Sediment Load from Major Rivers into Puget Sound and its ... · sediment-transport pathways ......

4
Figure 1. Benefits and threats of river sediment to ecosystems and society. Drainage Basins Deltas and Marshes Source of contaminants Enables marsh accretion, buffers sea-level rise Excessive sediment buries habitat Lack of sediment, inundation because of sea-level rise Beaches Forms beaches Lack of sediment leads to erosion Mountains Source of sediment Extreme events deliver too much sediment Provides nutrients and soil Source of sediment Forms berms (barriers) to floods Buries vegetation Offshore/Marine Excessive sediment buries habitat, fragments ecosystems Creates turbid water, loss of light for aquatic vegetation Rivers Flood Plains Creates spawning habitat Provides nutrients to benthic habitats Changes in sediment size affect spawning habitat Channel deposition increases flood risk Benefit Threat EXPLANATION U.S. Department of the Interior U.S. Geological Survey Fact Sheet 2011–3083 August 2011 Sediment Load from Major Rivers into Puget Sound and its Adjacent Waters Jonathan A. Czuba, Christopher S. Magirl, Christiana R. Czuba, Eric E. Grossman, Christopher A. Curran, Andrew S. Gendaszek, and Richard S. Dinicola Printed on recycled paper Highlights Each year, an estimated load of 6.5 million tons of sedi- ment is transported by rivers to Puget Sound and its adjacent waters—enough to cover a football field to the height of six Space Needles. This estimated load is highly uncertain because sediment studies and available sediment-load data are sparse and historically limited to specific rivers, short time frames, and a narrow range of hydrologic conditions. The largest sediment loads are carried by rivers with glaci- ated volcanoes in their headwaters. Research suggests 70 percent of the sediment load delivered to Puget Sound is from rivers and 30 percent is from shoreline erosion, but the magnitude of specific contributions is highly uncertain. Most of a river’s sediment load occurs during floods. Why is River Sediment Important to Puget Sound? Rivers carry freshwater into Puget Sound as well as sediment and other materials, such as wood, important to estuarine and nearshore habitat, aquatic ecology, and water quality. Historical channelization of rivers and deltas has altered sediment-transport pathways by restricting sediment delivery to flood plains and redirecting sediment offshore. Paradoxically, sediment is both a benefit and a threat to ecosystems and society (fig. 1). Sufficient, but not excessive, amounts of sediment are important resources for beaches, deltas, and other coastal habitats that sustain ecosystems, vegetation, and animals that people depend on. Excessive amounts of sediment can place stress on a variety of species and habitats. For example, eelgrass meadows, which provide important nearshore marine habitat for fish, shellfish, and invertebrates, as well as food for waterfowl and detritus feeders, can be buried or fragmented by increased sediment delivery associated with river-delta channelization, like those offshore of the Skagit River (Grossman and others, 2011). In contrast, when sediment delivery is depleted, nearshore critical habitat and beaches can be eroded by natural coastal processes and lost (Warrick and others, 2009). Changes in sediment grain-size composition also affect ecosystems. For example, many shellfish beds and forage-fish spawning beaches depend on a specific sediment grain-size composition that is linked to land-use activities and hydrologic conditions that release and carry sediment to Puget Sound (Gelfenbaum and others, 2009). Water quality, nearshore and offshore habitats, and aquatic-ecosystem health are affected by contaminants and nutrients that preferentially adsorb to fine sediments and are delivered to Puget Sound. Once present, these contaminants can bioaccumulate in fish and shellfish making these seafoods toxic for human consumption.

Transcript of Sediment Load from Major Rivers into Puget Sound and its ... · sediment-transport pathways ......

Figure 1. Benefits and threats of river sediment to ecosystems and society.

