Sébastien Neukirch- Elastic knots

download Sébastien Neukirch- Elastic knots

of 56

Transcript of Sébastien Neukirch- Elastic knots

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    1/56

    Elastic knots

    joint work with:

    Nicolas Clauvelin (PhD work)Basile Audoly

    Sbastien Neukirch

    CNRS & Univ Paris 6 (France)dAlembert Institute for Mechanics

    (elastic beam under finite rotation and self-contact)

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    2/56

    Tensile strength of a wire

    Stasiak et al, Science (1999)

    fishing line

    10 kg

    2

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    3/56

    Tensile strength of a wire

    Stasiak et al, Science (1999)

    fishing line

    with knot

    6 kg

    3

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    4/56

    Knots are everywhere

    Long enough polymers are (almost) certainly knotted

    Sumners+Whittington, J. Phys. A : Math. Gen. 1988

    273 knotted proteins in the ProteinDataBank (1%)

    Single molecule experiment

    with knotted F-Actin filamentsArai et al, Nature (1999)

    Ab-initio molecular simulations

    for alcane molecule (C10H22)Saitta et al, Nature (1999)

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    5/56

    self-contact

    Elastic knots

    T

    T

    - Length L

    - Circular cross-section: radius h- Bending rigidity : E I

    - Twist rigidity : G J

    E : Youngs modulus G : shear modulus J=h4

    2

    I=h

    4

    h

    5

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    6/56

    Elasticfilaments

    climbing plants

    fibrous proteins

    DNA supercoiling

    cables

    Applications

    Theory

    F

    M F

    M

    S=0

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    7/56

    Kirchhoff equations

    apply to :- slender bodies- not too bent

    7

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    8/56

    F

    FM

    M

    8

    Kirchhoff equations

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    9/56

    F

    FM

    Ms

    9

    Kirchhoff equations

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    10/56

    F

    FM

    Ms

    10

    Kirchhoff equations

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    11/56

    s s+ds

    r(s)r(s+ds)

    11

    Kirchhoff equations

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    12/56

    -F(s)

    F(s+ds)

    p(s) ds

    s s+ds

    r(s)r(s+ds)

    12

    Kirchhoff equations

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    13/56

    F(s+ds)

    p(s) ds

    s s+ds

    r(s)r(s+ds)

    F(s+ds) - F(s) +p(s) ds =0

    F(s) + p(s) =0Equilibrium

    13

    -F(s)

    Kirchhoff equations

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    14/56

    F(s+ds)M(s)

    M(s+ds)

    p(s) ds

    s s+ds

    r(s)r(s+ds)

    M + r x F =0

    14

    -F(s)

    Kirchhoff equations

    Equilibrium

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    15/56

    d1d2

    d2

    d1

    d3

    ex

    ey

    ez

    Cosserat frame

    d

    1= u d1

    d

    2= u d2

    d

    3= u d3

    u = {1,2, }di

    curvatures twist

    15

    Kirchhoff equations

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    16/56

    constitutive relations

    curvature

    twist

    M d1 = EI1

    M d2 = EI2

    M d3 = GJ

    Youngs modulus

    shear modulus

    second moment of area

    polar moment of area

    E

    I

    G

    J

    16

    Kirchhoff equations

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    17/56

    Kirchhoff equations

    linear elasticity

    21 ODEs with variable : s

    !F"s#!M"s#

    !r"s#!d

    3"s#

    !d2"s#

    !d3"s#

    !u "s#

    21 unknowns

    A2D

    2

    l

    A2

    A1

    A2

    A1

    A1

    D3

    D =01

    boundary conditions

    !d3"A1#$!d3"A2#

    !r"A2#%!r"A1#$k!d3"A2#

    "D$L%k#

    - how the rod is held

    - few solutions are admissibles

    d

    ds!F$!p

    d

    ds!M$!F&

    !d3

    d

    ds!r$!d3

    d

    ds!

    di$!

    u&!

    di

    mi$K

    iui i$1,2,3

    ordinary differential equations

    17

    1

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    18/56

    Boundary value problem

    S=0

    DR

    Y

    Z

    X( T , M )

