SECTION 3 Solution Control.

72
NAS101, Page 3- NAS101, Page 3- 1 SECTION 3 Solution Control

description

Solution Control PAGE MSC.Nastran Input File 6 Delimiter Entries 10 Format of the Input File 11 The Executive Control Section 12 Selected Executive Control Statements 13 Definition of DMAP 14 DMAP SOLutions 15 SOLution Sequences 16 Structured SOLution Sequences 17 Rigid Format SOLutions 18 The Case Control Section 19

Transcript of SECTION 3 Solution Control.

Page 1: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 11

SECTION 3

Solution Control

Page 2: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 22

Solution Control PAGE

MSC.Nastran Input File 6Delimiter Entries 10Format of the Input File 11The Executive Control Section 12Selected Executive Control Statements 13Definition of DMAP 14DMAP SOLutions 15SOLution Sequences 16Structured SOLution Sequences 17Rigid Format SOLutions 18The Case Control Section 19

Page 3: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 33

Solution Control (cont.) PAGE

Case Control Set Selection 20Static Loading Selection 21Applied Temperature Selection 22Initial Temperature Selection 23Constraint Selection 24Multiple Loading Conditions 25Case Control Example 26Sample Case Control 27OUTPUT Labeling 30 Thermal Loads 31

Page 4: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 44

Solution Control (cont.) PAGE

Bulk Data Entries to Define Temperatures 33Material Thermal Properties 35Entries for Thermal Load 36Gravity Loading 37Workshop 3 40 Changes to the Input File for Workshop 3 Partial Input File for Workshop # 3 F06 Output for Workshop # 3 Deformed Plot for Workshop # 3 Solution File for Workshop # 3OUTPUT Selection 59

Page 5: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 55

Solution Control (cont.) PAGE

Element Output Requests 62Grid Point Output Requests 63Use of GPFORCE Request 64Sample Case Control 65Use of SETs 66Selection of Output Request 67Printed Output 68Sample of SORT1 Output 70Sample of SORT2 Output 71

Page 6: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 66

MSC.Nastran Input FileThe format of the input for MSC.Nastran is described in

the MSC.NASTRAN Quick Reference GuideThe following describes the overall form of the input file

for MSC.Nastran with specific information on the sections involved in solution control

Page 7: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 77

MSC.Nastran Input File (cont)

Page 8: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 88

MSC.Nastran Input File (cont) File Management Section (FMS): (optional)

• Includes the "NASTRAN" statement (optional - determines overall program control for the current run

• Allocates files, controls restarts and database operations

• The goal of the File Management Section is to make the operating system invisible to the user

Executive Control Section: • Solution type, time allowed, program modifications and system diagnostics

Case Control Section• Output requests and selects certain Bulk Data items such as loadings and

constraints to be used Bulk Data Section

• Structural model definition and solution conditions

Page 9: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 99

MSC.Nastran Input File (cont.) MSC.Nastran is designed to run in the batch mode. An analysis is submitted by using an input file containing the

following:1. File Management Section (Optional)2. Executive Control Section3. Case Control Section4. Bulk Data Section

Input files may be preceded and followed by the required resident operating system (job control language) control statements. The type and number vary with each installationRefer to the MSC.NASTRAN Configuration and Operation Guide and your

operating system personnel for instructions in preparing operating system control statements.

Page 10: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 1010

Delimiter EntriesDelimiter entries are required entries which separate

sections of the input file

CEND End of Executive Section, beginning of Case Control

BEGIN BULK End of Case Control, beginning of Bulk Data

ENDDATA Last entry in all MSC.Nastran input files

Note: These entries must begin in column 1

Page 11: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 1111

Format of the Input File File Management Section

Uses free field format (in columns 1-72)Executive Control Section and Case Control Section

Uses free field format in columns 1-72. Input may begin in any of these columns and is separated by commas or blanks.

Bulk Data SectionThere are three possible field formats (discussed later):

• Free field• Small field• Large field

Page 12: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 1212

The Executive Control SectionThe Executive Control Section is the first required group

of statements in any MSC.Nastran input file.The primary functions of the Executive Control Section

are:Define the type of analysis (solution sequence)Define general operation conditions such as:

• Maximum time allowed• System diagnostics desired• User-written DMAP

See the MSC.NASTRAN Quick Reference Guide, Section 3 for a complete description of the Executive Control Section.

Page 13: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 1313

Selected Executive Control Statements

SOL K = Required entry - K= SOLution number or nameCEND = Required entry = Last Entry in Executive Control DIAG J = Optional statement - enables diagnostics

Some samples:• DIAG 8 - Prints matrix summary data as it is generated• DIAG 14 - Prints DMAP sequence - recommended for use with

ALTERS• DIAG 56 - lists qualifier values in the “.f04” file as they are set, plus

lists all DMAP instructions (line number and subDMAP) as they are executed in “.f04”

Page 14: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 1414

Definition of DMAPMSC.Nastran's Executive System uses an internal, data

block oriented programming language called Direct Matrix Abstraction Programming (DMAP).

