Seismic hazard for design and verification of nuclear ... · 3.3. Magnitude, depth and epicentral...

14
Bollettino di Geofisica Teorica ed Applicata Vol. 55, n. 1, pp. 135-148; March 2014 DOI 10.4430/bgta0080 135 Seismic hazard for design and verification of nuclear installations in France: regulatory context, debated issues and ongoing developments O. SCOTTI, C. CLÉMENT AND D. BAUMONT Institute for Radiological Protection and Nuclear Safety, France (Received: June 29, 2012; accepted: September 7, 2012) ABSTRACT Deterministic (DSHA) and probabilistic (PSHA) seismic hazard assessments can, and often do, lead to quite different seismic hazard levels. There is a growing need in France for decision makers to understand the origin of these differences. The focus of this paper is to present the current status in the development of a formalized propagation of uncertainties based on the French deterministic seismic nuclear safety rule (RFS 2001-01, 2001). Along the lines of PSHA approaches, the method consists in the construction of a Logic Tree (LT). Preliminary comparisons between DSHA- LT and PSHA-LT averaged over 30 nuclear sites located in metropolitan France show that, if the resulting uncertainty in the hazard spectrum may be comparable, the median hazard spectral values may actually differ. Not surprisingly, the resulting general tendency is that in low seismicity zones, DSHA tends to predict higher median spectral values compared to PSHA RT=1000yr . In higher seismicity zones, comparable hazard levels are obtained on average between DSHA_MHPE (Maximum Historically Probable Earthquake) and PSHA RT=1000yr , but extrapolation of PSHA results at 10,000- year return periods may have a tendency to exceed DSHA_MHPE+0.5 values. A site- specific analysis including all the constraints imposed by the RFS 2001-01 (2001) (minimal spectral response, paleoseismic spectral response and site-effects) will be necessary for a complete DSHA/PSHA comparison. Key words: seismic hazard, nuclear power plants, France. 1. Introduction The seismic hazard methodology (RFS 2001-01, 2001) recommended by the French Nuclear Safety Authority (ASN) for the seismic design of nuclear power plants (NPPs) is deterministic. It is well known that seismic hazard assessment can vary considerably depending on how uncertainties in data and models are taken into account in a seismic hazard study. This point constitutes the main subject of discussion between IRSN (Institute for Radiological Protection and Nuclear Safety) and the nuclear operators. It has been IRSN’s practice therefore to confront differences in seismic hazard levels proposed by the operators and IRSN with a quantification of the underlying uncertainties. IRSN has developed a tool specifically for this purpose, which © 2014 – OGS

Transcript of Seismic hazard for design and verification of nuclear ... · 3.3. Magnitude, depth and epicentral...

Bollettino di Geofisica Teorica ed Applicata Vol. 55, n. 1, pp. 135-148; March 2014

DOI 10.4430/bgta0080

135

Seismic hazard for design and verification of nuclear installations in France: regulatory context, debated issues and ongoing developments

O. ScOtti, c. clément and d. BaumOnt

Institute for Radiological Protection and Nuclear Safety, France

(Received: June 29, 2012; accepted: September 7, 2012)

ABSTRACT Deterministic (DSHA) and probabilistic (PSHA) seismic hazard assessments can,andoftendo, leadtoquitedifferentseismichazardlevels.Thereisagrowingneedin France for decision makers to understand the origin of these differences. ThefocusofthispaperistopresentthecurrentstatusinthedevelopmentofaformalizedpropagationofuncertaintiesbasedontheFrenchdeterministicseismicnuclearsafetyrule(RFS2001-01,2001).AlongthelinesofPSHAapproaches,themethodconsistsintheconstructionofaLogicTree(LT).PreliminarycomparisonsbetweenDSHA-LT and PSHA-LT averaged over 30 nuclear sites located in metropolitan Franceshow that, if the resulting uncertainty in the hazard spectrum may be comparable,themedianhazardspectralvaluesmayactuallydiffer.Notsurprisingly,theresultinggeneraltendencyisthatinlowseismicityzones,DSHAtendstopredicthighermedianspectral values compared to PSHART=1000yr. In higher seismicity zones, comparablehazardlevelsareobtainedonaveragebetweenDSHA_MHPE(MaximumHistoricallyProbableEarthquake)andPSHART=1000yr,butextrapolationofPSHAresultsat10,000-yearreturnperiodsmayhaveatendencytoexceedDSHA_MHPE+0.5values.Asite-specific analysis including all the constraints imposed by the RFS 2001-01 (2001) (minimal spectral response, paleoseismic spectral response and site-effects)will benecessaryforacompleteDSHA/PSHAcomparison.

Key words: seismichazard,nuclearpowerplants,France.