Drainage Basins

Deltas and Marshes

Source of contaminants

Enables marsh accretion, buffers sea-level riseExcessive sediment buries habitatLack of sediment, inundation because of sea-level rise

BeachesForms beachesLack of sediment leads to erosion

MountainsSource of sedimentExtreme events deliver too much sediment

Provides nutrients and soil

Source of sediment

Forms berms (barriers) to floods

Buries vegetation

Offshore/Marine

Excessive sediment buries habitat, fragments ecosystemsCreates turbid water, loss of light for aquatic vegetation

Rivers

Flood Plains

Creates spawning habitat

Provides nutrients to benthic habitats

Changes in sediment size affect spawning habitat

Channel deposition increases flood risk

BenefitThreat

EXPLANATION

U.S. Department of the InteriorU.S. Geological Survey

Fact Sheet 2011–3083August 2011

Sediment Load from Major Rivers into Puget Sound and its Adjacent WatersJonathan A. Czuba, Christopher S. Magirl, Christiana R. Czuba, Eric E. Grossman, Christopher A. Curran, Andrew S. Gendaszek, and Richard S. Dinicola

Printed on recycled paper

Highlights

• Eachyear,anestimatedloadof6.5milliontonsofsedi-mentistransportedbyriverstoPugetSoundanditsadjacentwaters—enoughtocoverafootballfieldtotheheightofsixSpaceNeedles.

• Thisestimatedloadishighlyuncertainbecausesedimentstudiesandavailablesediment-loaddataaresparseandhistoricallylimitedtospecificrivers,shorttimeframes,andanarrowrangeofhydrologicconditions.

• Thelargestsedimentloadsarecarriedbyriverswithglaci-atedvolcanoesintheirheadwaters.

• Researchsuggests70percentofthesedimentloaddeliveredtoPugetSoundisfromriversand30percentisfromshorelineerosion,butthemagnitudeofspecificcontributionsishighlyuncertain.

• Mostofariver’ssedimentloadoccursduringfloods.

Why is River Sediment Important to Puget Sound?

RiverscarryfreshwaterintoPugetSoundaswellassedimentandothermaterials,suchaswood,importanttoestuarineandnearshorehabitat,aquaticecology,andwaterquality.Historicalchannelizationofriversanddeltashasalteredsediment-transportpathwaysbyrestrictingsedimentdeliverytofloodplainsandredirectingsedimentoffshore.Paradoxically,sedimentisbothabenefitandathreattoecosystemsandsociety(fig. 1).Sufficient,butnotexcessive,amountsofsedimentareimportantresourcesforbeaches,deltas,andothercoastalhabitatsthatsustainecosystems,vegetation,andanimalsthatpeopledependon.Excessiveamountsofsedimentcanplacestressonavarietyofspeciesandhabitats.Forexample,eelgrassmeadows,whichprovideimportant

nearshoremarinehabitatforfish,shellfish,andinvertebrates,aswellasfoodforwaterfowlanddetritusfeeders,canbeburiedorfragmentedbyincreasedsedimentdeliveryassociatedwithriver-deltachannelization,likethoseoffshoreoftheSkagitRiver(Grossmanandothers,2011).Incontrast,whensedimentdeliveryisdepleted,nearshorecriticalhabitatandbeachescanbeerodedbynaturalcoastalprocessesandlost(Warrickandothers,2009).Changesinsedimentgrain-sizecompositionalsoaffectecosystems.Forexample,manyshellfishbedsandforage-fishspawningbeachesdependonaspecificsedimentgrain-sizecompositionthatislinkedtoland-useactivitiesandhydrologicconditionsthatreleaseandcarrysedimenttoPugetSound(Gelfenbaumandothers,2009).Waterquality,nearshoreandoffshorehabitats,andaquatic-ecosystemhealthareaffectedbycontaminantsandnutrientsthatpreferentiallyadsorbtofinesedimentsandaredeliveredtoPugetSound.Oncepresent,thesecontaminantscanbioaccumulateinfishandshellfishmakingtheseseafoodstoxicforhumanconsumption.

What is Sediment Load?