All SOLutions in MSC.Nastran are written using DMAPThis programming language is fully available to the user.DMAP:

Performs the operations of converting input lists to matrices and/or tables

Performs the matrix solutionsConverts matrix solutions to output listsPrints the solution (and/or any intermediate information)

Page 15: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 1515

DMAP SOLutionsEach SOLution in MSC.Nastran is made up of a series of

DMAP instructions.The execution of these instructions is performed by

requesting one of the solution sequences (SOL K). Each SOL assembles hundreds to thousands of DMAP

instructions to perform a specific type of analysis.These built-in SOLutions may be modified by the user

using an approach known as DMAP alters.Customized SOLutions may be written and saved for

future useFor more information, see the MSC.Nastran DMAP Module

Dictionary

Page 16: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 1616

SOLution SequencesSOLution sequences in MSC.Nastran consist of:

Structured Solution Sequences (known as the SSS)• These solutions are the recommended solutions for analysis• They utilize the database for storing and retrieving information• They support restart• They contain the latest features and many capabilities not in the Rigid

Format solutionsRigid Format Solutions

• These are the simplest SOLutions (as far as the DMAP is concerned)• These Solutions do not use the database to store and retrieve

information, therefore, they do not have restart capabilities• These Solutions may not support newer features in the program

Page 17: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 1717

Structured SOLution Sequences

Page 18: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 1818

Rigid Format SOLutions

Page 19: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 1919

The Case Control SectionThe Case Control Section follows the Executive Control

Section, precedes the Bulk Data Section, and is required in every run

Primary functions of the Case Control Section are:Specify sets of Bulk Data input that are to be used in the analysis

(Loads. Constraints, eigenvalue solution method, etc.)Make output selectionsDefine subcases (load cases)

See the MSC.NASTRAN Quick Reference Guide, Section 4 for a summary of all output that can be requested for each solution sequence

Page 20: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 2020

Case Control Set SelectionThe concept of data sets allows the user to define any number of

different load and constraint data sets in the Bulk Data. The particular set(s) to be used in the analysis are selected with

the Case Control data selection command:

DATA_SET_NAME = SID

Bulk Data items selected in this manner include loads, constraints, and thermal fields.

NOTE: Any BULK DATA entries which may be selected by CASE CONTROL commands, but are not, will be ignored in the current run.

Page 21: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 2121

Static Loading SelectionStatic load sets are selected by the LOAD case control

commandForm:

LOAD = i where i = the loading set to be applied (see the SID on loading-

related bulk data entries)All load entries with SID i will be applied simultaneously

(Note: GRAV entries must have a unique SID with respect to all other loading entries)

Example: LOAD = 1

will apply all loading entries contained in set 1

Page 22: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 2222

Applied Temperature SelectionTemperature loadings are selected (applied) using the

TEMP(LOAD) case control command

FORM:

TEMP(LOAD) = j

Where j points to a set of bulk data entries which define the temperature field to be applied to the model (TEMP, TEMPD, TEMPP1, TEMPRB for example)

Page 23: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 2323

Initial Temperature Selection Initial Temperatures are selected using either the TEMP(INIT) case

control command or TREF on the material entries If used, TEMP(INIT) must be above the first subcase

FORM:

TEMP(INIT) = j

Where j points to a set of bulk data entries which define the initial temperature field for the model (TEMP, TEMPD, TEMPP1, TEMPRB for example)

The temperature used to calculate the loading is TEMP(LOAD)-TEMP(INIT)

or TREF on the material entries

Page 24: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 2424

Constraint SelectionThe constraints to be applied are determined by the SPC

and MPC commands

SPC - selects the Single Point Constraint set to be appliedSPC’s are constraints on translation and rotation at selected

locations in the model (GRID points) SPC’s are defined using SPC and SPC1 bulk data entries

MPC - selects the Multi-Point Constraint set to be appliedMPC’s are constraint equations which relate the motion of selected

degrees of freedom (dof) to the motion of other dof in the model MPC’s are defined using MPC bulk data entries

Page 25: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 2525

Multiple Loading Conditions Separate static loading conditions (including changes to constraints)

are defined by the use of the SUBCASE command FORM:

SUBCASE i - where i is an integer identifier for the SUBCASE. Each SUBCASE represents a separate static loading condition

(including different boundary conditions) Different constraints, loads, and output may be selected in each

SUBCASE SUBCASE ids (i) must be in ascending order, but are not required to

be sequential (that is you might have SUBCASEs 1,14,31, and 50)

Page 26: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 2626

Case Control ExampleLet us assume we have two loading conditions (LOADs

100 and 200), with different constraint sets (SPC set 110 and 210 respectively). The following Case Control will instruct MSC.Nastran to perform the solutions and provide the results:

Page 27: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 2727

Sample Case ControlCENDSUBCASE 10LABEL = loading condition 1 - apply load 100 and SPC 110LOAD = 100SPC = 110DISP = ALL$SUBCASE 20LABEL = loading condition2 - apply load 200 and SPC 210LOAD = 200SPC = 210DISP = ALLBEGIN BULK

