                                                                                                                                                                                          reduc9on  with  decreasing  Reynolds  nr  and  increasing  M∞  

Sint fx2 + fx

2 dA N/m[ ]A∫

Page 24: Seminar Slide Deck (PDF-7.2MB)

24  

•  Non-­‐monotonic  Reynolds  effect  with  increasing  M∞  

Peak  velocity  

0 0.2 0.4 0.6 0.8 10.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

t/Tperiod

Max

stre

amw

ise

velo

city

, [m

/s]

M∞ = 0.5

Rex = 2 105

Rex = 4 105

Rex = 8 105

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t/Tperiod

Max

stre

amw

ise

velo

city

, [m

/s]

M∞ = 1.2

Rex = 2 105

Rex = 4 105

Rex = 8 105

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t/Tperiod

Max

stre

amw

ise

velo

city

, [m

/s]

M∞ = 0.8

Rex = 2 105

Rex = 4 105

Rex = 8 105

0 0.2 0.4 0.6 0.8 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t/Tperiod

Max

stre

amw

ise

velo

city

, [m

/s]

Rex = 4 × 105

M∞=0.5M∞=0.8M∞=1.2M∞=2

Page 25: Seminar Slide Deck (PDF-7.2MB)

Velocity  Profile  

25  

M∞=0.5     M∞=0.8    

M∞=1.2    M∞=2.0    

Page 26: Seminar Slide Deck (PDF-7.2MB)

Force  profile  

•  5  countours  at  Sx  =  {1  ×  103,5  ×  103,1  ×  104,5  ×  104,1  ×  105}  N/m3    •  Profile  flaWening/elonga9on  with  increasing  M∞  

26  

Page 27: Seminar Slide Deck (PDF-7.2MB)

Outline  

•  Introduc9on  •  Linear  Stability  Analysis  Framework  •  AMR  Coupled  Plasma-­‐Navier  and  Stokes  Solver    •  Discharge  Features  •  Recep9vity  Analysis  and  Design  Implica9ons  •  Summary  

27  

Page 28: Seminar Slide Deck (PDF-7.2MB)

Force  FFT  Decomposi9on  

•  Model  decomposi9on  with  FFTW  •  200  samples  per  actua9on  period  •  steep  amplitude  decrease  with  f    

28  

0 10 20 30 40 50

0.5

1

1.5

2

2.5

3

x 10−3

f, [kHz]

S int [N

/m]

M∞ = 0.5M∞ = 0.8M∞ = 1.2M∞ = 2

M∞=0.5,  Rex=400k,  ω*=2fDBD  

M∞=2.0,  Rex=400k,  ω*=9fDBD  

y*/L*  

y*/L*  

Abs f x, y( )φn '(y)e− iαx( )

Sint fx2 + fy

2 dA N/m[ ]A∫

Page 29: Seminar Slide Deck (PDF-7.2MB)

Lengthscales  

•  Note  decrease  of  L*  and  xd  with  M∞  and  decreasing  Rex    

29  

0 0.5 1 1.5 2 2.50

0.1

0.2

0.3

0.4

0.5

0.6

M

Cat

hode

edg

e po

sitio

n [m

]

Rex=2x105

Rex=4x105

Rex=8x105

Student Version of MATLAB

0 0.5 1 1.5 2 2.50

1

2

3

4

5

x 10−4

M

L* [m]

Rex=2x105

Rex=4x105

Rex=8x105

Student Version of MATLAB

Page 30: Seminar Slide Deck (PDF-7.2MB)

FFT  Frequency  spectrum  

•  More  modes  par9cipate  with  increasing  M∞  (see  symbols)  

•  Including  larger  mul9ples  of  ωDBD  (i.e.,  with  smaller  integrated  source)  

30  

0 0.02 0.04 0.06 0.080

0.002

0.004

0.006

0.008

0.01

ω

−im

ag(α)

M=0.5

Rex=2x105

Rex=4x105

Rex=8x105

0 0.02 0.04 0.06 0.080

0.002

0.004

0.006

0.008

0.01

ω

−im

ag(α)

M=0.8

Rex=2x105

Rex=4x105

Rex=8x105

0 0.02 0.04 0.06 0.080

0.002

0.004

0.006

0.008

0.01

ω

−im

ag(α)

M=1.2

Rex=2x105

Rex=4x105

Rex=8x105

0 0.02 0.04 0.06 0.080

0.002

0.004

0.006

0.008

0.01

ω

−im

ag(α)

M=2

Rex=2x105

Rex=4x105

Rex=8x105

Student Version of MATLAB

ω

ω =ω * L*

u∞*

Page 31: Seminar Slide Deck (PDF-7.2MB)

Modal  Kine9c  Energy    

•  Kine9c  energy  independent  of  mode  k  normaliza9on  

•  Symbols  show  the  most  amplified  mode  max(Im(-­‐α))  

 •  Non-­‐monotoneous  response  to  

Rex.  Decreased  effect  at  M∞=1.6  

31  

KEk = Ak2ρ

0

∫ φ̂k†(y)φk (y)dy

0.02 0.04 0.06

10−1

100

101

102

ω

√KE

1x1

05

M=0.6

Rex=2x105

Rex=4x105

Rex=8x105

0.02 0.04 0.06

10−1

100

101

102

ω

√KE

1x1

05

M=0.8

Rex=2x105

Rex=4x105

Rex=8x105

0.02 0.04 0.06

10−1

100

101

102

ω

√KE

1x1

05

M=1.2

Rex=2x105

Rex=4x105

Rex=8x105

0.02 0.04 0.06

10−1

100

101

102

ω

√KE

1x1

05

M=1.6

Rex=2x105

Rex=4x105

Rex=8x105

Student Version of MATLAB

Page 32: Seminar Slide Deck (PDF-7.2MB)