    S = L / 2S = - L / 2

    18

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    19/56

    Boundary value problem

    S=0

    Y

    Z

    X

    symmetries :X => - X

    Y => Y

    Z => - Z

    S = L / 2

    - Shooting method (Mathematica)

    - Gauss colocation (AUTO)

    s2

    s1s3

    3 contact

    points

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    20/56

    20

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    21/56

    Numerical Path Following : Results

    t

    =

    TL2

    (2)2EI

    d =D

    L

    Planar Elastica

    D

    D

    t= 2/

    d2

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    22/56

    Distance of self-approach

    S=0

    sa

    sa

    sb

    sb

    h

    (sa, sb) < 2h

    (sa, sb) 2h

    22

    (sa, sb)

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    23/56

    Distance of self-approach

    S=0

    sa

    sa

    sb

    (sa, sb)

    h

    (sa, sb) < 2h

    (sa, sb) 2h

    23

    sb

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    24/56

    Making the rod thinner

    24

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    25/56

    Making the rod thinner

    25

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    26/56

    Making the rod thinner

    26

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    27/56

    Making the rod thinner

    27

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    28/56

    Making the rod thinner

    28

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    29/56

    Making the rod thinner

    29

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    30/56

    Making the rod thinner

    30

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    31/56

    Zero thickness limit

    singular

    point

    T =EI

    2R2

    tensile force bending momentT

    equilibrium :

    singularpoint

    31

    Arai et al (1999)

    EI

    R

    P

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    32/56

    Total contact force

    S=0

    h

    h/s2

    s

    2

    s1 s3

    P1

    P2

    P3

    1/2

    T

    1

    T

    i

    Pi

    1

    Ti

    Pi 0.55 (h/s2)1/2

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    33/56

    Kirchhoff Equations

    forces equil.moments equil.

    tangent def.

    kinematics

    internal force

    internal moment

    position tangent

    ext. pressure

    d

    ds

    p(s) M(s)

    R(s) t(s)

    33

    F(s)

    F

    = p

    M = Ft

    t =1

    EIMt

    R = t

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    34/56

    Planar Elastica

    T

    s (s)

    EI= T sin

    T

    34

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    35/56

    Planar Elastica

    TT

    large T

    EI

    T

    = sin

    singular

    perturbation

    35

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    36/56

    Planar Elastica

    TT

    large T

    EI

    T

    = sin {

    sin 0 (s) 0

    singular

    perturbation

    36

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    37/56

    Planar Elastica

    TT

    large T

    EI

    T

    = sin {

    sin 0 (s) 0

    rapidly varying

    region size : EI

    T

    singular

    perturbationinner layer

    (s)

    37

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    38/56

    Perturbative problem

    small parameter

    =

    2h

    2T

    EI

    1/4 1

    h

    = 0

    (h = 0)

    38

    M h d i i

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    39/56

    Matched asymptotic expansions

    tail

    loop

    braid

    tail

    small parameter : =

    2h

    2T

    EI

    1/4 1

    39

    B id lf

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    40/56

    Braid : self-contact zone

    tail

    loop

    braid

    tail

    40

    B id li i i

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    41/56

    Braid : linear superposition

    small deflections => linear problem

    = +

    1

    twice more rigid

    curvature:1

    2

    1

    R

    self-contact

    =>

    contact with obstacle

    41

    x

    A

    , x

    BxB+ x

    AxB x

    A

    Ki hh ff E ti

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    42/56

    Kirchhoff Equations

    forces equil.

    moments equil.

    tangent def.

    kinematics

    internal force

    internal moment

    position tangent

    ext. pressure

    d

    ds

    p(s) M(s)

    R(s) t(s)

    42

    F(s)

    constitutive relations:

    M = EI

    M = GJ

    curvature

    twist

    F = p

    = Ft

    t =1

    EIMt

    R = t

    B id b d l bl (BVP)

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    43/56

    Braid : boundary value problem (BVP)v

    u

    z

    u2() + v2() = 1

    u =

    2p()u()

    v =

    2p() v()

