Second order minimum conditions:

93
1 A general continuous global approach to: - Optimal forest management with respect to the global warming problem and global economics - One section of the lectures by Peter Lohmander at UPV, Polytechnical University of Valencia, Spain, February 2010 Peter Lohmander Professor of forest management and economic optimization SLU, Faculty of Forest Sciences Dept. of forest economics 901 83 Umeå, Sweden http://www.Lohmander.com

description

A general continuous global approach to: - Optimal forest management with respect to the global warming problem and global economics. - One section of the lectures by Peter Lohmander at UPV, Polytechnical University of Valencia, Spain, February 2010 Peter Lohmander - PowerPoint PPT Presentation

Transcript of Second order minimum conditions:

Page 1: Second order minimum conditions:

1

A general continuous global approach to:- Optimal forest management with respect to theglobal warming problem and global economics

- One section of the lectures by Peter Lohmander at UPV, Polytechnical University of Valencia, Spain, February

2010

Peter LohmanderProfessor of forest management and economic optimization

SLU, Faculty of Forest SciencesDept. of forest economics

901 83 Umeå, Swedenhttp://www.Lohmander.com

Page 2: Second order minimum conditions:

2

Page 3: Second order minimum conditions:

3

Page 4: Second order minimum conditions:

4

,min ( ) ( ) ( ) ( )

. .

u f a wu w

C C u C f C a v C w

s t

u f K f K u

w a K a K w

v u

Page 5: Second order minimum conditions:

5

,min ( ) ( ) ( ) ( )u f a w

u wC C u C K u C K u w C w

Page 6: Second order minimum conditions:

6

( ) ( ) ( ) 0

( ) ( ) 0

u f a

a w

CC u C K u C K u w

uC

C K u w C ww

u f a

a w

C C C

C C

Page 7: Second order minimum conditions:

7

2

2

2

2

2

2

( ) ( ) ( )

( )

( )

( ) ( )

u f a

a

a

a w

CC u C K u C K u w

u

CC K u w

u w

CC K u w

w u

CC K u w C w

w

Page 8: Second order minimum conditions:

8

Second order minimum conditions:

2

20

C

u

2 2

2

2 2

2

0

C C

u u w

C C

w u w

Page 9: Second order minimum conditions:

9

0u f aC C C

0u f a a

a a w

C C C C

C C C

Page 10: Second order minimum conditions:

10

0u f a u f aC C C C C C

2u f a a

u f a a w a

a a w

C C C CC C C C C C

C C C

Page 11: Second order minimum conditions:

11

2

2 2

0

u f a a w a

u a u w f a f w a a w a

u a u w f a f w a w

C C C C C C

C C C C C C C C C C C C

C C C C C C C C C C

Page 12: Second order minimum conditions:

12

Observations of the first and second order conditions:

( , )

0

0

( , ) 0

x

y

x y

f x y

f

f

df x y f dx f dy

Page 13: Second order minimum conditions:

13

2 2 2( , ) ( ) ( )xx xy yx yyd f x y f dx f dxdy f dydx f dy

xy yxf f

2 2 2

2 2 2

( , ) ( ) ( )

( , ) 2

xx xy yx yyd f x y f dx f dxdy f dydx f dy

d f x y au huv bv

Page 14: Second order minimum conditions:

14

2 2 22d f au huv bv

2 2 22h

d f a u uv bva

2 22 2 2 2 2

22

h h hd f a u uv v bv v

a a a

Page 15: Second order minimum conditions:

15

2 22 2h ab h

d f a u v va a

xxf a a

2xx xy

yx yy

f f a hab h

f f h b

Page 16: Second order minimum conditions:

16

2 20 0 0a ab h d f

2 20 0 0 0h

a ab h u v d fa

2 20 0 0 0a ab h v d f

2 20 0 0 0 0a ab h u v d f

Page 17: Second order minimum conditions:

17

So, if 0xxf and 0xx xy

yx yy

f f

f f

and 0 0dx dy

or 0 0dx dy

or 0 0dx dy

then 2 0d f

Page 18: Second order minimum conditions:

18

Then, the solution to

represents a (locally) unique minimum.

