Seasonal changes in the tropospheric carbon monoxide ...jennyf/talks/jaf_accomc_14_talk.pdf · Cape...

29
Seasonal changes in the tropospheric carbon monoxide profile over the remote Southern Hemisphere evaluated using multi-model simulations and aircraft observations Jenny A. Fisher, Stephen R. Wilson University of Wollongong Guang Zeng National Institute of Water and Atmospheric Research Jason E. Williams Royal Netherlands Meteorological Institute Louisa K. Emmons National Center for Atmospheric Research Ray L. Langenfelds, Paul B. Krummel, L. Paul Steele CSIRO Oceans and Atmosphere Flagship ACCOMC 12 November 2014

Transcript of Seasonal changes in the tropospheric carbon monoxide ...jennyf/talks/jaf_accomc_14_talk.pdf · Cape...

Seasonal changes in the tropospheric carbon monoxide profile over the remote Southern Hemisphere evaluated using multi-model simulations and aircraft observations

Jenny A. Fisher, Stephen R. Wilson University of Wollongong

Guang Zeng National Institute of Water and Atmospheric Research

Jason E. Williams Royal Netherlands Meteorological Institute

Louisa K. Emmons National Center for Atmospheric Research

Ray L. Langenfelds, Paul B. Krummel, L. Paul Steele CSIRO Oceans and Atmosphere Flagship

ACCOMC 12 November 2014

Jenny  A.  Fisher   ([email protected])   2014  ACCOMC

GOAL: Evaluate model CO in the remote Southern Hemisphere free troposphere

• Much  model  evaluaCon  has  focused  on  the  Northern  Hemisphere  (NH)  

• Models  generally  capture  CO  amounts,  seasonality  in  the  Southern  Hemisphere  (SH)  

• However,  CO  verCcal  distribuCon  poorly  represented,  and  difficult  to  constrain  from  satellite  

In  situ  data  from  the  free  troposphere  are  necessary  to  evaluate  model  backgrounds!

MOPITT,  mul>-­‐model  mean

Shindell  et  al.,  2006

Jenny  A.  Fisher   ([email protected])   2014  ACCOMC

GOAL: Evaluate model CO in the remote Southern Hemisphere free troposphere

• Much  model  evaluaCon  has  focused  on  the  Northern  Hemisphere  (NH)  

• Models  generally  capture  CO  amounts,  seasonality  in  the  Southern  Hemisphere  (SH)  

• However,  CO  verCcal  distribuCon  poorly  represented,  and  difficult  to  constrain  from  satellite  

In  situ  data  from  the  free  troposphere  are  necessary  to  evaluate  model  backgrounds!

MOPITT,  mul>-­‐model  mean

Ra>o  of  CO(350  hPa)  /  CO(850hPa)

MOPITT

Mul>-­‐model  mean

Shindell  et  al.,  2006

Jenny  A.  Fisher   ([email protected])   2014  ACCOMC

50°S

40°S

30°S

20°S

10°S

150°E 180° 150° W 120° W 90°W

CGOP

HIPPO

Aircraft data provide a unique opportunity

Cape  Grim  Overflight  Program  (CGOP)  • 1991-­‐1999,  ~monthly  flights  • Melbourne  —>  Bass  Strait  —>  Cape  Grim  • 0-­‐8  km  profiles  west  of  Cape  Grim  • 85  flights  total,  ~17-­‐20  flasks  per  flight

HIAPER  Pole-­‐to-­‐Pole  Observa>ons  (HIPPO)  • 2009-­‐2011,  5  deployments  • ArcCc  —>  Pacific  —>  AntarcCc  • ConCnuous  0-­‐8  km  profiles  • 4-­‐6  SH  flights/deployment,  conCnuous  sampling

Jenny  A.  Fisher   ([email protected])   2014  ACCOMC

GEOS−Chem

45oS

40oS

35oS

140oE 150oE

NIWA−UKCA

45oS

40oS

35oS

140oE 150oE

45oS

40oS

35oS

140oE 150oE

TM5 CAM−chem

45oS

40oS

35oS

140oE 150oE

40 50 60 70 80 ppbv

SHMIP: Southern Hemisphere Model Intercomparison Project

4  atmospheric  chemistry  models  • GEOS-­‐Chem  • NIWA-­‐UKCA  • TM5  • CAM-­‐chem  

