SEISMOLOGY, Lecture 1

download SEISMOLOGY, Lecture 1

of 32

Transcript of SEISMOLOGY, Lecture 1

  • 8/22/2019 SEISMOLOGY, Lecture 1

    1/32

    PEAT8002 - SEISMOLOGY

    Lecture 1: Introduction and review of vector

    operators

    Nick Rawlinson

    Research School of Earth SciencesAustralian National University

    http://find/http://goback/
  • 8/22/2019 SEISMOLOGY, Lecture 1

    2/32

    Introduction

    http://find/
  • 8/22/2019 SEISMOLOGY, Lecture 1

    3/32

    What is Seismology?

    Seismology is the study of elastic waves in the solid earth.Seismic wave theory, observation and inference are the

    key components of modern seismology.

    Seismology is motivated by our ability to record ground

    motion caused by the passage of seismic waves.

    (energy source)source

    (seismogram)receiver

    (elastic properties)medium

    http://find/
  • 8/22/2019 SEISMOLOGY, Lecture 1

    4/32

    A Propagating Seismic Wave

    A T i l S i

    http://find/
  • 8/22/2019 SEISMOLOGY, Lecture 1

    5/32

    A Typical Seismogram

    EP SPP PcS SS RL

    E-W component of a seismic wavetrain recorded inShanghai, China from a magnitude 6.7 earthquake in the

    New Britain region, PNG on 6th February 2000.

    E th St t d P f S i l

    http://find/
  • 8/22/2019 SEISMOLOGY, Lecture 1

    6/32

    Earth Structure and Processes from Seismology

    Seismology is the most powerful indirect method for

    studying the Earths interior.

    The existence of Earths crust, mantle, liquid outer core

    and solid inner core were inferred from seismograms many

    decades ago.

    mantle

    outer core

    inner core

    crust

    1890: Liquid core

    identified by Oldham

    1909: Base of crust

    identified by Mohorovicic1932: Inner core inferred

    by Lehmann

    E i R

    http://find/
  • 8/22/2019 SEISMOLOGY, Lecture 1

    7/32

    Economic Resources

    Seismology can be used to reveal the location of economic

    resources like hydrocarbon and mineral deposits.

    T hi I i

    http://find/
  • 8/22/2019 SEISMOLOGY, Lecture 1

    8/32

    Tomographic Imaging

    Seismic imaging can be performed at a variety of scales

    (metres to 1,000s km) to reveal information aboutstructure, composition and dynamic processes.

    6

    6.5

    6.5 6.5

    7

    7

    7

    7.5

    8

    8

    0

    50

    100

    150

    DEPTH

    [km]

    70 W 69 W 68 W 67 W

    W E

    4.5 5.0 5 .5 6 .0 6.5 7 .0 7.5 8 .0 8 .5 9.0

    Vp [km/s]

    [From Graeber& Asch,1999]

    22.75 S

    Vp [km/s]

    DEPTH

    (km)

    Tomographic Imaging

    http://goback/http://find/http://find/http://goback/
  • 8/22/2019 SEISMOLOGY, Lecture 1

    9/32

    Tomographic Imaging

    2.0

    2.4

    2.8

    3.2

    3.6

    110

    110

    120

    120

    130

    130

    140

    140

    150

    150

    160

    160

    40 40

    30 30

    20 20

    10 10

    Rayleighw

    avegroupvelocity(km/s)

    0.2 Hz

    Tomographic Imaging

    http://find/http://goback/
  • 8/22/2019 SEISMOLOGY, Lecture 1

    10/32

    Tomographic Imaging

    / /

    Perturbation [%]

    Earthquake Processes

    http://find/
  • 8/22/2019 SEISMOLOGY, Lecture 1

    11/32

    Earthquake Processes

    Seismograms are used in:

    earthquake location

    source mechanism studies

    estimating deformation

    measuring plate tectonic processes

    hazard assessment

    nuclear monitoring

    Earthquake Location

    http://find/
  • 8/22/2019 SEISMOLOGY, Lecture 1

    12/32

    Earthquake Location

    0

    0

    60

    60

    120

    120

    180

    180

    -120

    -120

    -60

    -60

    0

    0

    -60 -60

    0 0

    60 60

    2002/05/28 to 2003/05/28

    Focal Mechanisms

    http://find/
  • 8/22/2019 SEISMOLOGY, Lecture 1

    13/32

    Focal Mechanisms

    Cascadia events

    Seismic Hazard

    http://find/http://goback/
  • 8/22/2019 SEISMOLOGY, Lecture 1

    14/32

    Seismic Hazard

    http://find/
  • 8/22/2019 SEISMOLOGY, Lecture 1

    15/32

    Review of Vector Operators

    In this course, we work with vector and tensor functions

    that describe elastic deformation in solids. To do so, we

    need to use the vector operators grad, div and curl.

