Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California,...

60
Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP

Transcript of Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California,...

Page 1: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

Seismology – Lecture 2Normal modes and surface waves

Barbara RomanowiczUniv. of California, Berkeley

CIDER Summer 2010 - KITP

Page 2: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

From Stein and Wysession, 2003CIDER Summer 2010 - KITP

Page 3: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

P S SS

Surface waves

Loma Prieta (CA) 1989 M 7 earthquake observed at KEV, Finland

Page 4: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

From Stein and Wysession, 2003

Shallow earthquake

CIDER Summer 2010 - KITPone hour

Page 5: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

Direction of propagation along the earth’s surface

L

Z

T

Page 6: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

Surface waves• Arise from interaction of body waves with free

surface.• • Energy confined near the surface

• Rayleigh waves: interference between P and SV waves – exist because of free surface

• Love waves: interference of multiple S reflections. Require increase of velocity with depth

• Surface waves are dispersive: velocity depends on frequency (group and phase velocity)

• Most of the long period energy (>30 s) radiated from earthquakes propagates as surface waves

CIDER Summer 2010 - KITP

Page 7: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.
Page 8: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

After Park et al, 2005After Park et al, 2005CIDER Summer 2010 - KITP

Page 9: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

Free oscillations

CIDER Summer 2010 - KITP

Page 10: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

CIDER Summer 2010 - KITP

Page 11: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

The k’th free oscillation satisfies:

SNREI model; Solutions of the form

k = (l,m,n)

fLt

)(2

2

0 uu

0)( 20 kkk uuL

tik

keru ),,(u

CIDER Summer 2010 - KITP

Free Oscillations (Standing Waves)

−0ω2u = L(u)

In the frequency domain:

Page 12: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

Free Oscillations

In a Spherical, Non-Rotating, Elastic and Isotropic Earth model,the k’th free oscillation can be described as:

l = angular order; m = azimuthal order; n = radial orderk = (l,m,n) “singlet” Degeneracy:(l,n): “multiplet” = 2l+1 “singlets ” with the same eigenfrequency nl

tik

keru ),,(u

uk (r,θ ,φ) =ˆ r nU l (r)Ylm (θ ,φ) +n Vl (r)∇1Yl

m (θ ,φ) −n W l (r)ˆ r ×∇1Ylm (θ ,φ)

k =n ω l

−l ≤ m ≤ l

Ylm (θ ,φ) = X l

m (θ )e imφ

Page 13: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

Spheroidal modes : Vertical & Radial component

Toroidal modes : Transverse component

n T l

l : angular order, horizontal nodal planes

n : overtone number, vertical nodes

n=0n=1

CIDER Summer 2010 - KITP

Fundamentalmode

overtones

Page 14: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

Spheroidal modes

n=0

nSl

Page 15: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

Spatial shapes:

Page 16: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

Depth sensitivity kernels of earth’s normal modes

Page 17: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

53.9’

44.2’

20.9’ r=0.05m

0T22S1

0S30S2

0T4

1S2

0S5

0S0

0S43S1

2S2

1S3

0T3

Sumatra Andaman earthquake 12/26/04 M 9.3

Page 18: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

• Rotation, ellipticity, 3D heterogeneity removes the degeneracy:

– -> For each (n, l) there are 2l+1 singlets with different frequencies

Page 19: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

0S2 0S3

2l+1=5 2l+1=7

Page 20: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

mode 0S3 7 singlets

Page 21: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

Geographical sensitivity kernel K0()

0S45

0S3

Page 22: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

ωo

Δω

frequency

Frequency shift depends only on the average structure along the vertical planecontaining the source and the receiver weighted by the depth sensitivity of the mode considered:

Mode frequency shifts

SNREI->

ˆ ω k ≈1

2πδω(s)ds∫

δω(θ ,φ) = Mkk (r)δm0

a

∫ (r,θ ,φ)r2dr

Page 23: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

S

R

P(θ,Φ)

Masters et al., 1982

Page 24: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

Anomalous splitting of core sensitive modes

Data

Model

Page 25: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

Mantle mode

Core mode

Page 26: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

Seismograms by mode summation

Mode Completeness:

u = Re{ akk

∑ (t)uk (r,θ ,ϕ )e iω k t e−α k t}

Orthonormality (L is an adjoint operator):

0uk'* ⋅ ukdV = δ kk '

V

fLt

)(2

2

0 uu

* Denotes complex conjugate

Depends on source excitation f

Page 27: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

Normal mode summation – 1D

A : excitationw : eigen-frequencyQ : Quality factor ( attenuation )

CIDER Summer 2010 - KITP

Page 28: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

Spheroidal modes : Vertical & Radial component

Toroidal modes : Transverse component

n T l

l : angular order, horizontal nodal planes

n : overtone number, vertical nodes

n=0n=1

CIDER Summer 2010 - KITP

Page 29: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

CIDER Summer 2010 - KITP

Page 30: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

P S SS

Surface waves

Loma Prieta (CA) 1989 M 7 earthquake observed at KEV, Finland

Page 31: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

u(t) = Re{ Akk

∑ e iω k t e−α k t}

Standing waves and travelling waves

Ak ---- linear combination of moment tensor elements and spherical harmonics Yl

m

When l is large (short wavelengths):