5-­‐year  simula>on  (2004-­‐2008)  

Iden>cal  emissions*  • MACCity-­‐REAS  fossil  fuels  • GFEDv3  biomass  burning  • MEGANv2.1-­‐CLM  biogenic  • *except  parameterised  lightning  NOx,  soil  NOx,  volcanic  SO2  

Different  chemistry,  meteorology

Jenny  A.  Fisher   ([email protected])   2014  ACCOMC

20

40

60

80

100

CO

(ppbv)

n=

35

n=

35

n=

25

n=

40

n=

22

n=

17

n=

26

n=

31

n=

37

n=

36

n=

31

n=

26

20

40

60

80

100

CO

(ppbv)

n=

60

n=

53

n=

39

n=

40

n=

35

n=

27

n=

32

n=

53

n=

65

n=

52

n=

51

n=

44

1 2 3 4 5 6 7 8 9 10 11 12

Month

20

40

60

80

100

CO

(ppbv)

n=

80

n=

87

n=

39

n=

54

n=

42

n=

21

n=

40

n=

57

n=

59

n=

56

n=

75

n=

49

0-2 km

2-5 km

5-8 km

Observations

Seasonal cycle of CO near Cape Grim

Jenny  A.  Fisher   ([email protected])   2014  ACCOMC

20

40

60

80

100

CO

(ppbv)

n=

35

n=

35

n=

25

n=

40

n=

22

n=

17

n=

26

n=

31

n=

37

n=

36

n=

31

n=

26

20

40

60

80

100

CO

(ppbv)

n=

60

n=

53

n=

39

n=

40

n=

35

n=

27

n=

32

n=

53

n=

65

n=

52

n=

51

n=

44

1 2 3 4 5 6 7 8 9 10 11 12

Month

20

40

60

80

100

CO

(ppbv)

n=

80

n=

87

n=

39

n=

54

n=

42

n=

21

n=

40

n=

57

n=

59

n=

56

n=

75

n=

49

0-2 km

2-5 km

5-8 km

Cape Grim Obs.

TM5

GEOS-Chem

NIWA-UKCA

CAM-chem

Seasonal cycle of CO near Cape Grim

Comparison  to  SHMIP  models  shows  both  large-­‐scale  biases  (OH-­‐driven?)  &  differences  in  verCcal  structure

Jenny  A.  Fisher   ([email protected])   2014  ACCOMC

20

40

60

80

100

CO

(ppbv)

n=

35

n=

35

n=

25

n=

40

n=

22

n=

17

n=

26

n=

31

n=

37

n=

36

n=

31

n=

26

20

40

60

80

100

CO

(ppbv)

n=

60

n=

53

n=

39

n=

40

n=

35

n=

27

n=

32

n=

53

n=

65

n=

52

n=

51

n=

44

1 2 3 4 5 6 7 8 9 10 11 12

Month

20

40

60

80

100

CO

(ppbv)

n=

80

n=

87

n=

39

n=

54

n=

42

n=

21

n=

40

n=

57

n=

59

n=

56

n=

75

n=

49

0-2 km

2-5 km

5-8 km

Cape Grim Obs.

TM5

GEOS-Chem

NIWA-UKCA

CAM-chem

Seasonal cycle of CO near Cape Grim

TM5  overesCmates

Comparison  to  SHMIP  models  shows  both  large-­‐scale  biases  (OH-­‐driven?)  &  differences  in  verCcal  structure

Jenny  A.  Fisher   ([email protected])   2014  ACCOMC

20

40

60

80

100

CO

(ppbv)

n=

35

n=

35

n=

25

n=

40

n=

22

n=

17

n=

26

n=

31

n=

37

n=

36

n=

31

n=

26

20

40

60

80

100

CO

(ppbv)

n=

60

n=

53

n=

39

n=

40

n=

35

n=

27

n=

32

n=

53

n=

65

n=

52

n=

51

n=

44

1 2 3 4 5 6 7 8 9 10 11 12

Month

20

40

60

80

100

CO

(ppbv)

n=

80

n=

87

n=

39

n=

54

n=

42

n=

21

n=

40

n=

57

n=

59

n=

56

n=

75

n=

49

0-2 km

2-5 km

5-8 km

Cape Grim Obs.