0

0x

y

f

f

Page 19: Second order minimum conditions:

19

A numerically specified example:

1( ) 5

20uC u u

1( ) 10

300fC f f

1( ) 0

20aC K u w K u w

1( ) 14

100wC w w

Page 20: Second order minimum conditions:

20

Page 21: Second order minimum conditions:

21

Comparative statics analysis:

( ) ( ) ( ) 0

( ) ( ) 0

u f a

w a

CC u C K u C K u w

uC

C w C K u ww

Page 22: Second order minimum conditions:

22

u f a a f a

a w a a

C C C du C dw C C dK

C du C C dw C dK

Page 23: Second order minimum conditions:

23

1 1 1 1 1 1

20 300 20 20 300 20

1 1 1 1

20 100 20 20

du dw dK

du dw dK

Page 24: Second order minimum conditions:

24

31 1 16

300 20 300

1 6 1

20 100 20

du dw dK

du dw dK

Page 25: Second order minimum conditions:

25

16 1300 20

1 620 100 0.0007

0.1891891890.003731 1

300 20

1 620 100

du

dK

Page 26: Second order minimum conditions:

26

31 16300 300

1 120 20 0.0025

0.6756756750.003731 1

300 20

1 620 100

dw

dK

Page 27: Second order minimum conditions:

27

Explicit solution of the example for alternative values of K

( ) ( ) ( ) 0

( ) ( ) 0

u f a

w a

CC u C K u C K u w

uC

C w C K u ww

Page 28: Second order minimum conditions:

28

1 1 15 10 ( ) 0 ( ) 0

20 300 20

1 114 0 ( ) 0

100 20

Cu K u K u w

u

Cw K u w

w

Page 29: Second order minimum conditions:

29

31 15 16 15000

300 300 300 3005 6 5 1400

0100 100 100 100

Cu w K

uC

u w Kw

Page 30: Second order minimum conditions:

30

0 31 15 16 1500 0

0 5 6 5 1400 0

Cu w K

u

Cu w K

w

Page 31: Second order minimum conditions:

31

0 31 15 1500 16

0 5 6 1400 5

Cu w K

u

Cu w K

w

Page 32: Second order minimum conditions:

32

Page 33: Second order minimum conditions:

33

1500 16 15

6 1500 16 15 1400 51400 5 6

31 15 31 6 5 15

5 6

30000 21

111

K

K KKu

Ku

Page 34: Second order minimum conditions:

34

31 1500 16

5 1400 5 31( 1400 5 ) 5(1500 16 )31 15 31 6 5 15

5 6

50900 75

111

K

K K Kw

Kw

Page 35: Second order minimum conditions:

35

Dynamic approach analysis

du Cu

dt udw C

wdt w

1

Page 36: Second order minimum conditions:

36

eq

eq

x u u

y w w

Page 37: Second order minimum conditions:

37

u f a a

a w a

x C C C x C y

y C x C C y

Page 38: Second order minimum conditions:

38

xx xy

yx yy

x m x m y

y m x m y

Page 39: Second order minimum conditions:

39

( ) ; ( )kt ktx t Ae y t Be

kt kt ktxx xy

kt kt ktyx yy

kAe m Ae m Be

kBe m Ae m Be

Page 40: Second order minimum conditions:

40

xx xy

yx yy

kA m A m B

kB m A m B

Page 41: Second order minimum conditions:

41

0

0xx xy

yx yy

k m m A

m k m B

Page 42: Second order minimum conditions:

42

• k is selected in way such that the two equations become identical. This way, the equations only determine the ratio B/A, not the values of A and B. This is necessary since we must have some freedom to determine A and B such that they fit the initial conditions.

• With two roots (that usually are different), we (usually) get two different ratios B/A. This makes it possible to fit the parameters to the (two dimensional) initial conditions (x(0),y(0)).