Ylm (θ ,ϕ ) ≈

1

π sinΔcos (l +

1

2)Δ −

π

4+

2

⎡ ⎣ ⎢

⎤ ⎦ ⎥e

imϕ

Replace x=a Δ, where Δ is angular distance and x linear distance along the earth’ssurface

Jeans’ formula : ka = l + 1/2

Page 32: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

Ylm (θ ,ϕ ) ≈

1

π sin Δcos kx −

π

4+

2

⎡ ⎣ ⎢

⎤ ⎦ ⎥e

imϕ

≈1

2π sinΔe

i(kx −π

4+

2)+ e

−i(kx −π

4+

2) ⎡

⎣ ⎢

⎦ ⎥

Hence:

u(t) = Re{ Akk

∑ e iω k t e−α k t}

⏐ → ⏐ ∝ e i(ω k t −kx )

⏐ → ⏐ e i(ω k t +kx )

Plane wavespropagatingin opposite directions

Page 33: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

-> Replace discrete sum over l by continuous sum over frequency (Poisson’s formula):

u(x, t) = S(ω)e i(ωt −kx )∫ dω

With k=k(ω) (dispersion)

k = k(ω)

Phase velocity:

C(ω) =ω

k

S is slowly varying with ω ; The main contribution to the integral is when the phase is stationary:

Page 34: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

S is slowly varying with ω ; The main contribution to the integral is when the phase is stationary:

dω= t −

dk

dωx = 0 For some frequency ωs

The energy associated with a particular group centered on ωs travels with the group velocity:

U(ω) =x

t=

dk

Page 35: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.
Page 36: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

Rayleigh phase velocity maps

Reference: G. Masters – CIDER 2008

Period = 50 s Period = 100 s

Page 37: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

Group velocity maps

Period = 100 sPeriod = 50 s

Reference: G. Masters CIDER 2008

Page 38: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.
Page 39: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

Importance of overtones for constraining structurein the transition zone

n=0: fundamental mode

n=1n=2

overtones

Page 40: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

Overtones By including overtones, we can see into the transition zone and the top of the lower mantle.

from Ritsema et al, 2004

Page 41: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

Ritsema et al.,2004

FundamentalModeSurfacewaves

Overtone surface waves

Body waves

120 km

325 km

600 km

1100 km

1600 km

2100 km

2800 km

Page 42: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

Anisotropy

• In general elastic properties of a material vary with orientation

• Anisotropy causes seismic waves to propagate at different speeds– in different directions– If they have different polarizations

Page 43: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

Types of anisotropy

• General anisotropic model: 21 independent elements of the elastic tensor cijkl

• Long period waveforms sensitive to a subset (13) of which only a small number can be resolved

– Radial anisotropy– Azimuthal anisotropy

CIDER Summer 2010 - KITP

Page 44: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

Montagner andNataf, 1986

RadialAnisotropy

Page 45: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

Radial (polarization) Anisotropy

• “Love/Rayleigh wave discrepancy”– Vertical axis of symmetry

• A= Vph2,

• C= Vpv2,

• F,

• L= Vsv2,

• N= Vsh2 (Love, 1911)

– Long period S waveforms can only resolve• L , N

• => = (Vsh/Vsv) 2

ln =2(ln Vsh – lnVsv)

Page 46: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

Azimuthal anisotropy

• Horizontal axis of symmetry• Described in terms of , azimuth with

respect to the symmetry axis in the horizontal plane– 6 Terms in 2 (B,G,H) and 2 terms in 4 (E)

• Cos 2 -> Bc,Gc, Hc• Sin 2 -> Bs,Gs, Hs• Cos 4-> Ec• Sin 4 -> Es

– In general, long period waveforms can resolve Gc and Gs

Page 47: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

Montagner and Anderson, 1989

Page 48: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

• Vectorial tomography: – Combination radial/azimuthal (Montagner

and Nataf, 1986): – Radial anisotropy with arbitrary axis

orientation (cf olivine crystals oriented in “flow”) – orthotropic medium

– L,N, ,

x

y

z

Axis of symmetry

CIDER Summer 2010 - KITP

Page 49: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

Montagner, 2002

= (Vsh/Vsv)2

RadialAnisotropy

Isotropic velocity

Azimuthal anisotropy

Page 50: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

Depth= 100 km

Montagner, 2002

Ekstrom and Dziewonski, 1997

Pacific ocean radial anisotropy: Vsh > Vsv

Page 51: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

Gung et al., 2003

Page 52: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

Marone and Romanowicz, 2007

Absolute Plate Motion

Page 53: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

Continuous lines: % Fo (Mg) fromGriffin et al. 2004Grey: Fo%93black: Fo%92

Yuan and Romanowicz, in press

Page 54: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

Layer 1 thickness

Mid-continental rift zone

Trans HudsonOrogen

Page 55: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

“Finite frequency” effects

CIDER Summer 2010 - KITP

Page 56: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

Structure sensitivity kernels: path average approximation (PAVA)versus Finite Frequency (“Born”) kernels

SR

M

SR

M

PAVA

2DPhasekernels

Page 57: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

Panning et al., 2009

Page 58: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

Waveform tomography

Page 59: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.
Page 60: Seismology – Lecture 2 Normal modes and surface waves Barbara Romanowicz Univ. of California, Berkeley CIDER Summer 2010 - KITP.

observed

synthetic

Waveform Tomography