Ariver’ssedimentloadiscomputedfromwaterdischargeandsediment-concentrationdata,andrepresentsthefluxofsedimenttransportedbytheriver;itisusuallyexpressedasmasspertime,forexample,tonsperyear(tons/yr).Mostofariver’ssedimentloadoccursduringfloods.Sedimentiseithertransportedwithintheflowassuspendedloadortransportedalongtheriverbedbyrolling,sliding,orsaltating(hopping)asbedload.Asuspended-sedimentsampler,consistingofanozzleconnectedtoacontainerthatsamplesaflowingriver,isusedtomeasuretheconcentrationofsedimentinthewatercolumn.Similarly,abedloadsamplerplacedonthebottomofaflowingrivercollectsthecoarse-grainedsedimentmovingalongtheriverbed.Thesumofthemeasuredsuspendedloadandbedloadisthetotalload.Typically,bedloadrepresentsabout5–20percentofthetotalloadcarriedbyariver.MostreportedsedimentloadsforPugetSoundriversonlyincludethesuspendedloadandthusreflectaminimumestimateofthetotalsedimentload.

Figure 2. Mean annual discharge of major rivers draining into Puget Sound. The size of the arrow is scaled to the mean annual discharge. Data from Williams (1981).

124° 123° 122° 121°

49°

48°

47°

0 25 50 75 MILES

0 25 50 75 KILOMETERS

Strait of Georgia

Seattle

Tacoma

Bremerton

Olympia

Everett

Mt Vernon

Bellingham

Puget Sound

Mt. Baker

Glacier Peak

Mt. Rainier

Olympic Mountains

Casc

ade

Rang

e

Puget Lowland

British Columbia CANADA

Washington UNITED STATES

Strait of Georgia

Seattle

Tacoma

Bremerton

Olympia

Everett

Mt Vernon

Bellingham

British Columbia CANADA

Washington UNITED STATES

Puget Sound

Mt. Baker

Glacier Peak

Mt. Rainier

Olympic Mountains

Casc

ade

Rang

e

Puget Lowland

Salish Sea

PacificOcean

Strait of Juan de Fuca

DungenessRiver

ElwhaRiver

Hamma Hamma RiverDuckabush River

Dosewallips River

Big Quilcene River

Deschutes River

Nooksa

ck Rive

r

Nooksa

ck Rive

r

Samish RiverSamish River

Skagit RiverSkagit River

Stillaguamish RiverStillaguamish River

Snohomish RiverSnohomish River

Lake WashingtonShip CanalLake WashingtonShip Canal

Duwamish River

Duwamish RiverPuyallup River

Puyallup RiverNisqually River

Nisqually River

Deschutes River

All other

tribu

taries

All other

tribu

taries

Skokomish RiverSkokomish River

Hamma Hamma RiverDuckabush River

Dosewallips River

Big Quilcene River

DungenessRiver

ElwhaRiver

Fraser River

3,200

3,600

190

2,700

1,400

400 2,100

570670

180

4602,000

500

1,3001,400

3,130

3,200

18,000

10,000

3,600

190

2,700

1,400

400 2,100

570670

180

4602,000

500

1,3001,400

3,100

EXPLANATIONDrainage-basin boundary

Subbasin boundary

Mean annual discharge, in cubic feet per second

190

Factors Affecting Sediment Delivery to Puget SoundAnumberofgeologicandgeomorphicfactorsaffect

sedimentsupplytoPugetSound.Watershedgeology,slope,landuse,precipitation,mountainupliftrates,volcanism,glaciers,lahars,andweatheringallaffectthesedimentloadcarriedbytheregion’srivers.Riversdrainingglaciatedterrainarenotoriouslyladenwithlargeamountsofsediment.Landuse,includingagricultural,forested,andurbanareas,affectsthesedimentload,aswellasnutrientsandtoxics,carriedbyrivers.DamswithinabasinstoresedimentthatultimatelyreducessedimentdeliverytoPugetSoundanditsadjacentwaters.However,removaloflargedams,likeintheplannedElwhaRiverdam-removalprojectbeginningin2011,canresultinlarge,short-termreleasesofsedimentdownstreamandanewlyadjustedannualsedimentloadinthelongterm.

Climatechangeandshiftinglandusethreatentoaltersedimentloadsinrivers.Anincreasedsedimentloadmaybeimportantinmaintainingestuarineandnearshorehabitatsassealevelrisesinresponsetoclimatechangebyenablingmarshesandcoastlinestoaccumulatesedimentandbuildtopography.ClimatepatternshiftsalsowillalterthetimingandmagnitudeoffloodsthatcarrysedimenttoPugetSound.