Page 43: Second order minimum conditions:

43

One way to determine the value(s) of k is to use this equation:

0xx xy

xx yy xy yxyx yy

k m mk m k m m m

m k m

Page 44: Second order minimum conditions:

44

xy yxm m

20xx yy xyk m k m m

22 0xx yy xx yy xyk m m k m m m

Page 45: Second order minimum conditions:

45

Another way to get to the same equation, is to make sure that the two equations give the same value to

the ratio B/A.

0

0

xxxx xy

xy

xy yx

xyxy yy

yy

k mBk m A m B

A m

m m

mBm A k m B

A k m

Page 46: Second order minimum conditions:

46

2

22

0

0

xyxx

xy yy

xx yy xy

xx yy xx yy xy

mk mB

A m k m

k m k m m

k m m k m m m

Page 47: Second order minimum conditions:

47

Lets us solve the equation!

2

2

2 2xx yy xx yy

xx yy xy

m m m mk m m m

2

2

2 2xx yy xx yy

xy

m m m mk m

Page 48: Second order minimum conditions:

48

No cyclical solutions!

• Observe that the expression within the square root sign is positive.

• As a consequence, only real roots, k, exist.

• For this reason, cyclical solutions to the differential equation system can be ruled out.

Page 49: Second order minimum conditions:

49

xx u f a

xy yx a

yy w a

m C C C

m m C

m C C

Page 50: Second order minimum conditions:

50

2

2

2 2

u f a w au f a w a

a

C C C C CC C C C Ck C

2

22

2 2

u f w a u f w

a

C C C C C C Ck C

Page 51: Second order minimum conditions:

51

• We may observe that

• As a consequence, both roots to to the equation are strictly negative.

• Therefore, divegence from the equilibrium solution is ruled out.

u f w u f wABS C C C ABS C C C

2

22

2 2

u f w a u f w

a

C C C C C C Ck C

Page 52: Second order minimum conditions:

52

• With only strictly negative roots, we have a guaranteed convergence to the equilibrium.

• However, this does not have to be monotone.

• With two different roots (k1 and k2) and with

parameters A1 and A2 with different signs (and/or parameters B1 and B2 with different signs), the sign(s) of the deviation(s) from the equilibrium value(s) may change over time.

Page 53: Second order minimum conditions:

53

Derivation of the roots in the example:

2

21 1 1 1 1 1 1

120 300 100 10 20 300 1002 2 20

k

Page 54: Second order minimum conditions:

54

249 13 1

600 600 400k

1

1

2

2

0.081667 0.054493

0.13616

0.081667 0.054493

0.027174

k

k

k

k

Page 55: Second order minimum conditions:

55

1 2

1 2

1 2

1 2

( )

( )

k t k t

k t k t

x t A e A e

y t B e B e

Page 56: Second order minimum conditions:

56

We may determine the path completely using the initial

conditions

0 0(0), (0) ,x y x y

Page 57: Second order minimum conditions:

57

We also use the earlier derived results:

xyxx

xy yy

mk mB

A m k m

Page 58: Second order minimum conditions:

58

Using the derived roots, we get:

11 1

xx

xy

k mB A

m

2 22

xy

xx

mA B

k m

Page 59: Second order minimum conditions:

59

1 2

1 2

1 22

11 2

( )

( )

xyk t k t

xx

xx k t k t

xy

mx t A e B e

k m

k my t A e B e

m

Page 60: Second order minimum conditions:

60

Let us use the initial conditions and determine the parameters!