1. Introduction

Theseismichazardmethodology(RFS2001-01,2001)recommendedbytheFrenchNuclearSafetyAuthority(ASN)fortheseismicdesignofnuclearpowerplants(NPPs)isdeterministic.It is well known that seismic hazard assessment can vary considerably depending on howuncertainties in data and models are taken into account in a seismic hazard study.This pointconstitutesthemainsubjectofdiscussionbetweenIRSN(InstituteforRadiologicalProtectionandNuclearSafety)andthenuclearoperators.IthasbeenIRSN’spracticethereforetoconfrontdifferencesinseismichazardlevelsproposedbytheoperatorsandIRSNwithaquantificationoftheunderlyinguncertainties.IRSNhasdevelopedatoolspecificallyforthispurpose,which

© 2014 – OGS

136

Boll. Geof. Teor. Appl., 55, 135-148 Scotti et al.

isbasedon theFrenchdeterministic rule.A second tool is alsounderdevelopment,basedontheprobabilisticapproach.Bothmethodsusethelogictreeapproachtoexploretheunderlyingepistemicuncertainties.

After presenting the French regulatory rule that defines the input seismic motion for nuclear installationandthedebated issuesraisedby itsapplication,weprovideabriefanalysisof theadvantagesof thepresentruleandmeanstotackleitsweakpoints.Astheanalysiswillshow,bothdeterministicandprobabilisticmethodologieswillneedtobeconsideredin the near futurethenearfuturein order to provide decision-makers with the range of seismic hazard levels that the scientific communityatlargecouldestimate.

2. The French nuclear safety rule

Seismichazard assessment forFrenchnuclear facilities is guidedby a regulationbasedona deterministic approach (RFS 2001-01, 2001).According to the regulation, seismic hazardassessment at a site requires identifying the characteristics of the “Maximum HistoricallyProbableEarthquake” (MHPE), selected from thehistorical and instrumental seismic catalogsandconsideredtobethemostpenalizingearthquakesliabletooccur over a period comparable tooveraperiodcomparabletothehistoricalperiod,orabout1,000years. The methodology can be summarized in �� main steps�.Themethodologycanbesummarizedin��mainsteps�

1.-determine the Seismic Source Zones (SSZs), based on geological and seismologicalcriteria;eachzoneisconsideredtohaveahomogeneousseismicpotential;

2.-estimatethecharacteristicsofhistoricalandinstrumentallyrecordedeventsthatoccurredineachSSZ;

3.-retain,fortheconsideredsite,theeventsthatwouldproducethemostpenalizingeffectsatthesite(intermsofmacroseismicintensity)iftheyweretooccuratcloserdistancethantheydid.Inotherwords,therulestipulatesthattheeventshaveequalpotentialwithintheSSZandthustheapplicantshouldretaintheclosestdistancetothesite.TheyconstitutetheMHPEs;

4.-a “SafeShutdownEarthquake” (SSE) is associated toeachMHPEand isobtainedbyincreasingtheMHPEmagnitudeby0.5toaccountforuncertaintiesonthecharacteristicsofMHPE(relatedtoknowledgeonseismotectonicsandseismicity);

5.-evaluatetheseismicgroundmotion(meanaccelerationresponsespectraonly)associatedwiththeSSEusingtheGroundMotionPredictionEquation(GMPE)ofBerge-Thierryet al.(2003)whichpredicts,foramagnitudeanddistancecouple,apseudo-accelerationvalueforawidespectralfrequencyrange(0.1to34Hz),accountingfortwosoilconditions(rockorsoil);

6.-forsites locatedatclosedistance tofaultswithevidenceofsurfacerupture,astudy isrequestedtoevaluatethevibratorygroundmotionsassociatedtopastevents;

7. - site specific studies are required for sites located on very soft soil (VS < 300 m/s) orassociatedwithaparticulargeometry(sedimentarybasins,topography,etc.)wheresiteeffectsareanticipated;

8. - finally, the RFS 2001-01 (2001) requires that the spectrum retained by the operator cannot be lower than a minimal response spectrum (defined for the 2 soil conditions) with a PGAsetat0.1g.

Site-specific SHA for French nuclear sites Boll. Geof. Teor. Appl., 55, 135-148

137

3. Debated issues

IRSN is the technical supportorganization for theASN.When IRSN isaskedbyASNtoexpertise a seismic hazard study of a nuclear operator, IRSN’s objective is to evaluate theconformity of the application to the RFS 2001-01 (2001) and evaluate the extent to whichuncertainties are integrated in the final seismic hazard level retained by the operators. Indeed, if for a given scenario, the median GMPE is fixed by the RFS 2001-01 (2001), the definition of seismic scenarios (magnitude, depth, distance to site) depends entirely on the definition of theSSZgeometries, themethodused toestimate thecharacteristicsofhistoricalearthquakesand most importantly, on the way in which uncertainty is accounted for at each step of thecomputation.

3.1. Source zone geometriesForthemetropolitanterritory,severalSSZ-schemeshavebeenestablished(e.g.,Terrieret al.,

2000;Geoter,2002;EDF,2010).Usuallythenuclearoperator inchargeof theseismichazardassessmentproposesitsownSSZ-scheme.IRSNcontinuouslyupdatesitsownSSZschemeandactivefaultdatabase(Baizeet al.,2012).ThemethodologyusedtoproduceaSSZ-schemeisbasedonasynthesisofallgeophysical,seismologicalandgeologicaldataconstrainingthedeformationbehaviorofthestudiedregion.TheuncertaintyassociatedwiththechoiceofSSZisquitevariablefromoneregiontoanother.Quantifyingthisuncertainty,whichdependsontheknowledgeoftheregional seismotectonics, remains a difficult task. Some zone boundaries are located with a good confidence (uncertainty around 10 km), whereas for others, the reliability of the boundary remains expert-dependent.UsingtheRFS2001-01(2001)methodology,thechoiceoftheSSZschemehasamajorconsequenceandconditionsthedeterminationofthereferenceMHPEeventandthusthecorrespondinglevelofhazard.