Sediment Transported by Rivers into Puget SoundEachyear,about12trilliongallons(totalmeanannual

dischargeofabout52,000cubicfeetpersecond[ft3/s])offreshwaterflowintoPugetSoundanditsadjacentwatersfromtheregion’sriversandstreams(fig. 2,table 1).Theserivers,

inturn,carryanestimated6.5milliontons(1ton=2,000pounds)ofsedimentintoPugetSoundanditsadjacentwaters(fig. 3,table 1).Thissedimentisderivedfromtheweatheringanderosionofbedrockandsoilinbasinswhererunofffromrainandsnowcarriesparticlesintomain-stemriversthattransportthematerialdownstreamtoPugetSound.Thequantityandsizeofsedimentmovedbyriversdependsondischargeandriverslope,andalthoughevensmallstreamscarrysiltsandclays,onlythesteepestriverstransportgravels,cobbles,andboulders.Mountainousriversreadilytransportgravelsandcobbles,anddepositthissedimentdirectlyintoPugetSoundwheretheseriversdraindirectlyintotheSound,suchastheElwhaandDungenessRivers.AsmountainousriversenterPugetLowland,thecoarseparticles(gravel,cobbles,andboulders)tendtodepositonriverbeds,suchasinthePuyallupRiver.Thiscoarse-sedimentdepositionreducestheriver’scapacitytoconveyafloodwithoutovertoppingitsbanksandincreasesthefloodhazard,necessitatingrivermanagementtoreducefloodrisktonearbypeopleandinfrastructure(Czubaandothers,2010).Fineparticles(clay,silt,andsand),however,continuetobecarrieddownstream,outofthePugetLowland,andintoPugetSound.SedimentdeliveredintoPugetSoundisredistributedbycomplexinteractionsoftidalandwind-drivencurrentsthroughoutthebaysandinlets.

Available Sediment-Load StudiesOnlyahandfulofwater-qualityandsediment-transport

studieshavebeenconductedtoquantifysedimentloadingfromriversintoPugetSound,andthemajorityofthesestudieswerelimitedtospecificriversusingsedimentdatacollectedduringonlyafewyearsinthe1960sand1970s(table 1).Insomecases,thesediment-loadestimateswerebasedonlimitedmeasurementsaddingsignificantuncertaintybecausesedimentloadinariverisvariable,changingbyasmuchasanorderofmagnitudebetweenyearsorbetweenstorms(forexample,Nelson,1979).Inaddition,themeasurementsmaynothave

Modern Sediment-Surrogate Monitoring Technologies

Recentadvancesinhydroacousticandopticaltechnologieshavefosteredrenewedinterestinmonitoringandtrackingsedimentloadsinrivers(GrayandGartner,2009).Couplingthesetechnologieswithstrategicsedimentsamplingenablesthenear-continuousmeasurementandreportingofsedimentloadinriversatafractionofthecostoftraditionalsediment-measurementtechniquesappliedduringthe20thcentury.Inadditiontoreportingthesedimentloadinagivenriver,theseinstrumentsalsohavethecapabilitytoestimateparticle-sizedistributionofsedimentdeliveredbyrivers.

Figure 3. Annual sediment load of major rivers draining into Puget Sound measured at or near the river mouth. The size of the arrow is scaled to the annual sediment load. Data sources listed in table 1.