0 1 22

10 1 2

xy

xx

xx

xy

mx A B

k m

k my A B

m

Page 61: Second order minimum conditions:

61

2 01

021

1

1

xy

xx

xx

xy

m

k m xA

yBk m

m

Page 62: Second order minimum conditions:

62

02

0 020

11

22

1

1

11

1

xy

xx xy

xx

xxxy

xxxx

xx

xy

mx

k m mx y

k myA

k mm

k mk m

k m

m

Page 63: Second order minimum conditions:

63

0

1 10 0 0

21

22

1

1

11

1

xx xx

xy xy

xxxy

xxxx

xx

xy

x

k m k my y x

m mB

k mm

k mk m

k m

m

Page 64: Second order minimum conditions:

64

Using the figures from the example, we get:

0 01

0.6565

1.431

x yA

0 02

0.6565

1.431

y xB

Page 65: Second order minimum conditions:

65

The solutions to the numerically specified example

X(t) = -106.63·EXP(- 0.13612·t) + 6.61·EXP(- 0.02718·t)

Page 66: Second order minimum conditions:

66

Y(t) = - 69.95·EXP(- 0.13612·t) - 10.07·EXP(- 0.02718·t)

Page 67: Second order minimum conditions:

67

Page 68: Second order minimum conditions:

68

The cost function from different perspectives:

(based on the numerically specified example)

Page 69: Second order minimum conditions:

69

Page 70: Second order minimum conditions:

70

Page 71: Second order minimum conditions:

71

Numerical solution of the example problem using direct

minimization:

Costmin Valencia Lohmander 2010-02-22

Page 72: Second order minimum conditions:

72

K = 600• model:• min = C;• k = 600;• C = cu + cf + ca + cw;• cu = 5*u+1/40*u^2;• cf = 10*f + 1/600*f^2;• ca = 1/40*(k-u-w)^2;• cw = 14*w+1/200*w^2;• f = k-u;• a = k-w;• @free(anet);• anet = a - u;• @free(eqw);• 31*equ+15*eqw=1500 + 16*k;• 5*equ+6*eqw = -1400+5*k;• end

Page 73: Second order minimum conditions:

73

• Variable Value Reduced Cost• C 8975.806 0.000000• K 600.0000 0.000000• CU 4995.578 0.000000• CF 2516.909 0.000000• CA 1463.319 0.000000• CW 0.000000 0.000000• U 358.0645 0.000000• F 241.9355 0.000000• W 0.000000 1.903226• A 600.0000 0.000000• ANET 241.9355 0.000000• EQW -53.15315 0.000000• EQU 383.7838 0.000000

Page 74: Second order minimum conditions:

74

K = 800

• model:• min = C;• k = 800;• C = cu + cf + ca + cw;• cu = 5*u+1/40*u^2;• cf = 10*f + 1/600*f^2;• ca = 1/40*(k-u-w)^2;• cw = 14*w+1/200*w^2;• f = k-u;• a = k-w;• @free(anet);• anet = a - u;• @free(eqw);• 31*equ+15*eqw=1500 + 16*k;• 5*equ+6*eqw = -1400+5*k;• end

Page 75: Second order minimum conditions:

75

• Variable Value Reduced Cost• C 13952.25 0.000000• K 800.0000 0.000000• CU 6552.228 0.000000• CF 4022.401 0.000000• CA 2196.271 0.000000• CW 1181.353 0.000000• U 421.6216 0.000000• F 378.3784 0.000000• W 81.98198 0.000000• A 718.0180 0.000000• ANET 296.3964 0.000000• EQW 81.98198 0.000000• EQU 421.6216 0.000000

Page 76: Second order minimum conditions:

76

K = 1000• model:• min = C;• k = 1000;• C = cu + cf + ca + cw;• cu = 5*u+1/40*u^2;• cf = 10*f + 1/600*f^2;• ca = 1/40*(k-u-w)^2;• cw = 14*w+1/200*w^2;• f = k-u;• a = k-w;• @free(anet);• anet = a - u;• @free(eqw);• 31*equ+15*eqw=1500 + 16*k;• 5*equ+6*eqw = -1400+5*k;• end

Page 77: Second order minimum conditions:

77

• Variable Value Reduced Cost• C 19357.66 0.000000• K 1000.000 0.000000• CU 7574.872 0.000000• CF 5892.379 0.000000• CA 2615.068 0.000000• CW 3275.339 0.000000• U 459.4595 0.000000• F 540.5405 0.000000• W 217.1171 0.000000• A 782.8829 0.000000• ANET 323.4234 0.000000• EQW 217.1171 0.000000• EQU 459.4595 0.000000

Page 78: Second order minimum conditions:

78

Numerical approximation of the dynamics:

• ! dynsim;• ! Peter Lohmander Valencia 20100222;• model:• sets:• time/1..100/:x,y,dx,dy;• endsets• cxx = 31/300;• cxy = 15/300;• cyx = 15/300;• cyy = 18/300;• x(1) = -100;• y(1) = -80;

Page 79: Second order minimum conditions:

79

• @FOR( time(t): dx(t)= -( cxx*x(t) + cxy*(y(t)) ));• @FOR( time(t): dy(t)= -( cyx*x(t) + cyy*(y(t)) ));

• @FOR( time(t)| t#GT#1: x(t)= x(t-1) + dx(t-1) );• @FOR( time(t)| t#GT#1: y(t)= y(t-1) + dy(t-1) );

• @for(time(t): @free(x(t))); • @for(time(t): @free(y(t)));• @for(time(t): @free(dx(t))); • @for(time(t): @free(dy(t)));

• end

Page 80: Second order minimum conditions:

80

• Variable Value• CXX 0.1033333• CXY 0.5000000E-01• CYX 0.5000000E-01• CYY 0.6000000E-01

• X( 1) -100.0000• X( 2) -85.66667• X( 3) -73.30444• X( 4) -62.64442• X( 5) -53.45430• X( 6) -45.53346

Page 81: Second order minimum conditions:

81

• X( 19) -3.638081• X( 20) -2.705807• X( 21) -1.912344• X( 22) -1.238468• X( 23) -0.6675825• X( 24) -0.1853596• X( 25) 0.2205703• X( 26) 0.5608842• X( 27) 0.8447973• X( 28) 1.080263

Page 82: Second order minimum conditions:

82

• X( 40) 1.894182• X( 41) 1.881254• X( 42) 1.863429• X( 43) 1.841555• X( 44) 1.816360• X( 45) 1.788465

Page 83: Second order minimum conditions:

83

• Y( 1) -80.00000• Y( 2) -70.20000• Y( 3) -61.70467• Y( 4) -54.33716• Y( 5) -47.94471• Y( 6) -42.39532• Y( 7) -37.57492• Y( 8) -33.38500

Page 84: Second order minimum conditions:

84

• Y( 94) -0.7735111• Y( 95) -0.7524823• Y( 96) -0.7320263• Y( 97) -0.7121272• Y( 98) -0.6927697• Y( 99) -0.6739392• Y( 100) -0.6556210

Page 85: Second order minimum conditions:

85

References

• Lohmander, P., Adaptive Optimization of Forest Management in a Stochastic World, in Weintraub A. et al (Editors), Handbook of Operations Research in Natural Resources, Springer, Springer Science, International Series in Operations Research and Management Science, New York, USA, pp 525-544, 2007 http://www.amazon.ca/gp/reader/0387718141/ref=sib_dp_pt/701-0734992-1741115#reader-link

• Lohmander, P,. Energy Forum, Stockholm, 6-7 February 2008, Conference program with links to report and software by Peter Lohmander:http://www.energyforum.com/events/conferences/2008/c802/program.phphttp://www.lohmander.com/EF2008/EF2008Lohmander.htm

• Lohmander, P., Ekonomiskt rationell utveckling för skogs- och energisektorn i Sverige, Nordisk Papper och Massa, Nr 3, 2008

• Lohmander, P., Mohammadi, S., Optimal Continuous Cover Forest Management in an Uneven-Aged Forest in the North of Iran, Journal of Applied Sciences 8(11), 2008 http://ansijournals.com/jas/2008/1995-2007.pdfhttp://www.Lohmander.com/LoMoOCC.pdf