Page 28: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 2828

Sample Case Control (cont)In the previous page, the Case Control specifies that we

have two loading conditions, each is defined in a separate SUBCASE

Each SUBCASE contains the loading and constraint requests, plus any output requests

This can lead to very long Case Control if there are a large number of loading conditions

A method to avoid this is to place default requests above the first SUBCASE (any Case Control requests above the first SUBCASE are used as default values for all SUBCASEs - they may be changed within the individual SUBCASEs)

The following Case Control uses this feature:

Page 29: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 2929

Sample Case ControlCEND$ default Case Control requestsLOAD = 100SPC = 110DISP = ALL$ end of default request listSUBCASE 10LABEL = loading condition 1 - apply load 100 and SPC 110$SUBCASE 20LABEL = loading condition2 - apply load 200 and SPC 210LOAD = 200SPC = 210BEGIN BULK

Page 30: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 3030

OUTPUT Labeling Titling: optional but recommended for documentation purposes

TITLE - Specifies the first line of text to be printed on each page

SUBTITLE - Specifies the second line of text to be printed on each page

LABEL - Specifies the third line of text to be printed on each page

Example:TITLE = Test run - workshop 1SUBTITLE = Static Loading on TrussLABEL = NAS 101 Seminar Demonstration

Page 31: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 3131

Thermal LoadsSeveral temperature definition entries are available for

including thermal effects in an analysis. Selection of the appropriate entry is based on the component the temperature will be applied toUse TEMP, TEMPD for grid point related temperature definitionUse TEMPRB for temperature loadings on ROD, BAR, BEAM, BEND,

CONROD, TUBEUse TEMPP1 for temperature loadings on 3-D for 2-D plates

For the thermal effects defined on any of these temperature entries to be included in the analysis, the user must define the reference temperature {TREF or TEMP(INIT)} and coefficient of thermal expansion () on the material entries. Also, the Case Control request TEMP(LOAD)=SID must be included

Page 32: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 3232

Thermal LoadsIf thermal effects are requested, all elements must have a

temperature field defined. If only a portion of the model requires thermal effects, the remaining portion canReference a material entry having the same material properties, a

different MID, and = 0.0Reference a material entry having the same material properties, a

different MID, and TREF = the applied temperature (i.e., T = 0)See the MSC.Nastran Linear Static Analysis User’s Guide

and Quick Reference Guide for further description of the thermal loads

Page 33: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 3333

Bulk Data Entries to Define Temperatures

Page 34: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 3434

TEMPD

Bulk Data Entries to Define Temperatures

Page 35: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 3535

Material Thermal Properties

Page 36: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 3636

Entries for Thermal LoadThe Material definitions (MAT1) from the previous

workshop already have the coefficient of thermal expansion, so all we need to define is the temperatures

Although it is possible to use TREF on the material entries, we will use TEMP(INIT) to define the initial temperature

TEMPD,20,70.TEMPD,26,100.

TEMP(INIT)TEMP(INIT)

TEMP(LOAD)TEMP(LOAD)

Page 37: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 3737

Gravity LoadingThere is a Bulk Data entry called GRAV, which is used to

define gravity loadingsThe GRAV entry is used to define the direction and

magnitude of a uniform linear (gravity) acceleration vector in any defined coordinate system

The GRAV entry may be used to apply accelerations to a model

The resulting load is computed by using the gravity vector and mass matrix. (BE CAREFUL TO DEFINE YOUR MASS PROPERTIES AND BE ESPECIALLY CAREFUL OF UNITS)

Cannot be used at scalar points

Page 38: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 3838

Gravity Loading

Field ContentsSID Loading Set identification number (integer > 0)CID Coordinate system identification number

(integer0)G Gravity vector scale factor (real)N1,N2,N3 At least one nonzero component, gravity vector

components (real)NOTE: SID must be a unique static loading set id

Page 39: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 3939

Gravity LoadingThe following Entry will be used to define our gravity load

(note: the MAT1 entries already have the mass density specified for the materials)

GRAV,30,,386.0886,0.,-1.,0.

Page 40: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 4040

Workshop 3

Roof Truss Subjected to 3 loading conditions

Page 41: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 4141

Workshop # 3 (cont.)

Page 42: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 4242

Workshop # 3 (cont.)

Figure 3-1Figure 3-1

Page 43: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 4343

Workshop 3 (cont.)This is a continuation of the workshop # 2In this example, we will add 2 additional loading

conditions:

SUBCASE 20 = thermal loading initial temperature = 70 degreesloading temperature = 100 degrees

SUBCASE 30 = Gravity loadingapply a 1-g (386.0886 in/sec2) in the negative Y-direction

Page 44: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 4444

Changes to the Input File for Workshop 3

TITLE = GARAGE ROOF FRAMESUBTITLE = WOOD AND STEEL MEMBERS TEMP(INIT) = 20SUBCASE 1 SUBTITLE=TRUSS_LBCS LOAD = 1 DISPLACEMENT = ALL SPCFORCES = ALL STRESS = ALL SPC = 10SUBCASE 20 SUBTITLE = THERMAL LOAD TEMP(LOAD) = 26 DISPLACEMENT = ALL SPCFORCES = ALL STRESS = ALL SPC = 10

SUBCASE 30 SUBTITLE = GRAVITY LOAD LOAD = 30 DISPLACEMENT = ALL SPCFORCES = ALL STRESS = ALL SPC = 10BEGIN BULKTEMPD,20,70.TEMPD,26,100.GRAV,30,,386.0886,0.,-1.,0.$ The rest of the input file is$ unchanged from workshop 2

New Bulk Data EntriesNew Bulk Data Entries

Page 45: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 4545

Partial Input File for Workshop # 3

Page 46: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 4646

Partial Input File for Workshop # 3 (cont.)

