Selective removal from water of emerging contaminants by ... · Imidacloprid 1.00 ± 0.06 TiO 2...

30
Selective removal from water of emerging contaminants by nanomaterials for circular economy Giuliana Impellizzeri UiO: Energy Forum 2019

Transcript of Selective removal from water of emerging contaminants by ... · Imidacloprid 1.00 ± 0.06 TiO 2...

  • Selective removal from water of emerging contaminants by nanomaterials for circular economy

    Giuliana Impellizzeri

    UiO: Energy Forum 2019

  • [email protected]

  • Motivation

    1. ENERGY

    2. WATER

    3. FOOD

    4. ENVIRONMENT

    5. POVERTY

    2/3

    by 2025 of the world populationwill live in areas of

    high water stress

    [R. E. Smalley, Nobel Prize in Chemistry 1996,Rice University, USA]

    humanity’s top 5 problems

    [United Nations]

    [email protected]

  • Traditional water treatments

    [email protected]

    • Pollutants are not eliminated• High operating costs• Generation of toxic secondary

    pollutants into the ecosystem[Chong et al., Water Res. 44, 2997 (2010)]

  • Heterogeneous photocatalysis

    [Banerjee et al., Appl. Catal. B Environment. 176-177, 396 (2015)]

    Semiconductors (e.g. TiO2, ZnO, Fe2O3, CdS, ZnS) act as sensitizers for light-induced redox processes:

    [email protected]

    • Effective in degrading refractory organic compounds and water pathogens

    • Ambient operating temperature and pressure

    • Complete mineralization of contaminants without secondary pollution

    • Low operating costs

  • [email protected]

    Main drawback of photocatalysis

    Lack of selectivity(that means highly-toxic organic pollutants at

    low concentration are hardly removed)

    The solution MOLECULAR IMPRINTING[Polyakov et al., Zhur. Fiz. Khim. 2, 799 (1931)]

    Molecularmemory

  • [email protected]

    Matching of molecular imprinting with photocatalysis

    MATERIAL SYNTHESIS(molecular imprinting)

    SELECTIVE REMOVAL OF CONTAMINANTS

    (photocatalysis)

  • ZnO and TiO2: the catalysts of choiceHigh photocatalytic performance

    Large band gap ( 3.3 eV)Easy to growth

    [Wang, Mater. Today 7, 26 (2004)]

    [Li et al., Chem. Soc. Rev. 45, 2603 (2016)]

    [email protected]

  • [email protected]

    Outline

    oMolecularly imprinted ZnO for selective degradation of pharmaceuticals

    oMolecularly imprinted TiO2 for selective degradation of pesticides

    oMolecularly imprinted ZnO for selective degradation of pharmaceuticals

    oMolecularly imprinted TiO2 for selective degradation of pesticides

  • [email protected]

    Zinc acetate dihydrate(0.5 M)

    Sodium Hydroxide(1.0 M)

    CO-PRECIPITATION METHOD: [Sadollahkhani et al., RSC Advances 4, 36940 (2014)]

    Molecularly imprinted (MI) ZnO: the synthesis

    Paracetamolas template

    (0.3 g)

    The template was removed by simple washing

    2 hrs under stirring+

    140 °C for a night

  • [email protected]

    MI ZnO: morphological characterization (SEM & BET)

    100 nm 200 nm

    ZnO

    200 nm

    MI ZnO

    100 nm

    ZnO reference

    BET surface area = 5±2 m2/g

    MI ZnO

    BET surface area = 6±2 m2/g

    Molecularlyimprinted

    ZnO nanonuts

  • 20 25 30 35 40 45 50 55 60

    CP

    S [

    arb.u

    nit

    ]

    2 [degree]

    ZnO

    MI ZnO

    MI ZnO + paracetamol

    Paracetamol

    (110)

    (102)

    (101)

    (002)

    (100)

    20 25 30 35 40 45 50 55 60

    MI ZnO

    MI ZnO + paracetamol

    Paracetamol

    CP

    S [

    arb

    .un

    it]

    2 [degree]

    (110)

    (102)

    (101)

    (002)

    (100)

    20 25 30 35 40 45 50 55 60

    CP

    S [

    arb

    .un

    it]

    2 [degree]

    Paracetamol

    20 25 30 35 40 45 50 55 60

    CP

    S [

    arb.u

    nit

    ]

    2 [degree]

    MI ZnO + paracetamol

    Paracetamol

    (110)

    (102)

    (101)

    (002)

    (100)

    Paracetamol ZnO

    MI ZnO: structural characterization (XRD & TEM)

    [email protected]

  • [email protected]

    MI ZnO: photocatalytic tests

    300 400 500 600 700

    0.00

    0.25

    0.50

    0.75

    1.00

    Ab

    sorb

    an

    ce

    Wavelength [nm]

