Semiconductor Device Modeling and Characterization EE5342, Lecture 5-Spring 2002

37
L05 29Jan02 1 Semiconductor Device Modeling and Characterization EE5342, Lecture 5-Spring 2002 Professor Ronald L. Carter [email protected] http://www.uta.edu/ronc/

description

Semiconductor Device Modeling and Characterization EE5342, Lecture 5-Spring 2002. Professor Ronald L. Carter [email protected] http://www.uta.edu/ronc/. Minority hole lifetimes. Taken from Shur 3 , (p.101). Minority electron lifetimes. Taken from Shur 3 , (p.101). Parameter example. - PowerPoint PPT Presentation

Transcript of Semiconductor Device Modeling and Characterization EE5342, Lecture 5-Spring 2002

Page 1: Semiconductor Device  Modeling and Characterization EE5342, Lecture 5-Spring 2002

L05 29Jan02 1

Semiconductor Device Modeling and CharacterizationEE5342, Lecture 5-Spring 2002

Professor Ronald L. [email protected]

http://www.uta.edu/ronc/

Page 2: Semiconductor Device  Modeling and Characterization EE5342, Lecture 5-Spring 2002

L05 29Jan02 2

Minority hole lifetimes. Taken from Shur3, (p.101).

Page 3: Semiconductor Device  Modeling and Characterization EE5342, Lecture 5-Spring 2002

L05 29Jan02 3

Minority electron lifetimes. Taken from Shur3, (p.101).

Page 4: Semiconductor Device  Modeling and Characterization EE5342, Lecture 5-Spring 2002

L05 29Jan02 4

Parameter example

• min = (45 sec) 1+(7.7E-18cm3Ni+(4.5E-

36cm6Ni2

• For Nd = 1E17cm3, p = 25 sec

– Why Nd and p ?

Page 5: Semiconductor Device  Modeling and Characterization EE5342, Lecture 5-Spring 2002

L05 29Jan02 5

Direct rec forexcess min carr• Define low-level injection as

n = p < no, for n-type, andn = p < po, for p-type

• The recombination rates then areR’n = R’p = n(t)/n0, for p-type,

and R’n = R’p = p(t)/p0, for n-type

• Where n0 and p0 are the minority-carrier lifetimes

Page 6: Semiconductor Device  Modeling and Characterization EE5342, Lecture 5-Spring 2002

L05 29Jan02 6

S-R-H rec fordeficient min carr• If n < ni and p < pi, then the S-R-H net

recomb rate becomes (p < po, n < no):

U = R - G = - ni/(20cosh[(ET-Efi)/kT])

• And with the substitution that the gen lifetime, g = 20cosh[(ET-Efi)/kT], and net gen rate U = R - G = - ni/g

• The intrinsic concentration drives the return to equilibrium

Page 7: Semiconductor Device  Modeling and Characterization EE5342, Lecture 5-Spring 2002

L05 29Jan02 7

The ContinuityEquation• The chain rule for the total time

derivative dn/dt (the net generation rate of electrons) gives

n,kz

jy

ix

n

is gradient the of definition The

.dtdz

zn

dtdy

yn

dtdx

xn

tn

dtdn

Page 8: Semiconductor Device  Modeling and Characterization EE5342, Lecture 5-Spring 2002

L05 29Jan02 8

The ContinuityEquation (cont.)

vntn

dtdn then

,BABABABA Since

.kdtdz

jdtdy

idtdx

v

is velocity vector the of definition The

zzyyxx

Page 9: Semiconductor Device  Modeling and Characterization EE5342, Lecture 5-Spring 2002

L05 29Jan02 9

The ContinuityEquation (cont.)

etc. ,0xx

dtd

dtdx

x

since ,0dtdz

zdtdy

ydtdx

xv

RHS, the on term second the gConsiderin

.vnvnvn as

ddistribute be can operator gradient The

Page 10: Semiconductor Device  Modeling and Characterization EE5342, Lecture 5-Spring 2002

L05 29Jan02 10

The ContinuityEquation (cont.)