124° 121°

49°

47°

0 25 50 75 MILES

0 25 50 75 KILOMETERS

Strait of Georgia

Seattle

Tacoma

Bremerton

Olympia

Everett

Mt Vernon

Bellingham

Puget Sound

Mt. Baker

Glacier Peak

Mt. Rainier

Olympic Mountains

Casc

ade

Rang

e

Puget Lowland

British Columbia CANADA

Washington UNITED STATES

Strait of Georgia

Seattle

Tacoma

Bremerton

Olympia

Everett

Mt Vernon

Bellingham

British Columbia CANADA

Washington UNITED STATES

Puget Sound

Mt. Baker

Glacier Peak

Mt. Rainier

Olympic Mountains

Casc

ade

Rang

e

Puget Lowland

Salish Sea

PacificOcean

Strait of Juan de Fuca

DungenessRiver

ElwhaRiver

Hamma Hamma RiverDuckabush River

Dosewallips River

Big Quilcene River

Deschutes River

Nooksa

ck Rive

r

Nooksa

ck Rive

r

Samish RiverSamish River

Skagit RiverSkagit River

Stillaguamish RiverStillaguamish River

Snohomish RiverSnohomish River

Lake WashingtonShip CanalLake WashingtonShip Canal

Duwamish River

Duwamish RiverPuyallup River

Puyallup River

Nisqually River

Nisqually River

Deschutes River

All other

tribu

taries

All other

tribu

taries

Skokomish RiverSkokomish River

Hamma Hamma RiverDuckabush River

Dosewallips River

Big Quilcene River

DungenessRiver

ElwhaRiver

Fraser River

??

1211

30

6

12035

1,400

2,800

1818

3.33.3

120

?? 980

490

??

35

410

1211

30

6

??

210210

EXPLANATIONDrainage-basin boundarySubbasin boundaryAnnual sediment load, in thousands of tonsPublished load estimates could not be found or do not exist

3.3

123° 122°

48°

?

includedanaccuraterepresentationoffloodswhenthegreatestsedimentconcentrationsoccur,whichwouldleadtounderestimatesoftheannualsedimentload.Thesediment-loadestimates(table 1)wereobtainedfromreadilyavailablestudiesbyfederalandstateagencies,consultants,andacademicresearchers.Onlythosestudieswheretotal-orsuspended-loadestimatesweredeterminednearthemouthoftherespectiveriverasitenteredPugetSoundwereincludedintable 1andfigure 3.Thesesediment-loadestimateswereconvertedintotonsperyearasnecessaryandwereaveragedtogetherwhenmultiplestudiesprovideddifferentestimates.Themostreliablesediment-loadestimatesincludedsedimentdataspanningmanyyears(forexample,theloadestimatesfromtheSkagitandDeschutesRivers;table 1).TheDeschutesRiversediment-loadestimateisuniquebecauseitisbasedonrepeatsurveysofthedeltavolumeinadditiontodirectmeasurementsofsedimentloadintheriver.Allothersediment-loadestimatesfromriversdrainingtoPugetSoundwereofsuspendedloadonlyanddonotaccountforbedload.Theestimatesbasedondatacollectedforafewyearsmayormaynotrepresenttheriver’slong-termaveragesedimentload.

Sediment-Load Estimates for Puget Sound Rivers

Thelargestsedimentloadsarenotnecessarilythosecarriedbytherivershavingthelargestmeanannualdischarge.Instead,thethreeriverscarryingthelargestsedimentloads,theSkagit,Nooksack,andPuyallupRivers,allcontainglaciatedvolcanoesintheirheadwaters(fig. 3).TheSkagitRiverdrainsbothMountBakerandGlacierPeak,althoughmuchofthesedimentloadderivedfromMountBakerisretainedinmanmadereservoirs.TheNooksackRiverdrainsthenorthernsectionsofMountBakerandthePuyallupRiverdrainsthenorthernandwesternsectionsofMountRainier.

TheothermajorsourceofsedimenttoPugetSoundisfromshorelineerosion,whichcontributessedimentofallgrainsizes,includingclay,silt,sand,gravel,cobbles,andboulders,toareasawayfromriverdeltas.Dexterandothers(1981)estimatedshorelineerosioncontributesabout2.6milliontonsofsedimentperyeartoPugetSound;however,theuncertaintyinthisestimateislarge.Thecombinedsedimentloadfromriversandshorelineerosionisabout9.1milliontonsperyear,about70percentisfromriversand30percentisfromshorelineerosion.

WhilenotdrainingdirectlyintoPugetSound,theFraserRiverinBritishColumbiadrainsintotheStraitofGeorgiaandisaprodigiouscontributoroffreshwaterandsedimentintothegreaterSalishSea(table 1).TheFraserRivercarriesatotalloadofabout20milliontonsofsedimentperyearintotheStraitofGeorgia(ChurchandKrishnappan,1998).