3.2. Predicting macroseismic intensity at a nuclear siteGiventhattheselectionofreferenceeventsismadewithrespecttoamacroseismicintensity

criterionatthesite,uncertainties(distance,magnitude)associatedwiththispredictedintensityshould be systematically considered for the definition of the MHPE. However, as this is not codified in the RFS 2001-01 (2001), this point should be improved in the future as it is a major sourceofexpertdebate.

3.3. Magnitude, depth and epicentral intensity of earthquakes Apre-requisiteforestablishingaseismicscenariointheRFS2001-01(2001)methodology

is the estimationof themagnitude and locationof earthquakes (includingdepth), consideringeithermacroseismicdataorinstrumentalrecords.TheFrenchcatalogofhistoricalearthquakesreportseventsfeltinmainlandFrancedatingbacktotheyear��43A.D.(www.sisfrance.net)whileinstrumentalrecordscoverthelast50years.Actually,mostMHPEsdeterminedfortheFrenchnuclearsitesarerelatedtoearthquakeswhichoccurredinthehistoricalperiod.

Instrumentalearthquakeepicentersareingeneralquitewelldeterminedwithanuncertaintylessthan10km,comparedtotheirdepth.Themagnitudeestimationsarestilltothisdaystronglyscattered in France, each institution relying on its own magnitude estimation method. Localmagnitudediscrepanciescanexceed0.5degreesdependingontheinstituteprovidingtheestimate

(e.g.,StDié2003earthquake�MLRénass=5.4,MLLDG=5.��,MLINGV=4.6;momentmagnitudestendtobelessscatteredMW HRVD-CMT=4.9,MW SED=4.��).

Therobustnessofhistoricalearthquakeparameterssuchasmagnitude,depthandepicentralintensitiesisextremelyvariable.Thenecessitytoaccountfordataandmodelinguncertaintiesintheirestimation,haspushedIRSNtodevelopamacroseismictool(BaumontandScotti,200��a)whichallowscomputingaprobabilitydensityfunctionofsolutionsforeachhistoricaleventwhichcanthenbeeasilycomparedtothepublishedestimatesaswellasthoseproposedbytheoperator.ThetoolisbasedonthedevelopmentofEmpiricalMacroseismicPredictiveEquations(EMPEs),derivedfromtheanalysisofmacroseismicintensitydatapointscollectedfromEuropeandatabases.The exploration of various combinations of data selections and inversion parameters led to aseriesofweightedEMPE.ThecalibrationwasperformedonahomogeneousMScatalogue(~130events)basedonaselectionofpublishedinstrumentalmagnitudescoveringtheentiremagnituderange (3.5 ≤ MS ≤ 7). For each historical event, magnitude-depth characteristics are described as aprobabilitydensityfunction(PDF)(seeanexampleinFig.1).

4. Developing a DSHA logic tree to quantify differences in SHA due to different expert opinions

Although the regulation does not impose the use of multiple expert opinions,ASN hasimposedthatoperatorsverifythatthefinalseismichazardlevelretaineddoescover“reasonablywell”otherplausibleMHPE(ASN,2003).GiventheexplicitchoicesimposedbyRFS2001-01(2001),thefollowingaretheparametersthataresubjectedtouncertaintiesandexpertopinions�

• differencesinthedefinitionoftheSSZ(andthusthedefinitionoftheMHPE,reflectingthelimitsofknowledgewithrespecttothemechanismsthatcontrolsseismicactivity);

• the estimation of the magnitude and depth of historical and instrumental events is alsoassociated with uncertainties which depend on the spatial coverage, the reliability ofmacroseismicdataorinstrumentalrecordsandtheassumedcrustalmodel;

• thepredictedintensityatthesite,whichisacrucial“filtering”criterioninordertoselectone or more MHPE for the studied site, can be associated to a large uncertainty whichneeds to be accounted for in the MHPE selection. (LT) for deterministic seismic hazardassessment,DSHA.

In order to evaluate the extent to which the above uncertainties are integrated in the finalseismichazardlevelretainedbytheoperators,ithasbecomecurrentpracticeatIRSNtoexploreawiderangeofplausibleMHPEscenariosthroughtheconstructionofalogictree(DSHA-LT)thatconsidersvariouspublishedSSZ-schemesandvariousmagnetic-intensity-depthequations.

Specific developments were made by IRSN to tackle the issue of site effects; however this aspectgoesbeyondthescopeofthispaper.Theobjectivehereistolimittheexpert-debateinDSHA.AsitcanbeseeninFig.2,anapplicationoftheRFS2001-01(2001)basedononeexpertopinion (IRSN’s in this case) allows identifying a suite of MHPEs (lines in the plot) whichmay be exceeded by alternative choices of MHPEs (distributions shown by the filled colors). In this particular example, the strongest RFS 2001-01 (2001) based scenario computed withIRSNchoicesfallsinthe��4th-9��th percentile confidence level band deduced from all alternative scenariosexploredintheDSHA-LT(Baumont and Scotti, 200��b). This type of information is(BaumontandScotti,200��b). This type of information isb).Thistypeofinformationis

138

Boll. Geof. Teor. Appl., 55, 135-148 Scotti et al.