TM5

GEOS-Chem

NIWA-UKCA

CAM-chem

Seasonal cycle of CO near Cape Grim

TM5  overesCmatesCAM-­‐chem  underesCmates

Comparison  to  SHMIP  models  shows  both  large-­‐scale  biases  (OH-­‐driven?)  &  differences  in  verCcal  structure

Jenny  A.  Fisher   ([email protected])   2014  ACCOMC

20

40

60

80

100

CO

(ppbv)

n=

35

n=

35

n=

25

n=

40

n=

22

n=

17

n=

26

n=

31

n=

37

n=

36

n=

31

n=

26

20

40

60

80

100

CO

(ppbv)

n=

60

n=

53

n=

39

n=

40

n=

35

n=

27

n=

32

n=

53

n=

65

n=

52

n=

51

n=

44

1 2 3 4 5 6 7 8 9 10 11 12

Month

20

40

60

80

100

CO

(ppbv)

n=

80

n=

87

n=

39

n=

54

n=

42

n=

21

n=

40

n=

57

n=

59

n=

56

n=

75

n=

49

0-2 km

2-5 km

5-8 km

Cape Grim Obs.

TM5

GEOS-Chem

NIWA-UKCA

CAM-chem

Seasonal cycle of CO near Cape Grim

TM5  overesCmatesCAM-­‐chem  underesCmatesGEOS-­‐Chem,  NIWA-­‐UKCA  reasonable…  but  with  differences  in  verCcal  structure

Comparison  to  SHMIP  models  shows  both  large-­‐scale  biases  (OH-­‐driven?)  &  differences  in  verCcal  structure

Jenny  A.  Fisher   ([email protected])   2014  ACCOMC

20

40

60

80

100

CO

(ppbv)

n=

35

n=

35

n=

25

n=

40

n=

22

n=

17

n=

26

n=

31

n=

37

n=

36

n=

31

n=

26

20

40

60

80

100

CO

(ppbv)

n=

60

n=

53

n=

39

n=

40

n=

35

n=

27

n=

32

n=

53

n=

65

n=

52

n=

51

n=

44

1 2 3 4 5 6 7 8 9 10 11 12

Month

20

40

60

80

100

CO

(ppbv)

n=

80

n=

87

n=

39

n=

54

n=

42

n=

21

n=

40

n=

57

n=

59

n=

56

n=

75

n=

49

0-2 km

2-5 km

5-8 km

Cape Grim Obs.

TM5

GEOS-Chem

NIWA-UKCA

CAM-chem

Seasonal cycle of CO near Cape Grim

TM5  overesCmatesCAM-­‐chem  underesCmatesGEOS-­‐Chem,  NIWA-­‐UKCA  reasonable…  but  with  differences  in  verCcal  structure

Comparison  to  SHMIP  models  shows  both  large-­‐scale  biases  (OH-­‐driven?)  &  differences  in  verCcal  structure

We  use  the  CO  ver>cal  gradient  as  a  metric  for  model  evalua>on

Jenny  A.  Fisher   ([email protected])   2014  ACCOMC

0

2

4

6

8

Altitude (

km

)

DJF MAMJ

0 10 20∆CO (ppbv)

JA SONCGOPHIPPO

0 10 20∆CO (ppbv)

0 10 20∆CO (ppbv)

0 10 20∆CO (ppbv)

The CO vertical gradient — observed

ΔCO  =  (CO)  -­‐  (median  surface  CO)  in  ppbv

Very  close  correspondence  between  Cape  Grim  &  HIPPO  —>  gradients  from  both  datasets  are  representa>ve  of  large-­‐scale,  long-­‐term  drivers

Jenny  A.  Fisher   ([email protected])   2014  ACCOMC

0

2

4

6

8

Altitu

de

(km

)

n=135

n=81

n=32

n=42

n=79

n=31

n=30

n=35DJF

n=102

n=54

n=35

n=34

n=70

n=28

n=32

n=44MAMJ

−5 0 5 10 15 20 25∆CO (ppbv)

0

2

4

6

8

Altitu

de

(km

)

n=65

n=32

n=17

n=18

n=49

n=20

n=20

n=17JA

−5 0 5 10 15 20 25∆CO (ppbv)

n=132

n=58

n=40

n=42

n=86

n=34

n=35

n=35SONCape Grim Obs.

