SECTION 8 Residue Theory (1) The Residue

34
1 (1) The Residue (2) Evaluating Integrals using the Residue (3) Formula for the Residue (4) The Residue Theorem Section 8 SECTION 8 Residue Theory

description

What is a Residue? Section 8 The residue of a function is the coefficient of the term in the Laurent series expansion (the coefficient b1). Examples:

Transcript of SECTION 8 Residue Theory (1) The Residue

Page 1: SECTION 8 Residue Theory (1) The Residue

1

(1) The Residue

(2) Evaluating Integrals using the Residue

(3) Formula for the Residue

(4) The Residue Theorem

Section 8

SECTION 8Residue Theory

Page 2: SECTION 8 Residue Theory (1) The Residue

2

Section 8What is a Residue?The residue of a function is the coefficient of the term

in the Laurent series expansion (the coefficient b1).0

1zz

221

21 842

11 zz

z01 b

842111

2332 2

22

zzzzzz

z 11 b

40

43

0

32

0

2

0

1

303

202010

)()()(

)()()()(

zzb

zzb

zzb

zzb

zzazzazzaazf

Examples:

Page 3: SECTION 8 Residue Theory (1) The Residue

3

Section 8What is a Residue?The residue of a function is the coefficient of the term

in the Laurent series expansion (the coefficient b1).0

1zz

221

21 842

11 zz

z01 b

842111

2332 2

22

zzzzzz

z 11 b

40

43

0

32

0

2

0

1

303

202010

)()()(

)()()()(

zzb

zzb

zzb

zzb

zzazzazzaazf

Examples:

Page 4: SECTION 8 Residue Theory (1) The Residue

4

Section 8What’s so great about the Residue?The formula for the coefficients of the Laurent series saysthat (for f (z) analytic inside the annulus)

40

43

0

32

0

2

0

1

303

202010

)()()(

)()()()(

zzb

zzb

zzb

zzb

zzazzazzaazf

C

nn

Cnn dzzzzf

jbdz

zzzf

ja 1

010

))((21,

)()(

21

So

12)( jbdzzfC

C0z

We can use it to evaluate integrals

Page 5: SECTION 8 Residue Theory (1) The Residue

5

Section 8What’s so great about the Residue?The formula for the coefficients of the Laurent series saysthat (for f (z) analytic inside the annulus)

40

43

0

32

0

2

0

1

303

202010

)()()(

)()()()(

zzb

zzb

zzb

zzb

zzazzazzaazf

C

nn

Cnn dzzzzf

jbdz

zzzf

ja 1

010

))((21,

)()(

21

So

12)( jbdzzfC

C0z

We can use it to evaluate integrals

Page 6: SECTION 8 Residue Theory (1) The Residue

6

Section 8Example (1)

jjbdzzC

221

11

Integrate the function counterclockwise about z 2z11

2z

zzzz

zzzz

z 111111

11

32

32

By Cauchy’s Integral Formula:

jfjdzz

zfjdzzzzf

CC

2)1(21

1)(2)(0

0

singularpointcentre

Page 7: SECTION 8 Residue Theory (1) The Residue

7

Section 8

2z

zzzz

zzzz

z 111111

11

32

32

singularpointcentre

Page 8: SECTION 8 Residue Theory (1) The Residue

8

Section 8Example (1)

jjbdzzC

221

11

Integrate the function counterclockwise about z 2z11

2z

zzzz

zzzz

z 111111

11

32

32

By Cauchy’s Integral Formula:

jfjdzz

zfjdzzzzf

CC

2)1(21

1)(2)(0

0

singularpointcentre

Page 9: SECTION 8 Residue Theory (1) The Residue

9

Section 8Example (1) cont.