Opportunities for Monitoring and Basic ResearchThesediment-loadestimatesforriversdrainingtoPuget

Soundmaybeinaccuratebyanorderofmagnitude(table 1)

becauseofthesparseavailabilityofreliablesedimentdataandthevariablenatureofsedimenttransport.Theproblemisfurtherexacerbatedbytheout-of-datestatusofmanydatasetsassignificantchangesinlanduse,urbanization,andclimateinthe21stcenturylikelyhavemodifiedsedimentsourcesandtransportsincethe1970s,whenmostoftheregion’ssedimentdatawerecollected.Recentstrategicsamplingofsedimentduringtheentirerangeoflow-andhigh-flowconditions,aswellasdifferentseasons,hasgreatlyimprovedtheabilitytoquantifyandreduceuncertaintyofsediment-deliveryestimatesbytheSkagitRiver(Curranandothers,2011).Giventheimportantaffectofsediment,asabenefitandathreat,toPugetSoundecosystems,detailedmonitoringandanalyticalunderstandingofsedimentload,size,quality,andmovementareneededtobestunderstand,protect,andrestoreimportantecosystemprocessesandfunctionsinPugetSound.

For more information contact:

Director, Washington Water Science CenterU.S. Geological Survey, 934 Broadway, Suite 300Tacoma, Washington 98402http://wa.water.usgs.gov

References Cited

CapitolLakeAdaptiveManagementPlan1999to2001,1999:ThurstonRegionalPlanningCouncil,103p.

Church,M.,andKrishnappan,B.G.,1998,Sedimentsources,transportprocesses,andmodelingapproachesfortheFraserRiverinC.GrayandT.Tuominen,eds.,HealthoftheFraserRiverAquaticEcosystem:EnvironmentCanada,DOEFRAP1998–11,18p.

Curran,C.A.,Grossman,E.E.,Mastin,M.C.,andHuffman,R.L.,(inpress),SedimentloadanddistributioninthelowerSkagitRiver,SkagitCounty,Washington,USA.ForsubmissiontoContinentalShelfResearch.

Czuba,J.A.,Czuba,C.R.,Magirl,C.S.,andVoss,F.D.,2010,Channel-conveyancecapacity,channelchange,andsedimenttransportinthelowerPuyallup,White,andCarbonRivers,westernWashington:U.S.GeologicalSurveyScientificInvestigationsReport2010–5240,104p.

Dexter,R.N.,Anderson,D.E.,Quinlan,E.A.,Goldstein,L.S.,Strickland,R.M.,Pavlou,S.P.,Clayton,J.R.,Kocan,R.M.,andLandolt,M.,1981,AsummaryofknowledgeofPugetSoundrelatedtochemicalcontaminants:NationalOceanicandAtmosphericAdministrationTechnicalMemorandumOMPA-13,435p.

Downing,J.,1983,ThecoastofPugetSound:itsprocessesanddevelopment.UniversityofWashingtonPress,Seattle,Wash.,126p.

Embrey,S.S.,andFrans,L.M.,2003,Surface-waterqualityoftheSkokomish,Nooksack,andGreen-DuwamishRiversandThorntonCreek,PugetSoundbasin,Washington,1995–98:U.S.GeologicalSurveyWater-ResourcesInvestigationsReport02–4190,192p.

Gelfenbaum,G.,Fuentes,T.L.,Duda,J.J.,Grossman,E.E.,andTakesue,R.K.,eds.,2009,ExtendedabstractsfromtheCoastalHabitatsinPugetSound(CHIPS)2006Workshop,PortTownsend,Washington,November14–16,2006:U.S.GeologicalSurveyOpen-FileReport2009–1218,136p.

Gray,J.R.,andGartner,J.W.,2009,Technologicaladvancesinsuspended-sedimentsurrogatemonitoring:WaterResourcesResearch,v.45,20p.

Grossman,E.E.,George,D.A.,andLam,A.,2011,ShallowstratigraphyoftheSkagitRiverDelta,Washington,USAderivedfromsedimentcores:U.S.GeologicalSurveyOpen-FileReport2011–1194.

Nelson,L.M.,1971,SedimenttransportbystreamsintheSnohomishRiverbasins,Washington:October1967–June1969:U.S.GeologicalSurveyOpen-FileReport71–215,96p.