TM5

GEOS-Chem

NIWA-UKCA

CAM-chem

The CO vertical gradient — observed & modelled

In  austral  winter/spring,  all  models  reproduce  verCcal  gradient  of  1.9-­‐2.2  ppbv  km-­‐1  driven  by  primary  biomass  burning  emissions

Jenny  A.  Fisher   ([email protected])   2014  ACCOMC

0

2

4

6

8

Altitu

de

(km

)

n=135

n=81

n=32

n=42

n=79

n=31

n=30

n=35DJF

n=102

n=54

n=35

n=34

n=70

n=28

n=32

n=44MAMJ

−5 0 5 10 15 20 25∆CO (ppbv)

0

2

4

6

8

Altitu

de

(km

)

n=65

n=32

n=17

n=18

n=49

n=20

n=20

n=17JA

−5 0 5 10 15 20 25∆CO (ppbv)

n=132

n=58

n=40

n=42

n=86

n=34

n=35

n=35SONCape Grim Obs.

TM5

GEOS-Chem

NIWA-UKCA

CAM-chem

The CO vertical gradient — observed & modelled

In  austral  summer/autumn,  most  models  underes>mate  verCcal  gradient  of  ~1.6-­‐1.9  ppbv  km-­‐1  and  show  a  wider  inter-­‐model  spread.  

WHY?

0

2

4

6

8

Altitu

de

(km

)

n=135

n=81

n=32

n=42

n=79

n=31

n=30

n=35DJF

n=102

n=54

n=35

n=34

n=70

n=28

n=32

n=44MAMJ

−5 0 5 10 15 20 25∆CO (ppbv)

0

2

4

6

8

Altitu

de

(km

)

n=65

n=32

n=17

n=18

n=49

n=20

n=20

n=17JA

−5 0 5 10 15 20 25∆CO (ppbv)

n=132

n=58

n=40

n=42

n=86

n=34

n=35

n=35SONCape Grim Obs.

TM5

GEOS-Chem

NIWA-UKCA

CAM-chem

Jenny  A.  Fisher   ([email protected])   2014  ACCOMC

∆CO (ppbv)

0

2

4

6

8

Altit

ude

(km

)

b. Fixed-lifetime CO25 tracerDJF MAMJ JA SON

0 10 20 0 10 200 10 200 10 20

0

2

4

6

8

Altit

ude

(km

)

d. LPJ-GUESS biogenic emissionsDJF MAMJ JA SON

0 10 20 0 10 200 10 200 10 20

a. Standard simulation

0

2

4

6

8

Altit

ude

(km

)

DJF MAMJ JA SON

0 10 20 0 10 200 10 200 10 20

0

2

4

6

8

Altit

ude

(km

)

c. OH-loss COOH tracerDJF MAMJ JA SON

0 10 20 0 10 200 10 200 10 20

Role of meteorology / transport (2004-2005 only)

Total  CO

CO25

(CO  emissions,  25-­‐day  lifeCme)

Jenny  A.  Fisher   ([email protected])   2014  ACCOMC

∆CO (ppbv)

0

2

4

6

8

Altit

ude

(km

)

b. Fixed-lifetime CO25 tracerDJF MAMJ JA SON

0 10 20 0 10 200 10 200 10 20

0

2

4

6

8

Altit

ude

(km

)

d. LPJ-GUESS biogenic emissionsDJF MAMJ JA SON

0 10 20 0 10 200 10 200 10 20

a. Standard simulation

0

2

4

6

8

Altit

ude

(km

)