jjbdzzC

221

11

We could just as well let the centre be at z1

2z

10

,1

11

1)(

zzz

zf

centre /singular

point

- a one-term Laurent series

- as before

Page 10: SECTION 8 Residue Theory (1) The Residue

10

Section 8Example (2)

jjbdzzz

z

C

2223

3212

Integrate the function counterclockwise about z 3/2

By Cauchy’s Integral Formula:

jfjdzz

dzz

zfjdzzzzf

CCC

2)1(21

12

1)(2)(0

0

2332

2 zz

z

2/3z

zzzzz

zzzzz

zzz

zzz

29532

21842

111

189

45

23

2332

432

2

2

2

2

0

Page 11: SECTION 8 Residue Theory (1) The Residue

11

Section 8Example (2)

jjbdzzz

z

C

2223

3212

Integrate the function counterclockwise about z 3/2

By Cauchy’s Integral Formula:

jfjdzz

dzz

zfjdzzzzf

CCC

2)1(21

12

1)(2)(0

0

2332

2 zz

z

2/3z

zzzzz

zzzzz

zzz

zzz

29532

21842

111

189

45

23

2332

432

2

2

2

2

0

Page 12: SECTION 8 Residue Theory (1) The Residue

12

Section 8

So the Residue allows us to evaluate integrals of analyticfunctions f (z) over closed curves C when f (z) has one singularpoint inside C.

12)( jbdzzfC

C0z

b1 is the residue of f (z) at z0

Page 13: SECTION 8 Residue Theory (1) The Residue

13

Section 8

That’s great - but every time we want to evaluate an integraldo we have to work out the whole series ?

No - in the case of poles - there’s a quick and easy wayto find the residue

We’ll do 3 things:

1. Formula for finding the residue for a simple pole

2. Formula for finding the residue for a pole of order 2

3. Formula for finding the residue for a pole of any order

1sin4z

z

7)3(2

jze z

e.g.

e.g.

2)1(33

zz

e.g.

Page 14: SECTION 8 Residue Theory (1) The Residue

14

Section 8Formula for finding the residue for a simple pole

If f (z) has a simple pole at z0, then the Laurent series is

Rzzzz

bzzaazf

00

1010 0)()(

12

01000 )()()()( bzzazzazfzz

10 )()(lim0

bzfzzzz

)()(lim)(Res 000

zfzzzfzzzz

we’re putting the centre atthe singular point here

Page 15: SECTION 8 Residue Theory (1) The Residue

15

Section 8Formula for finding the residue for a simple pole

If f (z) has a simple pole at z0, then the Laurent series is

Rzzzz

bzzaazf

00

1010 0)()(

12

01000 )()()()( bzzazzazfzz

10 )()(lim0

bzfzzzz

)()(lim)(Res 000

zfzzzfzzzz

we’re putting the centre atthe singular point here

Page 16: SECTION 8 Residue Theory (1) The Residue

16

Section 8Formula for finding the residue for a simple pole

If f (z) has a simple pole at z0, then the Laurent series is

Rzzzz

bzzaazf

00

1010 0)()(

12

01000 )()()()( bzzazzazfzz

10 )()(lim0

bzfzzzz

)()(lim)(Res 000

zfzzzfzzzz

we’re putting the centre atthe singular point here

Page 17: SECTION 8 Residue Theory (1) The Residue

17

Section 8Example (1)

Find the residue of at zj

4)()2(lim

)1)(()2)((lim

)()(lim)(Res

22

000

jjzjz

zjzjzjz

zfzzzf

iziz

zzzz

)1)((2)( 2

zjzjzzf

Check: the Laurent series is

2

3

3

2

2

222

222

)(21)(

165

411

4

)2()(4

)2()(3

2)(21

)2)(()(2

)2/()(11

)2)(()(2

)(21)(2

)(1)(2

)1)((2)(

jzjzjz

i

jjz

jjz

jjz

jjzjjz

jjzjjzjjz

jzjjzjjz

jzjzjjz

zjzjzzf

20 jz

Page 18: SECTION 8 Residue Theory (1) The Residue

18

Section 8Example (2)

Find the residue at the poles of

21

21lim

)2(1lim)(Res

000

z

zzzzzzf

zzz

zzzzf

21)( 2

Check: the Laurent series are

163

83

43

21

221

21

2/11

21

)2(1)(

2

2

2 zzz

zzz

zzz

zzzzzf

20 z

231lim

)2(1)2(lim)(Res

222

z

zzzzzzf

zzz

8)2(

4)2(

21

)2(23

2)2(

221

)2(23)2(

2/)2(11

)2(23)2(

)2(21

)2(3)2(

)2(1)(

2

2

2 zzz

zzz

z

zzz

zzz

zzzzf

220 z

Page 19: SECTION 8 Residue Theory (1) The Residue

19

Section 8Example (2)