.Equations" Continuity" the are

Jq1

tp

dtdp and ,J

q1

tn

dtdn

So .Jq1

tn

vntn

dtdn

have we ,vqnJ since ly,Consequent

pn

n

n

Page 11: Semiconductor Device  Modeling and Characterization EE5342, Lecture 5-Spring 2002

L05 29Jan02 11

The ContinuityEquation (cont.)

z).y,(x, at p

or n of Change of Rate Local explicit"" the

is ,tp

or tn

RHS, the on term first The

z).y,(x, space in point particular a at p or

n of Rate Generation Net the represents

Eq. Continuity the of -V,dtdp or

dtdn LHS, The

Page 12: Semiconductor Device  Modeling and Characterization EE5342, Lecture 5-Spring 2002

L05 29Jan02 12

The ContinuityEquation (cont.)

q).( holes and (-q) electrons for signs

in difference the Note z).y,(x, point

the of" out" flowing ionsconcentrat

p or n of rate local the is Jq1

or

Jq1

RHS, the on term second The

p

n

Page 13: Semiconductor Device  Modeling and Characterization EE5342, Lecture 5-Spring 2002

L05 29Jan02 13

The ContinuityEquation (cont.)

inflow of rate rate generation net

change of rate Local

:as dinterprete be can Which

Jq1

dtdp

tp

:as holes the for equation

continuity the write-re can we So,

p

Page 14: Semiconductor Device  Modeling and Characterization EE5342, Lecture 5-Spring 2002

L05 29Jan02 14

Poisson’sEquation• The electric field at (x,y,z) is

related to the charge density =q(Nd-Na-p-n) by the Poisson Equation:

silicon for 7.11

andFd/cm, ,14E85.8

with , ypermitivit the is

xE

E where, ,E

r

o

ro

x

Page 15: Semiconductor Device  Modeling and Characterization EE5342, Lecture 5-Spring 2002

L05 29Jan02 15

Poisson’sEquation• For n-type material, N = (Nd - Na) > 0,

no = N, and (Nd-Na+p-n)=-n +p +ni

2/N

• For p-type material, N = (Nd - Na) < 0, po = -N, and (Nd-Na+p-n) = p-n-ni

2/N

• So neglecting ni2/N, [=(Nd-Na+p-n)]

carriers. excess with material type-p

and type-n for ,npq

E

Page 16: Semiconductor Device  Modeling and Characterization EE5342, Lecture 5-Spring 2002

L05 29Jan02 16

Quasi-FermiEnergy

used. be must level

Fermi-quasi the then ,nnn i.e.,

m,equilibriu not in ionconcentrat the If

kT

EEexp

nn and ,

nn

lnkTEE

:by given are level Energy Fermi the and

conc carrier mequilibriu the m,equilibriu In

o

fif

i

o

i

ofif

Page 17: Semiconductor Device  Modeling and Characterization EE5342, Lecture 5-Spring 2002

L05 29Jan02 17

Quasi-FermiEnergy (cont.)

kT

EE

nnn

nnn

kTEE

fifn

i

o

i

ofifn

exp

:is density carrier the and

, ln

:defined is (Imref) level Fermi-Quasi The

Page 18: Semiconductor Device  Modeling and Characterization EE5342, Lecture 5-Spring 2002

L05 29Jan02 18

Quasi-FermiEnergy (cont.)

kT

EE

npp

npp

kTEE

fpfi

i

o

i

ofpfi

exp

:is density carrier the and

, ln

:as defined is

(Imref) level Fermi-Quasi the holes, For

Page 19: Semiconductor Device  Modeling and Characterization EE5342, Lecture 5-Spring 2002

L05 29Jan02 19

Energy bands forp- and n-type s/c

p-type

Ec

Ev

EFi

EFp

qp= kT ln(ni/Na)