DJF MAMJ JA SON

0 10 20 0 10 200 10 200 10 20

0

2

4

6

8

Altit

ude

(km

)

c. OH-loss COOH tracerDJF MAMJ JA SON

0 10 20 0 10 200 10 200 10 20

Role of meteorology / transport (2004-2005 only)

Total  CO

CO25

(CO  emissions,  25-­‐day  lifeCme)

Jenny  A.  Fisher   ([email protected])   2014  ACCOMC

∆CO (ppbv)

0

2

4

6

8

Altit

ude

(km

)

b. Fixed-lifetime CO25 tracerDJF MAMJ JA SON

0 10 20 0 10 200 10 200 10 20

0

2

4

6

8

Altit

ude

(km

)

d. LPJ-GUESS biogenic emissionsDJF MAMJ JA SON

0 10 20 0 10 200 10 200 10 20

a. Standard simulation

0

2

4

6

8

Altit

ude

(km

)

DJF MAMJ JA SON

0 10 20 0 10 200 10 200 10 20

0

2

4

6

8

Altit

ude

(km

)

c. OH-loss COOH tracerDJF MAMJ JA SON

0 10 20 0 10 200 10 200 10 20

Role of meteorology / transport (2004-2005 only)

Total  CO

CO25

(CO  emissions,  25-­‐day  lifeCme)

Jenny  A.  Fisher   ([email protected])   2014  ACCOMC

∆CO (ppbv)

0

2

4

6

8

Altit

ude

(km

)

b. Fixed-lifetime CO25 tracerDJF MAMJ JA SON

0 10 20 0 10 200 10 200 10 20

0

2

4

6

8

Altit

ude

(km

)

d. LPJ-GUESS biogenic emissionsDJF MAMJ JA SON

0 10 20 0 10 200 10 200 10 20

a. Standard simulation

0

2

4

6

8

Altit

ude

(km

)

DJF MAMJ JA SON

0 10 20 0 10 200 10 200 10 20

0

2

4

6

8

Altit

ude

(km

)

c. OH-loss COOH tracerDJF MAMJ JA SON

0 10 20 0 10 200 10 200 10 20

∆CO (ppbv)

0

2

4

6

8

Altit

ude

(km

)

b. Fixed-lifetime CO25 tracerDJF MAMJ JA SON

0 10 20 0 10 200 10 200 10 20

0

2

4

6

8

Altit

ude

(km

)

d. LPJ-GUESS biogenic emissionsDJF MAMJ JA SON

0 10 20 0 10 200 10 200 10 20

a. Standard simulation

0

2

4

6

8

Altit

ude

(km

)

DJF MAMJ JA SON

0 10 20 0 10 200 10 200 10 20

0

2

4

6

8

Altit

ude

(km

)

c. OH-loss COOH tracerDJF MAMJ JA SON

0 10 20 0 10 200 10 200 10 20

Role of chemical loss (2004-2005 only)

Total  CO

COOH

(CO  emissions,  OH-­‐driven  loss)

Jenny  A.  Fisher   ([email protected])   2014  ACCOMC

∆CO (ppbv)

0

2

4

6

8

Altit

ude

(km

)

b. Fixed-lifetime CO25 tracerDJF MAMJ JA SON

0 10 20 0 10 200 10 200 10 20

0

2

4

6

8

Altit

ude

(km

)

d. LPJ-GUESS biogenic emissionsDJF MAMJ JA SON

0 10 20 0 10 200 10 200 10 20

a. Standard simulation

0

2

4

6

8

Altit

ude

(km

)

DJF MAMJ JA SON

0 10 20 0 10 200 10 200 10 20

0

2

4

6

8

Altit

ude

(km

)

c. OH-loss COOH tracerDJF MAMJ JA SON

0 10 20 0 10 200 10 200 10 20

∆CO (ppbv)

0

2

4

6

8

Altit

ude

(km

)

b. Fixed-lifetime CO25 tracerDJF MAMJ JA SON

0 10 20 0 10 200 10 200 10 20

0

2

4

6

8

Altit

ude

(km

)

d. LPJ-GUESS biogenic emissionsDJF MAMJ JA SON

0 10 20 0 10 200 10 200 10 20

a. Standard simulation

0

2

4

6

8

Altit

ude

(km

)