    Scalars Vectors and Tensors

    http://find/http://goback/
  • 8/22/2019 SEISMOLOGY, Lecture 1

    16/32

    Scalars, Vectors and Tensors

    At each point in a continuum, we can define a scalar

    function that varies with position x and time t, and

    describes some property of the medium e.g. temperature

    T(x, t).

    Similarly, we can define a vector function that varies with

    (x, t) e.g. velocity v(x, t) = (vx, vy, vz).Each component of a vector can itself be a vector, in which

    case we can define a tensor function. Examples of 3 3tensor functions include stress, strain and strain rate.

    =

    xx xy xzyx yy yzzx zy zz

    The Gradient Operator

    http://find/
  • 8/22/2019 SEISMOLOGY, Lecture 1

    17/32

    The Gradient Operator

    The gradient operator is a vector containing three partialderivatives [/x,/y,/z]. When applied to a scalar, itproduces a vector, when applied to a vector, it produces a

    tensor.

    T = [T/x, T/y, T/z]

    v =/x/y/z

    vx vy vz =

    vx/x vy/x vz/xvx/y vy/y vz/xvx/z vy/z vz/z

    The gradient vector of a scalar quantity defines the

    direction in which it increases fastest; the magnitude

    equals the rate of change in that direction.

    The Gradient Operator

    http://find/http://goback/
  • 8/22/2019 SEISMOLOGY, Lecture 1

    18/32

    The Gradient Operator

    x

    Gradient of a scalar field

    f(x,y)

    f

    The Divergence Operator

    http://find/
  • 8/22/2019 SEISMOLOGY, Lecture 1

    19/32

    The Divergence Operator

    The divergence operator

    has the same form as

    , but

    has the opposite effect on the rank of the quantity on which

    it operates. Applied to a vector it produces a scalar;

    applied to a tensor it produces a vector.

    v = /x /y /z vxvyvz

    = vxx

    + vyy

    + vzz

    The divergence of a vector field may be thought of as the

    local rate of expansion of the vector field.

    v = limV0

    1

    V

    v ndS

    The Divergence Operator

    http://find/
  • 8/22/2019 SEISMOLOGY, Lecture 1

    20/32

    The Divergence Operator

    This formula describes an integral over surface Sof a

    small element with volume V. n is the unit outward normal

    on the surface.The physical significance of the divergence of a vector field

    is the rate at which density" exits a given region of space.

    For example, if u is the velocity of an incompressible fluid,

    then

    u = 0 - fluid particles cannot bunch up".

    S

    Divergence of a 2D vector field

    V

    n

    (x,z)v

    Curl of a Vector Field

    http://find/
  • 8/22/2019 SEISMOLOGY, Lecture 1

    21/32

    Curl of a Vector Field

    The other important vector operator is curl, . It can berepresented as a matrix operating on a vector field.

    v = det

    i j k

    /x /y /z

    vx vy vz =

    vz/y vy/zvx/z

    vz/x

    vy/x vx/yThe curl may be thought of as the local curvature of the

    vector field.

    ( v)i = limA0

    niA

    v dl

    Curl of a Vector Field

    http://find/http://goback/
  • 8/22/2019 SEISMOLOGY, Lecture 1

    22/32

    Curl of a Vector Field

    The integral is taken around the perimeter of the small

    area element A which is perpendicular to n, the unit

    normal vector to v. Since there are three orthogonalorientations for the area element, the curl has threecomponents.

    The physical significance of the curl of a vector field is the

    amount of rotation" or angular momentum of the contents

    of a given region of space.

    A

    Curl of a 3D vector field

    n

    dl

    (x,y,z)v

    Example 1

    http://find/
  • 8/22/2019 SEISMOLOGY, Lecture 1

    23/32

    p

    Scalar function f =

    (x 1)2 + (y 1)2 in the interval

    0

    x

    2, 0

    y

    2.