    0 min

    30 min

    60 min

    90 min

    120 min

    180 min

    MO 462 nm

    225 250 275 300

    0.0

    0.2

    0.4

    Ab

    sorb

    an

    ce

    Wavelength [nm]

    0 min

    30 min

    60 min

    90 min

    120 min

    180 min

    Paracemol243.5 nm

    Paracetamol Methyl orange

    A = l C Lambert-Beer law

    = extinction molar coefficientl = optical path lenghtC = concentration of pollutantA = absorbance (@ 462 nm for MO)

    UV lamp: 368 nm, 4 mW/cm2

    Kept in the dark for the evaluation of physical

    adsorption

    Irradiation by UV lamp with a power of 8 W,

    for a total time of 3 hours.

    Every 30 minutes of irradiation the solutions were

    measured with a UV-VIS spectrophotometer.

    ZnO ZnOMI ZnO MI ZnO

  • [email protected]

    MI ZnO: selective degradation of paracetamolParacetamol Methyl orange

    0 30 60 90 120 150 1800.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Paracetamol

    ZnO

    MI ZnO

    C/C

    0

    Time [min]

    0 30 60 90 120 150 1800.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Paracetamol

    ZnO

    MI ZnO

    MO

    ZnO

    MI ZnO

    C/C

    0

    Time [min]k [min-1] Paracetamol k [min-1] Methyl Orange

    ZnO (1.12 ± 0.06) x 10-3 (1.22 ± 0.06) x10-3

    MI ZnO (1.32 ± 0.06) x10-2 (9.71 ± 0.05) x10-4

    𝑙𝑛𝐶

    𝐶0= − kt

    Langmuir Hinshelwood model

    M. Cantarella… and G. Impellizzeri, Appl. Catal. B: Environ. 238, 509 (2018)

  • [email protected]

    Outline

    oMolecularly imprinted ZnO for selective degradation of pharmaceuticals

    oMolecularly imprinted TiO2 for selective degradation of pesticides

    oMolecularly imprinted ZnO for selective degradation of pharmaceuticals

    oMolecularly imprinted TiO2 for selective degradation of pesticides

  • [email protected]

    Molecularly imprinted (MI) TiO2: the synthesis

    Precursors:

    Titanium (IV) butoxide, ethanol, glacial acetic acid

    Peticides:

    2,4D herbicide

    Imidacloprid insecticide

    1) Formation of gel

    2) Drying (100 °C for 12 h)

    3) Calcination (500 °C for 6 h)

    SOL-GEL SYNTHESIS

  • [email protected]

    MI TiO2: morphological characterization (SEM & TEM)

    • Rough morphology with heterogeneous shaped particles.

    • No substantial variation due to MI process.

    • Granular morphology.

    • Polycrystalline anatase phase.

    • No substantial variation due to MI process.

  • 4000 3500 3000 2500 2000 1500 1000 500

    TiO2 MI/2,4D

    2,4 D

    TiO2 MI/2,4D Not Removed

    TiO2

    Tra

    nsm

    itta

    nce

    [ar

    b. unit

    ]

    Wavenumber [cm-1

    ]

    MI TiO2/2,4D: structural characterization (FTIR)

    [email protected]

    1736 cm-11312 and 1092 cm-1

    1290 and 1081 cm-1 1719 cm-1

    No 2,4D peaks after the removal

  • 4000 3500 3000 2500 2000 1500 1000 500

    TiO2 MI/Imid. Not Removed

    TiO2 MI/Imid.

    TiO2

    Tra

    nsm

    itta

    nce

    [ar

    b. unit

    ]

    Wavenumber [cm-1]

    Imidacloprid

    MI TiO2/Imid.: structural characterization (FTIR)

    [email protected]

    1539 cm-1

    No Imidacloprid peaks after the removal

    1569 cm-1

  • [email protected]

    MI TiO2/2,4D: selective degradation of 2,4D

    0 30 60 90 120 150 1800.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    C/C

    0

    Time [min]

    2,4D

    TiO2

    TiO2 MI/Imid.

    TiO2 MI/2,4D

    Sample k (min-1) ·10-4

    2,4 D 1.01 ± 0.06

    TiO2 6.09 ± 0.06

    TiO2MI/Imid. 6.08 ± 0.06

    TiO2MI/2,4D 36.15 ± 0.06

    • Highest 2,4D degradation rate for the TiO2MI/2,4D sample

    UV lamp: 368 nm, 4 mW/cm2

    𝑙𝑛𝐶

    𝐶0= − kt

    Langmuir Hinshelwood model

  • [email protected]

    MI TiO2/Imid.: selective degradation of Imid.