Page 47: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 4747

F06 Output for Workshop # 3

0 RESULTANTS ABOUT ORIGIN OF SUPERELEMENT BASIC COORDINATE SYSTEM IN SUPERELEMENT BASIC SYSTEM COORDINATES.

0 OLOAD RESULTANT SUBCASE/ LOAD DAREA ID TYPE T1 T2 T3 R1 R2 R30 1 FX -3.900000E+03 ---- ---- ---- 0.000000E+00 3.744000E+05 FY ---- -4.500000E+03 ---- 0.000000E+00 ---- -1.296000E+06 FZ ---- ---- 0.000000E+00 0.000000E+00 0.000000E+00 ---- MX ---- ---- ---- 0.000000E+00 ---- ---- MY ---- ---- ---- ---- 0.000000E+00 ---- MZ ---- ---- ---- ---- ---- 0.000000E+00 TOTALS -3.900000E+03 -4.500000E+03 0.000000E+00 0.000000E+00 0.000000E+00 -9.216000E+050 20 FX 0.000000E+00 ---- ---- ---- 0.000000E+00 0.000000E+00 FY ---- -1.818989E-12 ---- 0.000000E+00 ---- 9.313226E-10 FZ ---- ---- 0.000000E+00 0.000000E+00 0.000000E+00 ----

MX ---- ---- ---- 0.000000E+00 ---- ---- MY ---- ---- ---- ---- 0.000000E+00 ---- MZ ---- ---- ---- ---- ---- 0.000000E+00 TOTALS 0.000000E+00 -1.818989E-12 0.000000E+00 0.000000E+00 0.000000E+00 9.313226E-100 30 FX 0.000000E+00 ---- ---- ---- 0.000000E+00 0.000000E+00 FY ---- -2.123938E+03 ---- 0.000000E+00 ---- -6.116941E+05 FZ ---- ---- 0.000000E+00 0.000000E+00 0.000000E+00 ---- MX ---- ---- ---- 0.000000E+00 ---- ---- MY ---- ---- ---- ---- 0.000000E+00 ---- MZ ---- ---- ---- ---- ---- 0.000000E+00 TOTALS 0.000000E+00 -2.123938E+03 0.000000E+00 0.000000E+00 0.000000E+00 -6.116941E+05

Page 48: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 4848

F06 Output for Workshop # 3 (cont.)

RESULTANTS ABOUT ORIGIN OF SUPERELEMENT BASIC COORDINATE SYSTEM IN SUPERELEMENT BASIC SYSTEM COORDINATES.

0 SPCFORCE RESULTANT SUBCASE/ LOAD DAREA ID TYPE T1 T2 T3 R1 R2 R30 1 FX 3.900000E+03 ---- ---- ---- 0.000000E+00 0.000000E+00 FY ---- 4.500000E+03 ---- 0.000000E+00 ---- 9.216000E+05 FZ ---- ---- 0.000000E+00 0.000000E+00 0.000000E+00 ---- MX ---- ---- ---- 0.000000E+00 ---- ---- MY ---- ---- ---- ---- 0.000000E+00 ---- MZ ---- ---- ---- ---- ---- 0.000000E+00 TOTALS 3.900000E+03 4.500000E+03 0.000000E+00 0.000000E+00 0.000000E+00 9.216000E+050 20 FX 0.000000E+00 ---- ---- ---- 0.000000E+00 0.000000E+00

FY ---- 7.275958E-12 ---- 0.000000E+00 ---- 2.095476E-09 FZ ---- ---- 0.000000E+00 0.000000E+00 0.000000E+00 ---- MX ---- ---- ---- 0.000000E+00 ---- ---- MY ---- ---- ---- ---- 0.000000E+00 ---- MZ ---- ---- ---- ---- ---- 0.000000E+00 TOTALS 0.000000E+00 7.275958E-12 0.000000E+00 0.000000E+00 0.000000E+00 2.095476E-090 30 FX -3.410605E-12 ---- ---- ---- 0.000000E+00 0.000000E+00 FY ---- 2.123938E+03 ---- 0.000000E+00 ---- 6.116941E+05 FZ ---- ---- 0.000000E+00 0.000000E+00 0.000000E+00 ---- MX ---- ---- ---- 0.000000E+00 ---- ---- MY ---- ---- ---- ---- 0.000000E+00 ---- MZ ---- ---- ---- ---- ---- 0.000000E+00 TOTALS -3.410605E-12 2.123938E+03 0.000000E+00 0.000000E+00 0.000000E+00 6.116941E+05

Page 49: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 4949

F06 Output for Workshop # 3 (cont.)