    0.2

    0.4

    0.4

    0.6

    0.6

    0.6

    0.8

    0.8

    0.8

    0.8

    1

    1

    0

    1

    2

    y

    0 1 2

    x

    Example 1

    http://find/
  • 8/22/2019 SEISMOLOGY, Lecture 1

    24/32

    p

    f = x 1

    (x 1)

    2

    + (y 1)2,

    y 1

    (x 1)2

    + (y 1)2

    0.2

    0.4

    0.4

    0.6

    0.6

    0.6

    0.8

    0.8

    0.8

    0.8

    1

    1

    0

    1

    2

    y

    0 1 2

    x

    Example 1

    http://find/
  • 8/22/2019 SEISMOLOGY, Lecture 1

    25/32

    p

    f = 1(x 1)2 + (y 1)2= 2f = Laplacian

    1.2

    1.2

    1.2

    1.2

    1.4

    1.4

    1.4

    1.6

    1.6

    1.6

    1.8

    1.8

    1.8

    2

    2

    2.2

    2.2

    2.4

    2.4

    2.6

    2.6

    2.8

    2.8

    3

    3

    3.23

    .2 3.43.4

    3.63.8

    44.24.4

    4.64.8

    5

    5.2

    5.45.65.8

    66

    .26.4

    6.6

    6.877.2

    7.4

    7.6

    7.888.28.48.68.899.29.49.69.8

    1010.210.410.610.81111.211.411.611.812

    12.212.412.612.81313.213.413.613.81414.

    214.414.614.81515.2

    15.4

    15.6

    15

    .816

    16

    .2

    16

    .4

    16

    .616.8

    17

    17.2

    17.4

    17.6

    0

    1

    2

    y

    0 1 2

    x

    Example 1

    http://find/
  • 8/22/2019 SEISMOLOGY, Lecture 1

    26/32

    p

    f ="0,0, x y1(x1)2+(y1)2! y x1(x1)2+(y1)2!#=0

    For any scalar functions f,gand any vectors u, v

    f = 0 v = 0(fg) = fg+ gf (f/g) = (gf fg)/g2

    (fv) = f

    v + v

    f

    (f

    g) = f

    2g+

    f

    g

    (fv) = f v + f v (u v) = v u u v

    Example 2

    http://find/
  • 8/22/2019 SEISMOLOGY, Lecture 1

    27/32

    p

    Scalar function f = (x 1) exp[(x 1)2 (y 1)2] in theinterval 0

    x

    2, 0

    y

    2.

    0.4

    0

    .2

    0

    0.2

    0.4

    0

    1

    2

    y

    0 1 2

    x

    Example 2

    http://find/
  • 8/22/2019 SEISMOLOGY, Lecture 1

    28/32

    p

    f = exp[

    (x

    1)2

    (y

    1)2]1 2(x 1)

    2,

    2(x

    1)(y

    1)

    0.4

    0

    .2

    0

    0.2

    0.4

    0

    1

    2

    y

    0 1 2

    x

    Example 2

    http://find/
  • 8/22/2019 SEISMOLOGY, Lecture 1

    29/32

    f = 4(x

    1) exp[

    (x

    1)2

    (y

    1)2](x

    1)2 + (y

    1)2

    2

    2

    2

    1

    1

    0

    1

    1

    2

    2

    0

    1

    2

    y

    0 1 2

    x

    Example 3

    http://find/
  • 8/22/2019 SEISMOLOGY, Lecture 1

    30/32

    Vector function v = [ycos x, xcos y] in the interval0

    x

    2, 0

    y

    2.

    0

    1

    2

    y

    0 1 2

    x

    Example 3

    http://find/http://goback/
  • 8/22/2019 SEISMOLOGY, Lecture 1

    31/32

    v = ysin x xsin y

    2

    1

    0

    1

    2

    y

    0 1 2

    x

    Example 3

    http://goforward/http://find/http://goback/
  • 8/22/2019 SEISMOLOGY, Lecture 1

    32/32

    v = [0, 0, cos y

    cos x]

    0

    1

    2

    z

    0 1 2

    x

    0

    1

    2

    z

    0 1 2

    y

    y=1.0 x=1.0

    http://find/