    0 30 60 90 120 150 1800.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    Imidacloprid

    TiO2

    TiO2MI/2,4D

    TiO2MI/Imid.

    C/C

    0

    Time [min]

    Sample k (min-1) ·10-4

    Imidacloprid 1.00 ± 0.06

    TiO2 11.05 ± 0.06

    TiO2MI/Imid. 22.45 ± 0.06

    TiO2MI/2,4D 11.09 ± 0.06

    Highest Imid. degradation rate for the TiO2MI/Imid. sampleUV lamp: 368 nm, 4 mW/cm2

    𝑙𝑛𝐶

    𝐶0= − kt

    Langmuir Hinshelwood model

    R. Fiorenza… and G. Impellizzeri, Chem. Eng. J. 379, 122309 (2020)

  • [email protected]

    230 µm

    A. Larva not-treated with metal oxide

    B. Larva exposed to TiO2

    C. Larva exposed to TiO2 MI/Imid.

    MI TiO2/Imid.: toxicology testZebrafish embriotoxicity test (ZFET)

    Neither mortality nor sublethal

    effects were caused by the different powders tested

  • 1 µm

    500 nm200 nm

    Chemical precipitation(TiOSO4 + HCl)

    [email protected]

    R. Fiorenza… and G. Impellizzeri, J. Photochem. Photobiol. A 380, 11172 (20219)

    MI TiO2/2,4D: changing the synthesis

    UV lamp: 365 nm, 12 mW/cm2

  • [email protected]

    To take home:

    • New synthesis of MI ZnO nanonuts• High performance in paracetamol photodegradation• High selectivity in paracetamol photodegradation

    • MI TiO2 powders successfully synthetized• High performance in pesticides photodegradation• High selectivity in pesticides photodegradation• No toxicity

  • o A. Di Mauro (CNR-IMM)o R. Fiorenza (now at the Department of Chemistry, University of Catania)o M. Cantarella (CNR-IMM)o V. Privitera (CNR-IMM)o M.V. Brundo, E.M. Scalisi (Department of Biological, Geological and Environmental Science, University of Catania),

    C. Iaria (Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina) for the biological tests

    o A. Gulino and L. Spitaleri (Department of Chemical Science, University of Catania) for the XPS measurements

    o G. Nicotra (CNR-IMM) for the TEM characterization

    [email protected]

    I wish to thank:

  • [email protected]

    To remember…

    Oslo, September 2013My first time in Oslo

    Catania, October 2014

    Lille, May 2015

    Syracuse, March2013

  • [email protected]

    MI ZnO: structural characterization (FTIR)

    1654, 1565 and 1072 cm-11442 cm-1

    1412 cm-1 1640, 1558 and 1050 cm-1

    4000 3500 3000 2500 2000 1500 1000 500

    Wavenumber [cm-1]

    Tra

    smit

    tance

    [ar

    b. unit

    ]

    Paracetamol

    MI ZnO + paracetamol

    MI ZnO

    ZnO

    No paracetamol peaks after the removal

  • [email protected]

    MI TiO2/2,4D: selective degradation of 2,4D

    0 30 60 90 120 150 1800.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    C/C

    0

    Time [min]

    2,4D

    TiO2

    TiO2 MI/Imid.

    TiO2 MI/2,4D

    Sample k (min-1) ·10-4

    2,4 D 1.01 ± 0.06

    TiO2 6.09 ± 0.06

    TiO2MI/Imid. 6.08 ± 0.06

    TiO2MI/2,4D 36.15 ± 0.06

    0

    10

    20

    30

    40

    50

    TiO2 MI/2,4DTiO

    2 MI/Imid.

    Deg

    radat

    ion [

    %]

    UV

    TOC

    TiO2

    • Highest 2,4D degradation rate for the TiO2MI/2,4D sample

    • Only CO2 formation

    UV lamp: 368 nm, 4 mW/cm2

  • [email protected]

    MI TiO2/Imid.: selective selective degradation of Imid.

    0 30 60 90 120 150 1800.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1.0

    Imidacloprid

    TiO2

    TiO2MI/2,4D

    TiO2MI/Imid.

    C/C

    0

    Time [min]

    Sample k (min-1) ·10-4

    Imidacloprid 1.00 ± 0.06

    TiO2 11.05 ± 0.06

    TiO2MI/Imid. 22.45 ± 0.06

    TiO2MI/2,4D 11.09 ± 0.06

    0

    10

    20

    30

    40

    50

    TiO2 MI/2,4DTiO

    2 MI/Imid.TiO

    2

    Deg

    radat

    ion [

    %]

    UV

    TOC

    • Highest Imid. degradation rate for the TiO2MI/Imid. sample

    • Only CO2 formationUV lamp: 368 nm, 4 mW/cm2