Site-specific SHA for French nuclear sites Boll. Geof. Teor. Appl., 55, 135-148

139

Fig. 1 - Magnitude- depth estimates for the1909Lambesc,France,earthquake.Thedashedlines define the one and two standard deviation contoursof theempiricalPDFscomputedonthebasisoftheIRSNmacroseismictool(seetextforexplanation).Thebarycentresolutionisindicatedbythevioletsquare.ThisprimaryuncertaintyinthedataispropagatedthroughintheDSHA-LT.Forcomparison,previousM-hestimatesarealsoshown,includingestimatesforwhichthesourcescannotbemadepublic.

Fig. 2 - In this example, IRSN application of the RFS -2001-01 (2001) leads to the definition of 5 seismic hazard spectra.ThestrongesthazardlevelthatwouldberetainedbyIRSN(theuppermostvioletcurve)fallsbetweenthe��4thand9��thpercentileoftheDSHA-LT.TheGMPEusedinthisexampleisBerge-Thierryet al.(2003).InaccordancewiththeRFS-2001-01(2001),thealeatoryvariabilityofgroundmotion(σ)isnotaccountedfor.

140

Boll. Geof. Teor. Appl., 55, 135-148 Scotti et al.

necessarytohelpASN deciding whether to accept or reject an operator’s proposition dependingdecidingwhethertoacceptorrejectanoperator’spropositiondependingonthesafetytargetthatissetintheoverallrisk-decisionmakingprocess.

ThistooliscurrentlyusedtoestablishdeterministicuncertaintyboundsfortheSHAateachnuclearsite.ThegeneralmedianDSHAtrendevaluatedwiththeIRSNDSHA-LTfor30Frenchnuclear sites is presented in Fig. 3.Two measures of the dispersion of the hazard results arerepresented� (i) the coefficient of variation (COV-1) asdefinedby the ratiobetween the (��4th-50th) /50thpercentiles, (ii) theCOV-2asdefinedby the ratiobetween the (9��th -50th) /50thpercentiles.The overall median COV, that results from the IRSN-DSHA-LT exploration ofplausibleMHPE,showsvaluesthatrangeforCOV1from30%to50%andforCOV2from60%to140%.HigherCOVvaluesareseenforlowerresponsespectralfrequencies.

AscanbeseeninFig.3(blackline), thepercentageincreaseintheMHPEseismichazardlevelbroughtbytheadditionof0.5magnitudeunits(MHPE+0.5),asimposedbytheRFS-2001-01(2001),introducesa40%increaseinseismichazardathighresponsespectralfrequenciesandreachesupto90%increaseatlowerresponsespectralfrequencies.ThustheMHPE+0.5covers,on average, the COV1 measure but not the COV2 measure on the IRSN-MHPE, especiallyat lower response spectral frequencies.The higher COV values at lower response spectralfrequenciesare simplydue to thebehaviorof theGMPE that induces, for agivenmagnitudeincrement, a higher increase at lower response spectral frequencies than at higher ones.ThisdifferenceisexacerbatedfortheCOV2measurewhichisbasedonthe9��thpercentile.

It should be stressed here that the 9��th percentile values are resulting from an automaticprocedure that calculates the MHPE response spectral response based on a wide explorationof theparameterspace, inparticular in themagnitude-depthspace. Indeed,Fig.1hasalreadyshownthatagreatrangeofmagnitude-depthvaluesmaybeplausibleforagivenmacroseismicdataset(recallthatonlythetwostandarddeviationvaluesareactuallyshowninthePDFofFig.1).Intheexercisepresentedinthispaper,theentiremagnitude-depthspacewasconsideredforeachmacroseismicdataset.

Fig. 3 - Coefficient of variation (COV) resulting from the DSHA-LT uncertainty explorationas proposed by IRSN. For each site-specific DSHA-LTtheCOVsarecomputed.Onlythemedianvalueofallthesitesisshown�inredfortheCOV=(9��th-50th)/50thpercentileandinbluefor the COV= (��4th-50th)/50th percentile. Theblack line represents the incremental seismichazard imposed by the French regulation(MHPE+0.5magnitudeunits)/MHPE).

Site-specific SHA for French nuclear sites Boll. Geof. Teor. Appl., 55, 135-148

141

Finally, it shouldbe stressed that the exercise is not completebecause itwasnot possibleto generalize regulatory requirements concerning the minimal or the paleoseismic spectralresponselevelimposedforthefinalSSE.TheseadditionalconstraintscontributetoraisethelowfrequencycontentofthefinalSSEresponsespectrum.

5. Which is the seismic safety target that should be set in DSHA?

In order to overcome the expert-opinion sensitivity of the DSHA results, it has becomecurrentpracticeatIRSNtoconsiderthatthe��4thpercentileseismichazardoftheDSHA-LTisaminimumthresholdthatthefinalseismichazardlevelproposedbytheoperatorshouldequalorexceed.Iftheoperatorprovidesfinalseismichazardlevels(SSE)thatliebelowthisthreshold,additionalinvestigationsanddiscussionsarerecommendedbyIRSN.