Find the residue at the poles of

21

21lim

)2(1lim)(Res

000

z

zzzzzzf

zzz

zzzzf

21)( 2

Check: the Laurent series are

163

83

43

21

221

21

2/11

21

)2(1)(

2

2

2 zzz

zzz

zzz

zzzzzf

20 z

231lim

)2(1)2(lim)(Res

222

z

zzzzzzf

zzz

8)2(

4)2(

21

)2(23

2)2(

221

)2(23)2(

2/)2(11

)2(23)2(

)2(21

)2(3)2(

)2(1)(

2

2

2 zzz

zzz

z

zzz

zzz

zzzzf

220 z

Page 20: SECTION 8 Residue Theory (1) The Residue

20

Section 8Example (2)

Find the residue at the poles of

21

21lim

)2(1lim)(Res

000

z

zzzzzzf

zzz

zzzzf

21)( 2

Check: the Laurent series are

163

83

43

21

221

21

2/11

21

)2(1)(

2

2

2 zzz

zzz

zzz

zzzzzf

20 z

231lim

)2(1)2(lim)(Res

222

z

zzzzzzf

zzz

8)2(

4)2(

21

)2(23

2)2(

221

)2(23)2(

2/)2(11

)2(23)2(

)2(21

)2(3)2(

)2(1)(

2

2

2 zzz

zzz

z

zzz

zzz

zzzzf

220 z

Page 21: SECTION 8 Residue Theory (1) The Residue

21

Section 8Example (2)

Find the residue at the poles of

21

21lim

)2(1lim)(Res

000

z

zzzzzzf

zzz

zzzzf

21)( 2

Check: the Laurent series are

163

83

43

21

221

21

2/11

21

)2(1)(

2

2

2 zzz

zzz

zzz

zzzzzf

20 z

231lim

)2(1)2(lim)(Res

222

z

zzzzzzf

zzz

8)2(

4)2(

21

)2(23

2)2(

221

)2(23)2(

2/)2(11

)2(23)2(

)2(21

)2(3)2(

)2(1)(

2

2

2 zzz

zzz

z

zzz

zzz

zzzzf

220 z

Page 22: SECTION 8 Residue Theory (1) The Residue

22

Section 8Example (2)

Find the residue at the poles of

21

21lim

)2(1lim)(Res

000

z

zzzzzzf

zzz

zzzzf

21)( 2

Check: the Laurent series are

163

83

43

21

221

21

2/11

21

)2(1)(

2

2

2 zzz

zzz

zzz

zzzzzf

20 z

231lim

)2(1)2(lim)(Res

222

z

zzzzzzf

zzz

8)2(

4)2(

21

)2(23

2)2(

221

)2(23)2(

2/)2(11

)2(23)2(

)2(21

)2(3)2(

)2(1)(

2

2

2 zzz

zzz

z

zzz

zzz

zzzzf

220 z

Page 23: SECTION 8 Residue Theory (1) The Residue

23

Section 8

Find the residue at the pole z01 of )1(3)(

2

zz

zzf

Question:

Page 24: SECTION 8 Residue Theory (1) The Residue

24

Section 8Formula for finding the residue for a pole of order 2

If f (z) has a pole of order 2 at z0, then the Laurent series is

20

2

0

1010 )()()(

zzb

zzbzzaazf

)()(lim)(Res 20

00

zfzzdzdzf

zzzz

2013

012

002

0 )()()()()( bzzbzzazzazfzz

now differentiate:

12

01002

0 )(3)(2)()( bzzazzazfzzdzd

12

0 )()(lim0

bzfzzdzd

zz

Page 25: SECTION 8 Residue Theory (1) The Residue

25

Section 8Example

Find the residue of at z1

92

)2(2lim

2lim

)()(lim)(Res

211

20

00

zzz

dzd

zfzzdzdzf

zz

zzzz

2)1)(2()(

zzzzf

Check: the Laurent series is

81)1(2

272

)1(92

)1(31

3)1(

31

)1(31

)1(1

31)1(

3)1(

311

)1(31)1(

)3/)1((11

)1(31)1(

)1(31

)1(1)1(

)1)(2()(

2

3222

2

2

222

zzz

zzz

zzzz

z

zzz

zzz

zzzzf

310 z

Page 26: SECTION 8 Residue Theory (1) The Residue

26

Section 8Formula for finding the residue for a pole of any order

If f (z) has a pole of order m at z0, then the Laurent series is

mm

zzb

zzb

zzbzzaazf

)()()()(

02

0

2

0

1010

)()(lim)!1(

1)(Res 0)1(

)1(

00

zfzzdzd

mzf m

m

m

zzzz

mm

mmmm

bzzb

zzbzzazzazfzz

2

02

101

101000

)(

)()()()()(

now differentiate m1 times and let zz0 to get:

10)1(

)1(

)!1()()(lim0

bmzfzzdzd m

m

m

zz

Page 27: SECTION 8 Residue Theory (1) The Residue

27

Section 8

We saw that the integral of an analytic function f (z) over a closed curve C when f (z) has one singular point inside C is

12)( jbdzzfC

C0z

b1 is the residue of f (z) at z0

The Residue Theorem

C

Residue Theorem: Let f (z) be an analyticfunction inside and on a closed path Cexcept for at k singular points inside C.Then

k

i zzC

zfjdzzfi1

)(Res2)(

Page 28: SECTION 8 Residue Theory (1) The Residue

28

Section 8

Example

Integrate the function around

C

zzz

2

2

zzz

zzzjdz

zzz

zzC

21202

2Res2Res22

2z

32lim2Res

21

2lim2Res

121

020

zz

zzz

zz

zzz

zz

zz

jdzzzz

C

222

Page 29: SECTION 8 Residue Theory (1) The Residue

29

Section 8

Example

Integrate the function around

C

zzz

2

2

zzz

zzzjdz

zzz

zzC

21202

2Res2Res22

2z

32lim2Res

21

2lim2Res

121

020

zz

zzz

zz

zzz

zz

zz

jdzzzz

C

222

Page 30: SECTION 8 Residue Theory (1) The Residue

30

Section 8

Example

Integrate the function around

C

zzz

2

2

zzz

zzzjdz

zzz

zzC

21202

2Res2Res22

2z

32lim2Res

21

2lim2Res

121

020

zz

zzz

zz

zzz

zz

zz

jdzzzz

C

222

Page 31: SECTION 8 Residue Theory (1) The Residue

31

Section 8

Example

Integrate the function around

C

zzz

2

2

zzz

zzzjdz

zzz

zzC

21202

2Res2Res22

2z

32lim2Res

21

2lim2Res

121

020

zz

zzz

zz

zzz

zz

zz

jdzzzz

C

222

Page 32: SECTION 8 Residue Theory (1) The Residue

32

Section 8

Example

Integrate the function around

C

zzz

2

2

zzz

zzzjdz

zzz

zzC

21202

2Res2Res22

2z

32lim2Res

21

2lim2Res

121

020

zz

zzz

zz

zzz

zz

zz

jdzzzz

C

222

Page 33: SECTION 8 Residue Theory (1) The Residue

33

Section 8Proof of Residue TheoremEnclose all the singular pointswith little circles C1, C1, Ck.

f (z) is analytic in here

By Cauchy’s Integral Theorm for multiply connected regions:

kCCCC

dzzfdzzfdzzfdzzf )()()()(21

C

But the integrals around each of the small circles is just theresidue at each singular point inside that circle, and so

k

i zzC

zfjdzzfi1

)(Res2)(

Page 34: SECTION 8 Residue Theory (1) The Residue

34

Section 8

Topics not Covered

(1) Another formula for the residue at a simple pole (when f (z) is a rational function p(z)q(z),

(2) Evaluation of real integrals using the Residue theorem

(3) Evaluation of improper integrals using the Residue theorem

)()()(Res

0

0

0 zqzpzf

zz

2

0 sin2de.g. using jez

dxxx

x45

124

2

e.g.