SUBCASE 1 D I S P L A C E M E N T V E C T O R POINT ID. TYPE T1 T2 T3 R1 R2 R3 1 G 0.0 0.0 0.0 0.0 0.0 -2.999339E-04 2 G 1.390606E-02 -4.231127E-02 0.0 0.0 0.0 -5.139712E-06

3 G 1.859571E-03 -4.296359E-02 0.0 0.0 0.0 -1.969738E-04 4 G 8.615539E-04 -2.640115E-02 0.0 0.0 0.0 -1.295711E-04 5 G 2.957073E-03 -6.439544E-02 0.0 0.0 0.0 8.287847E-05 6 G -2.358503E-02 -6.696822E-02 0.0 0.0 0.0 1.932530E-05 7 G 6.041544E-03 0.0 0.0 0.0 0.0 5.379826E-041 GARAGE ROOF FRAME MAY 7, 2001 MSC.NASTRAN 4/ 9/01 PAGE 12 THERMAL LOAD 0 SUBCASE 20 D I S P L A C E M E N T V E C T O R POINT ID. TYPE T1 T2 T3 R1 R2 R3 1 G 0.0 0.0 0.0 0.0 0.0 1.240778E-04 2 G 2.525322E-02 2.265415E-02 0.0 0.0 0.0 -3.148696E-05 3 G 3.907999E-02 2.272584E-02 0.0 0.0 0.0 7.675877E-05 4 G 5.860614E-02 2.911416E-02 0.0 0.0 0.0 -1.120201E-18

5 G 7.813229E-02 2.272584E-02 0.0 0.0 0.0 -7.675877E-05 6 G 9.195906E-02 2.265415E-02 0.0 0.0 0.0 3.148696E-05 7 G 1.172123E-01 0.0 0.0 0.0 0.0 -1.240778E-04

Page 50: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 5050

F06 Output for Workshop # 3 (cont.)

1 GARAGE ROOF FRAME MAY 7, 2001 MSC.NASTRAN 4/ 9/01 PAGE 13 GRAVITY LOAD 0 SUBCASE 30 D I S P L A C E M E N T V E C T O R POINT ID. TYPE T1 T2 T3 R1 R2 R3

1 G 0.0 0.0 0.0 0.0 0.0 -1.808696E-04 2 G 9.089894E-03 -2.190996E-02 0.0 0.0 0.0 -5.900485E-06 3 G 1.496602E-03 -2.492592E-02 0.0 0.0 0.0 -6.946891E-05 4 G 2.018962E-03 -1.118948E-02 0.0 0.0 0.0 1.355253E-20 5 G 2.541321E-03 -2.492592E-02 0.0 0.0 0.0 6.946891E-05 6 G -5.051970E-03 -2.190996E-02 0.0 0.0 0.0 5.900485E-06 7 G 4.037923E-03 0.0 0.0 0.0 0.0 1.808696E-04

Page 51: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 5151

F06 Output for Workshop # 3 (cont.)

SUBCASE 1

F O R C E S O F S I N G L E - P O I N T C O N S T R A I N T POINT ID. TYPE T1 T2 T3 R1 R2 R3 1 G 3.900000E+03 2.900000E+03 0.0 0.0 0.0 0.0 7 G 0.0 1.600000E+03 0.0 0.0 0.0 0.01 GARAGE ROOF FRAME MAY 7, 2001 MSC.NASTRAN 4/ 9/01 PAGE 15 THERMAL LOAD 0 SUBCASE 20 F O R C E S O F S I N G L E - P O I N T C O N S T R A I N T POINT ID. TYPE T1 T2 T3 R1 R2 R3 1 G 0.0 3.637979E-12 0.0 0.0 0.0 0.0 7 G 0.0 3.637979E-12 0.0 0.0 0.0 0.0

1 GARAGE ROOF FRAME MAY 7, 2001 MSC.NASTRAN 4/ 9/01 PAGE 16 GRAVITY LOAD 0 SUBCASE 30 F O R C E S O F S I N G L E - P O I N T C O N S T R A I N T POINT ID. TYPE T1 T2 T3 R1 R2 R3 1 G -3.410605E-12 1.061969E+03 0.0 0.0 0.0 0.0 7 G 0.0 1.061969E+03 0.0 0.0 0.0 0.0

Page 52: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 5252

F06 Output for Workshop # 3 (cont.)