6. Disaggregation of DHSA-LT

Tohelpdecisionmakersunderstand the rangeofmagnitude-distanceMHPEscenarios thatareexploredintheDSHA-LTmethodologyproposedbyIRSN,adisaggregationisperformed.Fig. 4 shows for two different sites two examples� a disaggregation of all the scenarios thatcontribute up to 100% to the hazard and one for scenarios that contribute only between the40thand60thpercentile.Concerningthefirstsite(top),twomaincontributorstothehazardareidentified irrespectiveof thedisaggregation strategy.Dependingon the relativeweight that isattributedtothedifferentscenariosandthepercentiletarget,theresultinghazardmaybemoreorlessaffectedbythedistantsources.Forthesecondsite(Fig.4bottom),ontheotherhand,thescenariosconsideredareradicallydifferent.TheunderlyingSSZschemesandthusthereferenceMHPEeventsareresponsibleforthisdifference.Clearly,dependingontheweightattributedtoeachscenarioandthechoiceofthe“reasonable”targetpercentile,theresultinghazardlevelwillbesignificantlydifferent.DiscussionsbetweenIRSNandASN/operatorsare todaycarriedoutbymeansofthistool.

7. Beyond the RFS 2001-01: probabilistic seismic hazard assessment

To further appreciate the degree of uncertainty in SHA, in the following section a simplecomparison betwen DSHA and probabilistic seismic hazard assessment (PSHA) is presented.IRSNhasdevelopedaPSHAapproachoverthepastfewyearsintheperspectiveoffeedingtheseismicprobabilistic safety analysis studies that areunderpreparationbut also toposition thedeterministicuncertaintyassessmentsrelativetotheprobabilisticones.ThePSHAmethodologydevelopedsofarfollowsalogictree(PSHA-LT)approachinordertoaccountforvariouscredibleSSZschemesincludingpotentiallyactivefault-SSZwhereappropriate.AMonteCarloapproachiscoupledtoalogictree,whichallowsexploringtheepistemicuncertaintyofthemainparametersinfluencing the final seismichazard [e.g.,Tricastin site-specificPSHA;Clementet al. (2004a,2004b)].Eachhypothesisconsideredinthelogictreeisweighted,proportionallytoitscredibility.

The PSHA-LT developed for Tricastin, consists of alternative source models (diffuseseismicity/faulting), alternative seismicity models for the faults (Gutenberg - Richter/characteristic earthquakes) and different GMPEs (three different GMPEs were used in thiscomputationintegratingacrossthefullaleatoryvariability). Fig. 5 illustrates the comparison ofFig.5illustratesthecomparisonofDSHA-LTandPSHA-LTforthecaseoftheTricastinnuclearsite.Thetwoapproachesexplorevery different hypothesis� on the PSHA side the consideration of alternative GMPEs and thepossibilityofactivityalonganearbypotentiallyactivefault(theCevennesfault),contributetoawideruncertaintyintheseismichazardlevelsandtoahigherestimateofseismichazardlevelat lower response spectral frequencies. On the DSHA side, the range of hazard uncertaintiesismainlycontrolledby theexplorationof theuncertaintyassociatedwith thecharacterization(magnitudeanddepth)ofthehistoricalearthquakes.TheseismicscenariosarelocatedundertheTricastinsiteandleadtoahigherhazardlevelinthehigherresponsespectralfrequencyrange.

TofurtherillustratetheimportanceofdevelopingthePSHAmethodologyinparallelwiththeDSHA-LTmethodology,Fig.6showsresultsofasimplifiedPSHAcomputationat30nuclearsites based on a reduced exploration of hypothesis and a regional approach. This calculationa reduced exploration of hypothesis and a regional approach.This calculation

142

Boll. Geof. Teor. Appl., 55, 135-148 Scotti et al.

Fig. 4 - Disaggregation of SMHV for two different nuclear installation sites and for two specific percentile targets: (left) MHPE0-100th,and(right)MHPE40th-60th.

Site-specific SHA for French nuclear sites Boll. Geof. Teor. Appl., 55, 135-148

143

Fig. 5 - Comparison of site-specific DSHA-LT and PSHA-LT seismic hazard spectral uncertainties for the Tricastin NPPsite,France(seetextforexplanation).

doesnotincludefaultsandisnotsite-specific.ThePSHA-LTusedforthispurposeisextractedfromthemodelusedfortheEurocode��(GEOTER,2002).Namely,onlytheSSZbranchesareconsidered, one with 52 SSZs and another one with 25 SSZs. For comparison purpose withDSHA calculation, only the GMPE of Berge-Thierry et al. (2003) is used with the aleatoryvariability integrated to infinity.Two calculations were performed, in order to illustrate thePSHAsensitivitytothechoiceoftheminimummagnitudeconsideredforthecalculations.

7.1. ResultsForthepurposeofthispaper,DSHAandPSHAresultsarecomparedbyconsideringthatthe

targetgroundmotionstobeconsideredhavereturnperiodscomparabletothatof the historicalthehistoricalperiodfortheMHPE(about1,000years=periodcoveredbytheearthquakecatalogue)andofabout10,000yearsfortheSSE.