    [

    unit radius

    u

    = 0

    v

    = 0[

    u(+) = 0

    v(+) = 1

    u(+) = 0

    v(+) = 0

    u

    = 0

    v

    = 0

    [u

    () = 0v

    () = +1

    u() = 0

    v() = 0

    p() =?

    forces

    moments

    43

    boundary conditions

    boundary conditions

    u =xB xA

    2

    v =yB yA2

    B id fi t ki d f l tiv

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    44/56

    Braid : first kind of solutionsu

    z

    u2() + v2() = 1

    u =

    2p()u()

    v

    =2p() v()

    [

    unit radius

    boundary conditions

    u(1) = 0

    v(1) = 1

    (1) = 0

    v

    (1) = 0

    1

    [

    (0) = 0

    (0) = 0.54

    (0) = 0

    (0) = 0.004

    1 = 3.50

    = 6 2

    p() =4 32 4

    /

    2

    u = cos(())

    v = sin(())

    B id d ki d f l tiv

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    45/56

    Braid : second kind of solutionsu

    z

    unit radius

    boundary conditions

    u(+3) = 0

    v(+3) = 1

    u(+3) = 0

    v(+3) = 0

    1 2 3

    =2 p()u()

    v =

    2 p() v()

    p() = P1 ( 1) + P2 ( 2) + P3 ( 3)avec

    u

    vu(0) = 1

    u(0) = 0

    u(0) = 0.66

    u(0) = 0.25

    v(0) = 0

    v(0) = 0.76

    v(0) = 0

    v(0) = 0.38

    3 = 1 = 2.66 ; 2 = 0 ; P1 = P3 = 0.32 ; P2 = 0.35

    P1P2 P3

    B id thi d ki d f l tiv

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    46/56

    Braid : third kind of solutionsu

    z

    unit radius

    boundary conditions

    1 2

    P1P2

    = 0

    2 1 u(+2) = 0

    v(+2) = 1

    u(+2) = 0

    v(+2) = 0

    P1P2

    1 = 0.35

    2 = 2.68

    P1 = 0.12

    P2 = 0.31

    B id t t t l

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    47/56

    Braid : contact topology

    - 2.0 -1.5 - 1.0 -0.5 0.5 1.5

    - 1.0

    -0.5

    0.5

    1.0

    1.0

    - 3 - 2 - 1 0 1 2 30.99

    1.00

    1.01

    1.02

    1.03

    1.04

    1.05

    inter-strand distance

    side view

    47

    B id t t t l

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    48/56

    Braid : contact topology

    B id t t t l

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    49/56

    Braid : contact topology

    R l

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    50/56

    T T

    Results

    Contact pressure

    Total contact force

    p(s)

    p(s)

    h

    R

    R =EI2T

    50

    = 9.91 h1/2 (EI)1/4

    T1/4

    P =

    0

    p(s)ds = 0.82 h1/2 (EI)1/4 T3/4

    E

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    51/56

    Experiments

    R =EI2T

    Tong et al., Nature 2003

    silica wire

    h = 1/2 micron

    E i t

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    52/56

    Experiments

    h

    R

    h/R0

    R

    52

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    53/56

    Fin

    Braid : variational formulation

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    54/56

    Braid : variational formulation

    Kirchhoff equations => minimizing an energy

    V =1

    2

    +

    u2 + v

    2d + v(+) + v()

    with constraint:u2() + v2() 1 ,

    work of externalapplied moments

    }

    54

    Twist Instability

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    55/56

    Twist Instability

    55

    numerical simulations : M. Bergou, M. Wardetzky, S. Robinson, B. Audoly, and E. Grinspun.

    ACM Transactions on Graphics (SIGGRAPH), 2008

    Twisted rods : the ideal case

  • 8/3/2019 Sbastien Neukirch- Elastic knots

    56/56

    Twisted rods : the ideal case

    if rod is uniform, isotropic, naturally straight

    system reduction21 D => 6D

    r = d3

    d

    3= (F r + M0) d3