SUBCASE 1 S T R E S S E S I N B A R E L E M E N T S ( C B A R ) ELEMENT SA1 SA2 SA3 SA4 AXIAL SA-MAX SA-MIN M.S.-T ID. SB1 SB2 SB3 SB4 STRESS SB-MAX SB-MIN M.S.-C0 1 2.282179E+02 -2.282179E+02 -2.282179E+02 2.282179E+02 -1.167987E+03 -9.397690E+02 -1.396205E+03 -5.468215E+02 5.468215E+02 5.468215E+02 -5.468215E+02 -6.211654E+02 -1.714808E+03 1.3E+010 2 -5.468215E+02 5.468215E+02 5.468215E+02 -5.468215E+02 -8.199662E+02 -2.731447E+02 -1.366788E+03 6.813027E+02 -6.813027E+02 -6.813027E+02 6.813027E+02 -1.386635E+02 -1.501269E+03 1.5E+010 3 6.813027E+02 -6.813027E+02 -6.813027E+02 6.813027E+02 -6.707130E+02 1.058972E+01 -1.352016E+03 1.4E+02 -8.422248E+02 8.422248E+02 8.422248E+02 -8.422248E+02 1.715118E+02 -1.512938E+03 1.5E+01

0 4 -8.422249E+02 8.422249E+02 8.422249E+02 -8.422249E+02 -6.214922E+02 2.207326E+02 -1.463717E+03 1.1E+02 2.816776E+02 -2.816776E+02 -2.816776E+02 2.816776E+02 -3.398147E+02 -9.031698E+02 1.5E+010 9 -1.504635E+02 1.504635E+02 1.504635E+02 -1.504635E+02 2.808727E+02 4.313361E+02 1.304092E+02 5.5E+01 2.605334E+01 -2.605334E+01 -2.605334E+01 2.605334E+01 3.069260E+02 2.548193E+02 0 10 2.605334E+01 -2.605334E+01 -2.605334E+01 2.605334E+01 1.657686E+02 1.918219E+02 1.397152E+02 4.4E+01 -3.642082E+02 3.642082E+02 3.642082E+02 -3.642082E+02 5.299767E+02 -1.984396E+02 1.2E+020 11 -3.642082E+02 3.642082E+02 3.642082E+02 -3.642082E+02 4.658835E+02 8.300917E+02 1.016754E+02 2.8E+01 -1.857093E+02 1.857093E+02 1.857093E+02 -1.857093E+02 6.515928E+02 2.801742E+02 1 GARAGE ROOF FRAME MAY 7, 2001 MSC.NASTRAN 4/ 9/01 PAGE 19 TRUSS_LBCS 0 SUBCASE 1 S T R E S S E S I N R O D E L E M E N T S ( C R O D ) ELEMENT AXIAL SAFETY TORSIONAL SAFETY ELEMENT AXIAL SAFETY TORSIONAL SAFETY ID. STRESS MARGIN STRESS MARGIN ID. STRESS MARGIN STRESS MARGIN 5 -1.248697E+02 1.4E+01 0.0 6 1.345139E+02 1.3E+01 0.0

7 3.333110E+02 4.7E+00 0.0 8 -3.429890E+02 4.5E+00 0.0

Page 53: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 5353

F06 Output for Workshop # 3 (cont.)

GARAGE ROOF FRAME MAY 7, 2001 MSC.NASTRAN 4/ 9/01 PAGE 20 THERMAL LOAD 0 SUBCASE 20 S T R E S S E S I N B A R E L E M E N T S ( C B A R ) ELEMENT SA1 SA2 SA3 SA4 AXIAL SA-MAX SA-MIN M.S.-T ID. SB1 SB2 SB3 SB4 STRESS SB-MAX SB-MIN M.S.-C0 1 5.395595E+01 -5.395595E+01 -5.395595E+01 5.395595E+01 -5.108454E+00 4.884750E+01 -5.906441E+01 2.2E+02 1.141732E+02 -1.141732E+02 -1.141732E+02 1.141732E+02 1.090647E+02 -1.192816E+02 2.0E+020 2 1.141732E+02 -1.141732E+02 -1.141732E+02 1.141732E+02 -4.684053E+00 1.094891E+02 -1.188572E+02 1.7E+02 -1.482032E+02 1.482032E+02 1.482032E+02 -1.482032E+02 1.435192E+02 -1.528873E+02 1.6E+020 3 -1.482032E+02 1.482032E+02 1.482032E+02 -1.482032E+02 -4.684053E+00 1.435192E+02 -1.528873E+02 1.7E+02

1.141732E+02 -1.141732E+02 -1.141732E+02 1.141732E+02 1.094891E+02 -1.188572E+02 1.6E+020 4 1.141732E+02 -1.141732E+02 -1.141732E+02 1.141732E+02 -5.108454E+00 1.090647E+02 -1.192816E+02 2.2E+02 5.395596E+01 -5.395596E+01 -5.395596E+01 5.395596E+01 4.884750E+01 -5.906441E+01 2.0E+020 9 -3.557302E+01 3.557302E+01 3.557302E+01 -3.557302E+01 4.106020E+00 3.967904E+01 -3.146700E+01 2.5E+02 9.275018E+01 -9.275018E+01 -9.275018E+01 9.275018E+01 9.685620E+01 -8.864417E+01 2.7E+020 10 9.275018E+01 -9.275018E+01 -9.275018E+01 9.275018E+01 -7.490300E-02 9.267528E+01 -9.282509E+01 2.6E+02 9.275018E+01 -9.275018E+01 -9.275018E+01 9.275018E+01 9.267528E+01 -9.282509E+01 2.6E+020 11 9.275018E+01 -9.275018E+01 -9.275018E+01 9.275018E+01 4.106020E+00 9.685620E+01 -8.864417E+01 2.5E+02 -3.557302E+01 3.557302E+01 3.557302E+01 -3.557302E+01 3.967904E+01 -3.146700E+01 2.7E+021 GARAGE ROOF FRAME MAY 7, 2001 MSC.NASTRAN 4/ 9/01 PAGE 21 THERMAL LOAD 0 SUBCASE 20 S T R E S S E S I N R O D E L E M E N T S ( C R O D ) ELEMENT AXIAL SAFETY TORSIONAL SAFETY ELEMENT AXIAL SAFETY TORSIONAL SAFETY ID. STRESS MARGIN STRESS MARGIN ID. STRESS MARGIN STRESS MARGIN