The PSHA-median predictions are shown in Fig. 6 for a 1,000 years return period.Theresults are averaged over sites located in seismic zone I, II and III+IV as defined by theEurocode �� (CEN, 2002) of the NationalAnnex for seismic zoning. The purpose of thecomparison is to show the main tendencies between the IRSN-DSHA-MHPE site-specific is to show the main tendencies between the IRSN-DSHA-MHPE site-specificis to show the main tendencies between the IRSN-DSHA-MHPE site-specificapproach and a simplified PSHA calculation based on a regional approach.The comparisonshowsthat� 1.- at 1,000 years return period, median PSHA values depend strongly on the minimum magnitudeusedforthecalculations;

2.- inzoneI,whereestimatedhistoricalearthquakemagnitudesaremostlybelowmagnitude5, the median IRSN-DSHA-MHPE spectral response evaluations lie above the median PSHART=1000yrspectral responses, with the exception of the low frequency part of the spectrum; 3.- inhigherseismicityzones,wherehistoricalmagnitudescanbegreaterthanmagnitude5 (zoneII)andmayexceedmagnitude6.0(zonesIIIandIV),mediansite-specificMHPE spectral responses are close (Mmin = 4.0) or lie above (Mmin = 5.0) the PSHART=1000yr

values.Finally, as Fig. 7 shows, extrapolation of the median PSHA hazard curves from 1,000- to

10,000-yearreturnperiodsmayleadtohigherdesigntargetsformanynuclearsitescomparedtothedeterministicincreaseof0.5magnitudeunits,especiallyforsiteslocatedinzonesII,III

144

Boll. Geof. Teor. Appl., 55, 135-148 Scotti et al.

Fig.6-Medianseismichazardvaluesofallthesitesforeachseismiczone(ZoneI–verylowseismicity;ZoneII–lowtomoderateseismicity;ZoneIIIandIV–moderatetoaverageseismicity).Redcurve�IRSN–MPHEDSHA.Bluecurves�PSHART=1000yrintegratingfromaminimummagnitudeof4.0(lightblue)and5.0(darkblue).SeismicsourcemodelextractedfromtheEurocode��modelusedforconventionalbuildings.Theminimalregulatoryspectralshapeanchoredat0.1gisalsoshownforreference.

Site-specific SHA for French nuclear sites Boll. Geof. Teor. Appl., 55, 135-148

145

andIV(60%of theFrenchnuclearpark).Asite-specificanalysis includingall theconstraintsimposedbytheRFS2001-01(2001)(minimalspectralresponse,paleoseismicspectralresponseand site-effects) will be necessary for a complete DSHA/PSHA comparison, including site-specificPSHAissuesdevelopedhereafter.

8. PSHA – Some of the debated issues

Thepurposehere isnotsomuchtoprovideanexhaustive listofdebatedissues thataffectPSHAcalculationsbut toremindthereader thatPSHAisalsoaffectedbyuncertainties in thebasicdata,inthemodelsandinthechosencomputationaloptions.

ThePSHAcommunityhasdedicatedalotofeffortrecentlytoaccountforthevariabilityinGMPEs.However,theprimarysourceofuncertaintyencounteredthusfarinFrancestemsfromthe lackofarobusthomogeneousearthquakemagnitude in theearthquakecatalogues(>50%uncertaintyinthecomputedactivityrates).ForthetimebeingMSiscomputedfromML LDG(MLasdefinedbytheLaboratoryforDetectionandGeophysicsoftheAtomicEnergyCommission)assumingequality[asimposedbytheRFS2001-01(2001)].ThustheMSoftheBerge-Thierryet al.(2003)GMPEhasbeenconsideredequaltoML LDG.Thisequalityissourceofdebateinthescientificcommunity.Thecomputationofearthquakeactivityratesdependscompletelyonthereferencemagnitudeusedandthusconditionstheprobabilisticcalculations.

Similarly toDSHA, an importantparameter that controls the levelofhazard in thePSHAresults presented here is the assumed depth of seismic sources [Berge-Thierry et al. (2003),GMPEisbasedonhypocentraldepth].

Moreover, as illustrated in Fig. 6, the sensitivity of PSHA to the lower bound magnitudeis yet another debated issue.According toAbrahamson (2006), for example, this sensitivitycouldbeavoidedbyapplyingasmoothtransitionfromnotpotentiallydamagingtopotentially

Fig.7-Comparisonoftheincrementalseismichazardimposedbythedeterministicregulation(MHPE +0.5)/MHPE and the ratio of themedianPSHART=1000yrtomedianPSHART=10000yrfor the three groups of nuclear sites classedaccordingtotheEurocode��seismiczonationscheme.

146

Boll. Geof. Teor. Appl., 55, 135-148 Scotti et al.

damaging earthquakes by setting the potentially damaging earthquakes in terms of someadditionalgroundmotionparameter.