• Lohmander, P., Guidelines for Economically Rational and Coordinated Dynamic Development of the Forest and Bio Energy Sectors with CO2 constraints, Proceedings from the 16th European Biomass Conference and Exhibition, Valencia, Spain, 02-06 June, 2008 (In the version in the link, below, an earlier misprint has been corrected. ) http://www.Lohmander.com/Valencia2008.pdf

Page 86: Second order minimum conditions:

86

• Lohmander, P., Economically Optimal Joint Strategy for Sustainable Bioenergy and Forest Sectors with CO2 Constraints, European Biomass Forum, Exploring Future Markets, Financing and Technology for Power Generation, CD, Marcus Evans Ltd, Amsterdam, 16th-17th June, 2008 http://www.Lohmander.com/Amsterdam2008.ppt

• Lohmander, P., Ekonomiskt rationell utveckling för skogs- och energisektorn, Nordisk Energi, Nr. 4, 2008

• Lohmander, P., Optimal resource control model & General continuous time optimal control model of a forest resource, comparative dynamics and CO2 consideration effects, SLU Seminar in Forest Economics, Umea, Sweden, 2008-09-18 http://www.lohmander.com/CM/CMLohmander.ppt

• Lohmander, P., Tools for optimal coordination of CCS, power industry capacity expansion and bio energy raw material production and harvesting, 2nd Annual EMISSIONS REDUCTION FORUM: - Establishing Effective CO2, NOx, SOx Mitigation Strategies for the Power Industry, CD, Marcus Evans Ltd, Madrid, Spain, 29th & 30th September 2008 http://www.lohmander.com/Madrid08/Madrid_2008_Lohmander.ppt

• Lohmander, P., Optimal CCS, Carbon Capture and Storage, Under Risk, International Seminars in Life Sciences, Universidad Politécnica de Valencia, Thursday 2008-10-16 http://www.lohmander.com/OptCCS/OptCCS.ppt

Page 87: Second order minimum conditions:

87

• Lohmander, P., Economic forest production with consideration of the forest and energy industries, E.ON International Bioenergy Conference, Malmo, Sweden, 2008-10-30 http://www.lohmander.com/eon081030/eon081030.ppt

• Lohmander, P., Optimal dynamic control of the forest resource with changing energy demand functions and valuation of CO2 storage, UE2008.fr, The European Forest-based Sector: Bio-Responses to Address New Climate and Energy Challenges? Nancy, France, November 6-8, 2008 http://www.lohmander.com/Nancy08/Nancy08.ppt (See also later versions 2009)

• Lohmander, P., Optimal dynamic control of the forest resource with changing energy demand functions and valuation of CO2 storage, The European Forest-based Sector: Bio-Responses to Address New Climate and Energy Challenges, Nancy, France, November 6-8, 2008, Proceedings: (forthcoming) in French Forest Review (2009) Abstract: Page 65 of: http://www.gip-ecofor.org/docs/34/rsums_confnancy2008__20081105.pdfPresentation as pdf: http://www.gip-ecofor.org/docs/nancy2008/ppt_des_presentations_orales/lohmander_session_3.1.pdfConference: http://www.gip-ecofor.org/docs/34/nancy2008englishprogramme20081106.pdf

• ECOFOR, (in French) Summary of results by Peter Lohmander (on page 8) in “Evaluation du developpement de la bioenergie”, in Bulletin d’information sur les forets europeennes, l’energie et climat, Volume 157, Numero 1, Lundi 10 novembre 2008 http://www.gip-ecofor.org/docs/34/nancy2008synthseiisd.pdf

• IISD, Summary of results by Peter Lohmander (on page 6) in “Evaluation of Bioenergy Development”, in European Forests, Energy and Climate Bulletin, Published by the International Institute for Sustainable Development (IISD) http://www.iisd.org/ , Vol. 157, No. 1, Monday, 10 November, 2008 http://www.iisd.ca/download/pdf/sd/ymbvol157num1e.pdf