5 -3.619026E+00 5.2E+02 0.0 6 5.802558E+00 3.3E+02 0.0 7 5.802558E+00 3.3E+02 0.0 8 -3.619026E+00 5.2E+02 0.0

Page 54: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 5454

F06 Output for Workshop # 3 (cont.)

GRAVITY LOAD 0 SUBCASE 30 S T R E S S E S I N B A R E L E M E N T S ( C B A R ) ELEMENT SA1 SA2 SA3 SA4 AXIAL SA-MAX SA-MIN M.S.-T ID. SB1 SB2 SB3 SB4 STRESS SB-MAX SB-MIN M.S.-C0 1 7.685079E+01 -7.685079E+01 -7.685079E+01 7.685079E+01 -3.004858E+02 -2.236350E+02 -3.773366E+02 -2.659515E+02 2.659515E+02 2.659515E+02 -2.659515E+02 -3.453430E+01 -5.664373E+02 4.1E+010 2 -2.659515E+02 2.659515E+02 2.659515E+02 -2.659515E+02 -2.756120E+02 -9.660522E+00 -5.415635E+02 2.595744E+02 -2.595744E+02 -2.595744E+02 2.595744E+02 -1.603760E+01 -5.351864E+02 4.3E+010 3 2.595744E+02 -2.595744E+02 -2.595744E+02 2.595744E+02 -2.756120E+02 -1.603760E+01 -5.351864E+02 -2.659515E+02 2.659515E+02 2.659515E+02 -2.659515E+02 -9.660522E+00 -5.415635E+02 4.3E+01

0 4 -2.659515E+02 2.659515E+02 2.659515E+02 -2.659515E+02 -3.004858E+02 -3.453430E+01 -5.664373E+02 7.685078E+01 -7.685078E+01 -7.685078E+01 7.685078E+01 -2.236350E+02 -3.773365E+02 4.1E+010 9 -5.066753E+01 5.066753E+01 5.066753E+01 -5.066753E+01 2.260493E+02 2.767168E+02 1.753817E+02 7.6E+01 -8.394160E+01 8.394160E+01 8.394160E+01 -8.394160E+01 3.099909E+02 1.421077E+02 0 10 -8.394160E+01 8.394160E+01 8.394160E+01 -8.394160E+01 1.577961E+02 2.417376E+02 7.385445E+01 9.8E+01 -8.394160E+01 8.394160E+01 8.394160E+01 -8.394160E+01 2.417376E+02 7.385445E+01 0 11 -8.394160E+01 8.394160E+01 8.394160E+01 -8.394160E+01 2.260493E+02 3.099909E+02 1.421077E+02 7.6E+01 -5.066753E+01 5.066753E+01 5.066753E+01 -5.066753E+01 2.767168E+02 1.753817E+02 1 GARAGE ROOF FRAME MAY 7, 2001 MSC.NASTRAN 4/ 9/01 PAGE 23 GRAVITY LOAD 0 SUBCASE 30 S T R E S S E S I N R O D E L E M E N T S ( C R O D ) ELEMENT AXIAL SAFETY TORSIONAL SAFETY ELEMENT AXIAL SAFETY TORSIONAL SAFETY ID. STRESS MARGIN STRESS MARGIN ID. STRESS MARGIN STRESS MARGIN 5 -3.462857E+01 5.4E+01 0.0 6 1.191780E+02 1.5E+01 0.0

7 1.191780E+02 1.5E+01 0.0 8 -3.462857E+01 5.4E+01 0.0

Page 55: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 5555

Deformed Plot for Workshop # 3

Subcase 20 - Thermal LoadSubcase 20 - Thermal Load

Page 56: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 5656

Deformed Plot for Workshop # 3

Subcase 30 - Gravity LoadSubcase 30 - Gravity Load

Page 57: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 5757

Solution File for Workshop # 3

Page 58: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 5858

Solution File for Workshop # 3

Page 59: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 5959

OUTPUT Selection Bulk Data echo:

ECHO - Selects echo options for the Bulk Data.