Last but not least, a major source of debate in France is the extent to which expertuncertainty should be explored in a site-specific PSHA for nuclear installations. Indeed,experiencehasshownthat,inspiteofawiderexplorationofuncertaintycomparedtotheFrenchdeterministic methodology, two PSHA studies can produce radically different results due totheway inwhichexperts are elicitedand theiropinions aggregated.SSHAC (SeniorSeismicHazardAssessmentCommittee)guidelinesproposedback in1997and thenrevisited in2012,clearlyaddressthisquestion[interestedreadersshouldrefertoKammererandAke,(2012)foradetaileddiscussion].TheSSHACguidelinesareconcernedwithhowtocapture,quantify,andcommunicateboththeimplicitandexplicituncertaintiesexpressedbymultipleexperts.Afewexamplesofsuchstudieswheresuchprocedureshavebeenappliedare�thePEGASOSandthePEGASOSRefinementProject,whichhavebeenunderway since2002 to assess the seismicriskofSwissNPPs.ThisstudyisanexampleofaSSHAClevel4PSHAstudy(Abrahamsonet al., 2002; NAGRA, 2004).The CEUS-SSC Project, which was launched in 200�� for adurationof3yearsandjointlysponsoredbyNRC,EPRI,andDOE(EPRI,200��),isanexampleofSSHAC Level 3 study.Theobjectiveof this studywas todevelop a stable and long-livedseismicsourcecharacterization(SSC)modelfortheCentralandEasternUnitedStates(CEUS);theongoingEPRI-EUSgroundmotionsprojectisalsoaSSHAClevel3study.

Althoughthesearetimeconsumingandexpensiveprojects,itishopedthattheuncertaintiesof the resulting estimates for the annual frequencies of exceedance of earthquake-causedground motions will reflect the state of knowledge of the scientific community at large.TheimplementationofcomparablemethodologiesintheFrenchpracticewouldprovideabeneficialframeworkforthescientificcommunityandthepractitionerstocontributetogethertothemuchdebatedissueofseismichazardassessmentforNPPs.

9. Discussion and conclusion

DSHAandPSHAmethodologieshavearoleinseismichazardandriskanalysesperformedfordecision-makingpurposes (McGuire,2001).ThusstrengthsandweaknessesofDSHAandPSHAmethodsneed tobeopenlydiscussedandcompared, inparticular in regionsof low tomoderateseismicitywherethedataisoftenlackingandhypothesisarenoteasilyjustifiableonscientificgroundsalone.

TheDSHAmethodology, as it is appliedby IRSN today, provides a formalism to addresstheuncertaintyissue.ThismethodologyreliesontheRFS-2001-01(2001).However, theRFS2001-01 (2001) imposes theuseof a specificGMPEandconsideronly themedianpredictedvalue of this GMPE. Moreover, in the DSHA methodology the “rare” damaging historicalearthquakes thathaveoccurred in thepastareconsidered irrespectivelyof theirprobabilityofoccurrence.Giventheshortlengthoftheearthquakecataloguecomparedtotheseismiccycle,relyingstronglyon(seespecialcases,asdiscussedintheFrenchNuclearSafetyRulesection)onthoseearthquakesthathappentohaveoccurredbychanceinthelastfewhundredyearsmaybedebatable.

InthePSHAmethodologyawiderrangeofhypothesisisexploredthroughacomplementary

Site-specific SHA for French nuclear sites Boll. Geof. Teor. Appl., 55, 135-148

147

approachthataccountsfortheprobabilityofoccurrenceofeachearthquakescenario,includingscenariosthathavemagnitudesgreaterthanthehistoricallyknownearthquakes.AsforDSHA,the available history of seismicity, however, is often too short to be able to construct robustearthquakeoccurrencemodelsandthereforedifferenthypothesisneedtobeformulated.PSHAexplicitly accounts for the aleatory variability of ground motion. It is the key parameter thatleads tohighPSHAseismic levels at longer returnperiods (>10,000years).However,whenfacedwithlowseismicityregions, inthePSHAmethodology,“rare”butstronganddamaginghistorical events are attributed a low probability of occurrence and hardly contribute to theseismichazardofagivensitewhenatargetreturnperiodof10,000yearsisconsidered.

ShouldthetargetreturnperiodofPSHAbeadaptedtotheseismicactivityrateofeachregioninordertoensureprotectionagainstseverelow-probabilityearthquakes?Shouldprecautionaryprinciplesbeinvokedand“rare”eventsbeconsideredaskeydeterministicelementsofasite-specificseismichazardanalysis(especiallyfornuclearinstallations)?ShouldPSHAbefavoredwhenitexceedsDSHA?Thatisforthenuclearsafetyauthoritytodecide.Certainlytherecent“rare”butdamagingearthquakesthathaveoccurredinlowseismicityzones(Christchurch,NewZealand,2010;Virginia,USA,2011;EmiliaRomagna,Italy,2012)providefoodforthought.

Irrespectivelyoftheapproach(orcombinationofapproaches)used,expertdrivendiscussionswillbeinevitablewhenitcomestoseismichazardassessment.Oneapproach,asrecommendedbytheSSHACguidelines is to involvethescientificcommunityin thedebate.IRSNbelievesthatanevolutioninpracticewherebothdeterministicandprobabilisticuncertainty-basedsite-specificseismichazardstudiesareconductedand thewiderscientificcommunity is involved,may lead tomorerobustevaluationsofseismicriskatnuclear installationsites inFranceandinotherregionsoflowtomoderateseismicity.Suchevolutionmayhelpensuringthatpoliticaldecisionsconcerningengineeringsolutions(beit fordesignorforverification)are takenwiththebestknowledgeofquantifieduncertaintyinseismichazardassessmentinmind.