Ev

Ec

EFi

EFnqn= kT ln(Nd/ni)

n-type

Page 20: Semiconductor Device  Modeling and Characterization EE5342, Lecture 5-Spring 2002

L05 29Jan02 20

JunctionC (cont.)

xn

x-xp

-xpc xnc

+qNd

-qNa

+Qn’=qNdxn

Qp’=-qNaxp

Charge neutrality => Qp’ + Qn’ = 0,

=> Naxp =

Ndxn

Qn’=qNdxn

Qp’=-qNaxp

Page 21: Semiconductor Device  Modeling and Characterization EE5342, Lecture 5-Spring 2002

L05 29Jan02 21

JunctionC (cont.)• The C-V relationship simplifies to

][Fd/cm ,NNV2

NqN'C herew

equation model a ,VV

1'C'C

2

dabi

da0j

21

bi

a0jj

Page 22: Semiconductor Device  Modeling and Characterization EE5342, Lecture 5-Spring 2002

L05 29Jan02 22

JunctionC (cont.)• If one plots [C’j]

-2 vs. Va

Slope = -[(C’j0)2Vbi]-1

vertical axis intercept = [C’j0]-2 horizontal axis intercept = Vbi

C’j-2

Vbi

Va

C’j0-2

Page 23: Semiconductor Device  Modeling and Characterization EE5342, Lecture 5-Spring 2002

L05 29Jan02 23

Arbitrary dopingprofile• If the net donor conc, N = N(x), then at xn,

the extra charge put into the DR when Va->Va+Va is Q’=-qN(xn)xn

• The increase in field, Ex =-(qN/)xn, by Gauss’ Law (at xn, but also const).

• So Va=-(xn+xp)Ex= (W/) Q’

• Further, since N(xn)xn = N(xp)xp gives, the dC/dxn as ...

Page 24: Semiconductor Device  Modeling and Characterization EE5342, Lecture 5-Spring 2002

L05 29Jan02 24

Arbitrary dopingprofile (cont.)

p

n3j

nn

p

n2j

n

p2n

xNxN

1

dVdC

q

'C

dCVd

qC

dxCd

N with

,dVCd

dCxd

qNdVxd

qNdVdQ

C further

,xN

xN1

'C

dx

dx1

WdxdC

Page 25: Semiconductor Device  Modeling and Characterization EE5342, Lecture 5-Spring 2002

L05 29Jan02 25

Arbitrary dopingprofile (cont.)

,VV2

qN'C where , junctionstep

sided-one to apply Now .

dVdC

q

'C xN

profile doping the ,xN xN orF

abij

3j

n

pn

Page 26: Semiconductor Device  Modeling and Characterization EE5342, Lecture 5-Spring 2002

L05 29Jan02 26

Arbitrary dopingprofile (cont.)

bi0j

bi

23

bi

a0j

23

bi

a30j

V2qN

'C when ,N

V1

VV

121

'qC

VV

1'C

N so

Page 27: Semiconductor Device  Modeling and Characterization EE5342, Lecture 5-Spring 2002

L05 29Jan02 27

Example

• An assymetrical p+ n junction has a lightly doped concentration of 1E16 and with p+ = 1E18. What is W(V=0)?

Vbi=0.816 V, Neff=9.9E15, W=0.33m

• What is C’j? = 31.9 nFd/cm2

• What is LD? = 0.04 m

Page 28: Semiconductor Device  Modeling and Characterization EE5342, Lecture 5-Spring 2002

L05 29Jan02 28

Law of the junction(follow the min. carr.)

t

bia

n

p

p

na

t

bi

no

po

po

no

po

not

no

pot2

i

datbi

V

V-Vexp

n

n

pp

,0V when and

,V

V-exp

n

n

pp

get to Invert

.nn

lnVp

plnV

n

NNlnVV

Page 29: Semiconductor Device  Modeling and Characterization EE5342, Lecture 5-Spring 2002