Effect  of  Force  

•  Using  the  force  FFT  components  at  M∞=0.8  for  M∞=1.2,  1.6  •  Rela9vely  insensi9ve  recep9vity  response  to  M-­‐varia9on,  as  expected  

from  the  slight  force  profile  change  observed  on  slide  #26  

32  

0.01 0.02 0.03 0.04 0.05 0.0610−2

10−1

100

101

ω

√KE

1x1

05

Rex=4x105

M=0.8M=1.2, Force @ M=1.2M=1.2, Force @ M=0.8M=1.6 @ Force M=1.6M=1.6 @ Force M=0.8

Student Version of MATLAB

Page 33: Seminar Slide Deck (PDF-7.2MB)

Most  Amplified  Mode  at  fDBD=5kHz  

•  Bands  @  ωmax,TS/ωDBD=const  •  Within  each  band,  √KE  increases  along  δM∞/δRex<0                                                                                                  

due  to  an  increasing  overlap  of  the  adjoint  mode  with  the  force  

33  

0.4 0.6 0.8 1 1.2 1.4 1.6 1.810−2

10−1

100

101

M

√KE

1x1

05 @ m

ax(−α)

Rex=2x105

Rex=4x105

Rex=8x105

Student Version of MATLAB

dark  blue  1/2  log(KE)  =  −14.7  dark  red  1/2  log(KE)  =  −12.7  

Linear  interpola3on  

Page 34: Seminar Slide Deck (PDF-7.2MB)

Force  Mode  Shape  Effect  

•  Using  1st  harmonic  mode  (symbols)  instead  of  actual  harmonic  @  max(Im(-­‐α))  •  Suggests  benefit  in  selec9ng  DBD  frequency  at  the  most  amplified  mode  •  Possible  trade-­‐off  as  DBD  thrust  diminishes  with  frequency  

34  

0.4 0.6 0.8 1 1.2 1.4 1.6 1.810−2

10−1

100

101

M

√KE

1x1

05

Rex=4x105, ω @ max(−α)

Force(max(−α))Force(1st harmonic)

Student Version of MATLAB

Page 35: Seminar Slide Deck (PDF-7.2MB)

Outline  

•  Introduc9on  •  Linear  Stability  Analysis  Framework  •  AMR  Coupled  Plasma-­‐Navier  and  Stokes  Solver    •  Discharge  Features  •  Recep9vity  Analysis  and  Design  Implica9ons  •  Summary  

35  

Page 36: Seminar Slide Deck (PDF-7.2MB)

Summary  

36  

•  An  analysis  of  compressible  effects  on  flow  recep9vity  to  DBD  actua9on  in  a  2D  set  up  with  He  gas  was  presented.  

•  The  dependence  of  the  force,  peak  velocity  and  integrated  source  term  on  flow  condi9ons  was  inves9gated.  

•  The  main  findings  in  terms  of  recep9vity  can  be  summarized  as  follows  •  Recep9vity  decreases  between  M∞=0.5-­‐2,  with  satura9ng  Rex  effect  •  For  an  an  increase  in  M,  an  actuator  shi�  upstream  is  beneficial  to  increase  

the  overlap  with  the  highly  recep9ve  region  •  For  the  gas  system  under  considera9on,  the  flow  dependence  of  the  force  

has  liWle  effect  on  recep9vity.  •  DBD  frequency  matching  to  the  most  amplified  mode  may  increase  

recep9vity  in  a  frequency  range  where  the  force  does  not  degrade  much  •  A  new  coupled  plasma  –  Navier  and  Stokes  solver  was  developed.    •  The  AMR  feature  allows  for  dynamic  tracking  of  the  discharge  into  the  volume  of  

the  flow,  while  the  embedded  boundary  capability  allows  simula9ng  complex  3D  geometries.  

Page 37: Seminar Slide Deck (PDF-7.2MB)

Future  Research  

•  Reduced  air  chemistry,  with  most  relevant  species/reac9ons  may  lead  to  different  conclusion  on  flow-­‐plasma  interac9ons  

•  Accelerated  numerical  models  addressing  the  s9ffness  of  fast  chemical  reac9ons  

•  3D  cross-­‐flow  linear,  non-­‐linear  recep9vity  and  transi9on  studies  with  plasma  roughness  elements.  

37  

Page 38: Seminar Slide Deck (PDF-7.2MB)

Acknowledgements  

•  Donald  A.  Durston  and  Ce9n  C.  Kiris    •  Esteban  Cisneros,  Grad.  Student  in  Aerospace  Engineering  at  the  

University  of  Texas  at  Arlington,  TX  •  TACC  (Texas  Advanced  Compu9ng  Center)  at  UT  Aus9n          This  presenta9on  includes  material  from  the  following  publica9ons:  AIAA  2014-­‐0485,  AIAA  2012-­‐2737    

 38  

Page 39: Seminar Slide Deck (PDF-7.2MB)

39