Acknowledgements. TheauthorswouldliketothankJulioGarciaandananonymousreviewerfor theirstimulatingcommentsandreviewsthathelpedimprovethepaper.

REFERENCES

Abrahamson N.A.; 2006� Seismic hazard assessment: problems with current prectice and future developments. In�Proc.1stEur.Conf.EarthquakeEng.andSeismology,Geneva,Switzerland,CD-Rom,KeynoteK2.

Abrahamson N.A., Birkhauser P., Koller M., Mayer-Rosa D. Smit P., Sprecher C.,Tinic S. and Graf R.; 2002�PEGASOS – A comprehensive probabilistic seismic hazard assessment for nuclear power plants in Switzerland.In�Proc.12thEur.Conf.EarthquakeEng.,London,U.K.,Paper633.

ASN;2003�Courrier ASN à EDF - Réexamens de sûreté des centrales nucléaires VD2 1300 MWe et VD3 900 MWe. Détermination des mouvements sismiques à prendre en compte pour la sûreté des installations nucléaires, enapplicationdelaRFS2001-01.

BaizeS.,CushingE.M.,LamailleF.andJomardH.;2012�Updated seismotectonic zoning scheme of Metropolitan France, with reference to geologic and seismotectonic data. Bull.Soc.Géol.France,184,223-232.

BaumontD.andScottiO.;200��a��Accounting for data and modelling uncertainties in intensity-magnitude attenuation models: example for metropolitan France and neighbouring countries. In� Seismic Risk 200��, Earthquakes inNorth-WesternEurope,Liège,Belgium,abstract..

148

Boll. Geof. Teor. Appl., 55, 135-148 Scotti et al.

BaumontD.andScottiO.;200��b�Confidence levels in deterministic seismic hazard estimations.In�Proc.14thWorldConf.EarthquakeEng.,Bejing,China,extendedabstract,<http�//www.iitk.aci.in/nicee/wcee/article/14-17-00��5.pdf>.

Berge-ThierryC.,CottonF.,ScottiO.,Griot-PommeraD.andFukushimaY.;2003�New empirical response spectral attenuation laws for moderate European earthquakes.J.EarthquakeEng.,7,193-222.

Clément C., Bonilla L.F., Scotti O. and Baize S.; 2004a� Site-specific probabilistic seismic hazard study for the Tricastin nuclear power plant, France.In�Proc.XXXIXGeneralAssemblyESC,Potsdam,Germany,pp.1��6.

ClémentC.,ScottiO.,BonillaL.F.,BaizeS. and BeauvalC.;2004b�Zoning versus faulting models in PSHA for moderate seismicity regions: preliminary results for the Tricastin nuclear site, France.Boll.Geof.Teor.Appl.,45,pp.1��7-204.

EDF;2010�<http�//www.asn.fr/index.php/S-informer/Actualites/2011/Evaluations-complementaires-de-surete-ECS>.EPRI;200���Project Plan: central and eastern United States seismic source characterization for nuclear facilities.

PaloAlto,CA,USA,TechnicalUpdate1016756.CEN(ComitéEuropéendeNormalisation);2002�Eurocode 8: design of structures for earthquake resistance. Part 1:

general rules, seismic actions and rules for buildings.DraftNo5,DocCEN/T250/SC��/N317,CEN,Brussels,100pp.

GEOTER;2002�Révision du zonage sismique de la France étude probabiliste.MinistèreAménagementTerritoireetEnvironnement,France,RapportGTR/MATE/0701-150.

KammererA.M.andAke J.P.;2012�Practical implementation guidelines for SSHAC level 3 and 4 hazard studies (NUREG-2117, Revision1).<http�//www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr2117/)>.

McGuire R.K.; 2001� Deterministic vs. probabilistic hazards and risks. Soil Dyn. Earthquake Eng., 21, 377-3��4,doi�10.1016/S0267-7261(01)00019-7.

NAGRA; 2004� Probabilistic seismic hazard analysis for Swiss nuclear power plant sites (PEGASOS project).NationaleGenossenschaftfürdieLagerungradioaktiverAbfälle,Wettingen,35��pp.

RFS2001-01;2001�Règle fondamentale de sûreté n°2001-01 relatives aux installations nucléaires de base. <http�//www.asn.fr/index.php/Les-actions-de-l-ASN/La-reglementation/Reglementation-associee/Regles-fondamentales-de-surete-et-guides-de-l-ASN/RFS-2001-01>.

TerrierM.,BlèsJ.L.,GodefroyP.,DominiqueP.,BourM.andMartinC.;2000�Zonation of metropolitan France for the application of earthquake-resistant building regulations to critical facilities, Part 1: seismotectonic zonation.J.Seismology,4,215-230.

Corresponding author: Oona Scotti Institute for Radiological Protection and Nuclear Safety, France Avenue de la Division Leclerc 31, 92860 Fontenay-aux-Roses, France Phone: +33 1 58358647; fax: + 33 1 58358130; e-mail: [email protected]