Nelson,L.M.,1974,SedimenttransportbystreamsintheDeschutesandNisquallyRiverbasins,Washington:November1971–June1973:U.S.GeologicalSurveyOpen-FileReport74–1078,33p.

Nelson,L.M.,1979,SedimenttransportbytheWhiteRiverintoMudMountainReservoir,Washington,June1974–June1976:USGSWater-ResourcesInvestigationsReport78–133,26p.

Paulson,A.J.,Feely,R.A.,CurlJr.,H.C.,Crecelius,E.A.,andRomberg,G.P.,1988,SourcesandsinksofPb,Cu,Zn,andMninthemainbasinofPugetSound:NationalOceanicandAtmosphericAdministrationTechnicalMemorandumERLPMEL-77,26p.

Santos,J.F.,andStoner,J.D.,1972,Physical,chemical,andbiologicalaspectsoftheDuwamishRiverEstuaryKingCounty,Washington1963–67:U.S.GeologicalSurveyWater-SupplyPaper1873–C.,74p.

Warrick,J.A.,George,D.A.,Gelfenbaum,G.,Ruggiero,P.,Kaminsky,G.M.,andBeirne,M.,2009,Beachmorphologyandchangealongthemixedgrain-sizedeltaofthedammedElwhaRiver,Washington:Geomorphology,v.111,p.136–148.

Williams,J.R.,1981,Principalsurface-waterinflowtoPugetSound,Washington:U.S.GeologicalSurveyWater-ResourcesInvestigationsReport84–4090,6sheets.

Wise,D.R.,RinellaIII,F.A.,Rinella,J.F.,Fuhrer,G.J.,Embrey,S.S.,Clark,G.E.,Schwarz,G.E.,andSobieszczyk,S.,2007,Nutrientandsuspended-sedimenttransportandtrendsintheColumbiaRiverandPugetSoundbasins,1993–2003:U.S.GeologicalSurveyScientificInvestigationsReport2007–5186,117p.

Table 1. Puget Sound sediment-load data.

[MeanannualdischargedatafromWilliams(1981).mi2,squaremile;ft3/s,cubicfeetpersecond;tons/yr,tonsperyear;Annualsedimentload:n.e.,publishedloadestimatescouldnotbefoundordonotexist;--,nodata]

Basin (area mi2)

Mea

n an

nual

di

scha

rge

(ft3 /s

)

Ann

ual s

edi-

men

t loa

d (to

ns/y

r)

Tim

e pe

riod

w

hen

sed-

imen

t-lo

ad

data

wer

e co

llect

ed

Skagit(3,200)1 18,000 2,800,000 1974–93,2006–09

Snohomish(1,800)2,3,4 10,000 490,000 1964–66,1967–68,2000

Puyallup(980)2,4 3,600 980,000 1964–66,2000Nooksack(840)2,4,5 3,200 1,400,000 1964–66,

1996–98,2000Nisqually(770)2,6 2,100 120,000 1964–66,

1971–72Stillaguamish(700)2 2,700 18,000 1964–66LakeWashingtonShipCanal(600)7

1,400 3,300 1981–82

Duwamish(500)4,5,8 1,400 210,000 1964–66,1996–98,2000

Elwha(320) 2,000 n.e. --Skokomish(250)2,4,5 1,300 410,000 1964–66,

1996–98,2000Dungeness(200) 460 n.e.Deschutes(170)9 400 35,000 1952–98Samish(120) 190 n.e. --Dosewallips(120)2 670 30,000 1964–66HammaHamma(80)2 500 12,000 1964–66Duckabush(80)2,4 570 11,000 1964–66,2000BigQuilcene(70)2 180 6,000 1964–66Allothertributaries(2,300) 3,100 n.e. --TotalPugetSound(13,000) 52,000 6,500,000 --Fraser(85,000)10 130,000 20,000,000 1965–96

1Curranandothers,2011. 6Nelson,1974.2Downing,1983. 7Paulsonandothers,1988.3Nelson,1971. 8SantosandStoner,1972.4Wiseandothers,2007. 9CapitolLakeAdaptiveManagementPlan,1999.5EmbreyandFrans,2003. 10ChurchandKrishnappan,1998.