Options include:

SORT Prints the BULK DATA in Alphabetical sorted order(default)UNSORT Prints only unsorted Bulk Data (as it appears in your input fileBOTH Prints sorted and unsorted Bulk DataNONE Turns off the Bulk Data listingPUNCH Prints echo of sorted Bulk Data to a separate file (the ".pch" file)

Example:ECHO = SORT,PUNCH

Page 60: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 6060

OUTPUT Selection(cont)By default, MSC.Nastran does not provide any output of results.

You must request any desired results. When you request results, you have several options on how the

results will be presented. The most commonly used of these are: PRINT, PLOT, and PUNCH

PRINT is the default of most results requests and provides printed results in the "f06" file

PUNCH will provide the output in the ".pch" file using a "punch" format (80 column width per line).

PLOT causes the program to calculate the requested results, but not print them. This option is usually used when you wish to view the results in plots and/or a post processing program.

If used, this selection is placed in parenthesis after the command

Page 61: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 6161

OUTPUT Selection(cont) When requesting the calculation of results quantities, they may be

requested for selected items by referencing a SET, or for ALL items. Examples:

DISP = ALL - calculate and print displacement results for all points in the model

DISP(PLOT) = ALL - calculate, but do not print, displacement results for all points

in the modelDISP = 1 - calculate and print the displacements for all

GRID points and SPOINTs in SET 1 (SET 1 must be pre-defined)

Page 62: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 6262

Element output requests:The following Case Control commands may be used to

request element-related output

ELFORCE or FORCE - Requests the element forces to be calculated and written for a set of structural elements

ELSTRESS or STRESS - Requests the stresses for a set of structural elements

STRAIN - Requests the calculated strains for a set of plate or solid elements

ESE - Requests the strain energy for a set of elements

ELSUM - Requests summary of properties for elements in the model

Page 63: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 6363

Grid point output requestsDISPLACEMENT - Requests the displacements for a set of

grid pointsDISPLACEMENT(PLOT) - Alternate form of the

DISPLACEMENT command. Causes the calculation of the displacements but no printout. This form of command is often used when plots or postprocessing are desired, but there is no need for the printed output.

SPCFORCES - Requests the single-point contraint forces (or reaction forces) for a set of grid points

OLOAD - Requests applied loads for output in static analysis

GPFORCE - Requests the grid point force balance for a set of grid points

Page 64: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 6464

Use Of GPFORCE RequestThe GPFORCE request generates a table containing the

grid point force balance at the selected grid points. This is useful for determining load paths, contributions of

applied loads to element response, and effects of initial thermal strain.

Contributors to the grid point force balance table include:Applied Loads = Physical (forces, moments, etc) and ThermalSPCFORCEs = reactions at constrained dofMPCFORCEs = Forces transferred through constraint equationsElement FORCEs = forces at the GRID points from the elements

Page 65: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 6565

Sample Case ControlThe following is an example of Case Control:CENDTITLE = Use GPFORCE RequestTEMP(LOAD) = 100 $ apply temperature set 100SPC = 200 $ apply constraint set 200LOAD = 120 $ apply static load set 120DISP = ALL $ Displacement for all GRID pointsFORCE = ALL $ Forces for all elementsSTRESS = ALL $ Stress output for all elementsGPFORCE = ALL $ Grid Point Force Balance for all GRIDsBEGIN BULK $ end of case control section

Page 66: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 6666

Use of SETsAll of the output requests may either point to ALL members of

the model, or user-defined sets.These sets are defined using the SET commandSET - Defines a collection of grid point numbers or element

numbers for use in output requests. Example:

Set 1 = 9,11,13,15FORCE = 1 $ element forces for elements 9,11,13,15DISP = ALL $ displacements for all GRID pointsSET 99 = 14,32GPFORCE = 99 $ Grid point force balance at GRIDs 14 and 32

Page 67: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 6767

Selection of Output Request

Since MSC.Nastran will not calculate any results unless requested, if you wish to use graphical postprocessing (regardless of software used), you must include the appropriate Case Control output request commands

For example, to postprocess displacement plots, the Case Control must include the request:DISP = N or

DISP(PLOT)=N This causes the displacement data for set N to be calculated

and saved on the postprocessing graphics file

Page 68: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 6868

Printed OutputThere are two formats used to present printed results from

MSC.Nastran. For purposes of static analysis, the default format used to print results (SORT1) is the preferred formatSORT1 - Analysis output is presented as a tabular listing of the

grid point selected output for each subcase. Output for each loading condition is started on any page. (Default for static analysis)

SORT2 - Analysis output is presented as a tabular listing of the subcases for each selected output item. Output for each grid point or element is started on a new page.

A request for SORT2 format with any output request results in all output requests being printed in SORT2 format

Page 69: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 6969

Printed Output (cont.)

A request for SORT2 format with any output request results in all output requests being printed in SORT2 format

Warning: SORT2 output requests may produce an excessive number of output pages. SORT2 is normally used only in dynamic solutions

Page 70: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 7070

Sample of SORT1 Output

Page 71: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 7171

Sample of SORT2 Output

Page 72: SECTION 3 Solution Control.

NAS101, Page 3- NAS101, Page 3- 7272

Blank Page