L05 29Jan02 29

Law of the junction (cont.)

dnonapop

ppnn

ppopppop

nnonnnon

a

Nnn and Npp

injection level- low Assume

.pn and pn Assume

.ppp ,nnn and

,nnn ,ppp So

. 0V for nnot' eq.-non to Switched

Page 30: Semiconductor Device  Modeling and Characterization EE5342, Lecture 5-Spring 2002

L05 29Jan02 30

Law of the junction (cont.)

t

a

pt

a

n

t

a

t

a

t

bi

t

bia

VV

2ixpp

VV

2ixnn

VV

no

2iV

V

pono

pon

VV

nopoVV-V

pn

ennp also ,ennp

Junction the of Law the

enn

epn

np have We

enn nda epp for So

Page 31: Semiconductor Device  Modeling and Characterization EE5342, Lecture 5-Spring 2002

L05 29Jan02 31

pt

apop

nt

anon

V

V-

pononoV

V-V

pon

t

biaponno

xx at ,1VV

expnn sim.

xx at ,1VV

exppp so

,epp ,pepp

giving V

V-Vexpppp

t

bi

t

bia

InjectionConditions

Page 32: Semiconductor Device  Modeling and Characterization EE5342, Lecture 5-Spring 2002

L05 29Jan02 32

Ideal JunctionTheory

Assumptions

• Ex = 0 in the chg neutral reg. (CNR)

• MB statistics are applicable• Neglect gen/rec in depl reg (DR)• Low level injections apply so that

np < ppo for -xpc < x < -xp, and pn

< nno for xn < x < xnc

• Steady State conditions

Page 33: Semiconductor Device  Modeling and Characterization EE5342, Lecture 5-Spring 2002

L05 29Jan02 33

Ideal JunctionTheory (cont.)

Apply the Continuity Eqn in CNR

ncnn

ppcp

xxx ,Jq1

dtdn

tn

0

and

xxx- ,Jq1

dtdp

tp

0

Page 34: Semiconductor Device  Modeling and Characterization EE5342, Lecture 5-Spring 2002

L05 29Jan02 34

Ideal JunctionTheory (cont.)

ppc

nn

p2p

2

ncnpp

n2n

2

ppx

nnxx

xxx- for ,0D

n

dx

nd

and ,xxx for ,0D

p

dx

pd

giving dxdp

qDJ and

dxdn

qDJ CNR, the in 0E Since

Page 35: Semiconductor Device  Modeling and Characterization EE5342, Lecture 5-Spring 2002

L05 29Jan02 35

Ideal JunctionTheory (cont.)

)contacts( ,0xnxp and

,1en

xn

pxp

B.C. with

.xxx- ,DeCexn

xxx ,BeAexp

So .D L and D L Define

pcpncn

VV

po

pp

no

nn

ppcL

xL

x

p

ncnL

xL

x

n

pp2pnn

2n

ta

nn

pp

Page 36: Semiconductor Device  Modeling and Characterization EE5342, Lecture 5-Spring 2002

L05 29Jan02 36

Excess minoritycarrier distr fctn

1eLWsinh

Lxxsinhnxn

,xxW ,xxx- for and

1eLWsinh

Lxxsinhpxp

,xxW ,xxx For

ta

ta

VV

np

npcpop

ppcpppc

VV

pn

pncnon

nncnncn

Page 37: Semiconductor Device  Modeling and Characterization EE5342, Lecture 5-Spring 2002

L05 29Jan02 37

References

• 1Device Electronics for Integrated Circuits, 2 ed., by Muller and Kamins, Wiley, New York, 1986.

• 2Physics of Semiconductor Devices, by S. M. Sze, Wiley, New York, 1981.

• 3 Physics of Semiconductor Devices, Shur, Prentice-Hall, 1990.