Page 88: Second order minimum conditions:

88

• Lohmander, P., Integrated Regional Study Stage 1., Presentation at the E.ON - Holmen - Sveaskog - SLU Research Meeting, Norrköping, Sweden, 2008-12-10 – 2008-12-11, http://www.lohmander.com/NorrDec08/NorrDec08.ppt , http://www.lohmander.com/NorrDec08/NorrDec08.pdf , http://www.lohmander.com/NorrDec08/NorrDec08RawData.xls

• Lohmander, P., Öka avverkningen och hjälp Sverige ur krisen, VI SKOGSÄGARE, Debatt, Nr. 1, 2009 http://www.lohmander.com/PLdebattVIS2009nr1.pdf

• Lohmander, P., Economic Forest Production with Consideration of the Forest and Energy Industries (SLU 2009-01-29), http://www.lohmander.com/SLU09/SLU09.pdf http://www.lohmander.com/SLU09/SLU09.ppt

• Lohmander, P., Rational and sustainable international policy for the forest sector with consideration of energy, global warming, risk, and regional development, SLU, Umea, 2009-02-18, http://www.lohmander.com/IntPres090218.ppt

• Lohmander, P., Strategic options for the forest sector in Russia with focus on economic optimization, energy and sustainability (Full paper in English with short translation to Russian), ICFFI News, Vol. 1, Number 10, March 2009http://www.Lohmander.com/RuMa09/RuMa09.htm

Page 89: Second order minimum conditions:

89

• International seminar, ECONOMICS OF FORESTRY AND FOREST SECTOR: ACTUAL PROBLEMS AND TRENDS, St Petersburg, Russia, March 2009, http://www.lohmander.com/RuMa09/ProgramRuMa09.pdf

• Lohmander, P., Satsa på biobränsle, Skogsvärden, Nr 1, 2009 http://www.Lohmander.com/PL_SV_1_09.jpg

• Lohmander, P., Stor potential för svensk skogsenergi, Nordisk Energi, Nr. 2, 2009 http://www.Lohmander.com/Information/ne1.jpghttp://www.Lohmander.com/Information/ne2.jpghttp://www.Lohmander.com/Information/ne3.jpghttp://www.Lohmander.com/PL_SvSE_090205.pdfhttp://www.Lohmander.com/PL_SvSE_090205.doc

• Lohmander, P., Strategiska möjligheter för skogssektorn i Ryssland Nordisk Papper och Massa, Nr 2, 2009 http://www.Lohmander.com/PL_NPM_2_2009.pdf http://www.Lohmander.com/PL_RuSwe_09.pdf http://www.Lohmander.com/PL_RuSwe_09.doc

Page 90: Second order minimum conditions:

90

• Lohmander, P., Economic forest production with consideration of the forest- and energy industries, Project meeting presentation, Stockholm, Sweden, 2009-05-11, http://www.lohmander.com/EON_090511.ppt

• Lohmander, P., Derivation of the Economically Optimal Joint Strategy for Development of the Bioenergy and Forest Products Industries, European Biomass and Bioenergy Forum, MarcusEvans, London, UK, 8-9 June, 2009, http://www.lohmander.com/London09/London_Lohmander_09.ppt & ttp://www.lohmander.com/London09.pdf

• Lohmander, P., Rational and sustainable international policy for the forest sector - with consideration of energy, global warming, risk, and regional development, Preliminary plan, 2009-08-05, http://www.lohmander.com/ip090805.pdf

Page 91: Second order minimum conditions:

91

Page 92: Second order minimum conditions:

92

Page 93: Second order minimum conditions:

93

A general continuous global approach to:- Optimal forest management with respect to theglobal warming problem and global economics

- One section of the lectures by Peter Lohmander at UPV, Polytechnical University of Valencia, Spain, February

2010

Peter LohmanderProfessor of forest management and economic optimization

SLU, Faculty of Forest SciencesDept. of forest economics

901 83 Umeå