DJF MAMJ JA SON

0 10 20 0 10 200 10 200 10 20

0

2

4

6

8

Altit

ude

(km

)

c. OH-loss COOH tracerDJF MAMJ JA SON

0 10 20 0 10 200 10 200 10 20

Role of biogenic sources (2004-2005 only)

Total  CO

Total  COLPJ-­‐GUESS  isoprene

MEGAN-­‐CLM  isoprene

Jenny  A.  Fisher   ([email protected])   2014  ACCOMC

a. CO

0

100

200 ppbGEOS−Chem NIWA-UKCA

c. CH2O

0

2.5

5 ppb

0

5

10 ppb

b. Isoprene

0

6

12

e. HO2

d. OH

0

100

200 ppq

f. PCO-LCO -3.75•106

0

3.75•106

molec cm-3 s-1

ppt

Chemistry in biogenic source regions key to downwind CO

Surface  concentra>onsGEOS-­‐Chem NIWA-­‐UKCA

Jenny  A.  Fisher   ([email protected])   2014  ACCOMC

a. CO

0

100

200 ppbGEOS−Chem NIWA-UKCA

c. CH2O

0

2.5

5 ppb

0

5

10 ppb

b. Isoprene

0

6

12

e. HO2

d. OH

0

100

200 ppq

f. PCO-LCO -3.75•106

0

3.75•106

molec cm-3 s-1

ppt

Chemistry in biogenic source regions key to downwind CO

Surface  concentra>onsa. CO

0

100

200 ppbGEOS−Chem NIWA-UKCA

c. CH2O

0

2.5

5 ppb

0

5

10 ppb

b. Isoprene

0

6

12

e. HO2

d. OH

0

100

200 ppq

f. PCO-LCO -3.75•106

0

3.75•106

molec cm-3 s-1

ppt

GEOS-­‐Chem NIWA-­‐UKCA

Jenny  A.  Fisher   ([email protected])   2014  ACCOMC

a. CO

0

100

200 ppbGEOS−Chem NIWA-UKCA

c. CH2O

0

2.5

5 ppb

0

5

10 ppb

b. Isoprene

0

6

12

e. HO2

d. OH

0

100

200 ppq

f. PCO-LCO -3.75•106

0

3.75•106

molec cm-3 s-1

ppt

Chemistry in biogenic source regions key to downwind CO

Surface  concentra>onsa. CO

0

100

200 ppbGEOS−Chem NIWA-UKCA

c. CH2O

0

2.5

5 ppb

0

5

10 ppb

b. Isoprene

0

6

12

e. HO2

d. OH

0

100

200 ppq

f. PCO-LCO -3.75•106

0

3.75•106

molec cm-3 s-1

ppt

a. CO

0

100

200 ppbGEOS−Chem NIWA-UKCA

c. CH2O

0

2.5

5 ppb

0

5

10 ppb

b. Isoprene

0

6

12

e. HO2

d. OH

0

100

200 ppq

f. PCO-LCO -3.75•106

0

3.75•106

molec cm-3 s-1

ppt

GEOS-­‐Chem NIWA-­‐UKCA

Jenny  A.  Fisher   ([email protected])   2014  ACCOMC

a. CO

0

100

200 ppbGEOS−Chem NIWA-UKCA

c. CH2O

0

2.5

5 ppb

0

5

10 ppb

b. Isoprene

0

6

12

e. HO2

d. OH

0

100

200 ppq

f. PCO-LCO -3.75•106

0

3.75•106

molec cm-3 s-1

ppt

Chemistry in biogenic source regions key to downwind CO

Surface  concentra>onsa. CO

0

100

200 ppbGEOS−Chem NIWA-UKCA

c. CH2O

0

2.5

5 ppb

0

5

10 ppb

b. Isoprene

0

6

12

e. HO2

d. OH

0

100

200 ppq

f. PCO-LCO -3.75•106

0

3.75•106

molec cm-3 s-1

ppt

a. CO

0

100

200 ppbGEOS−Chem NIWA-UKCA

c. CH2O

0

2.5

5 ppb

0

5

10 ppb

b. Isoprene

0

6

12

e. HO2

d. OH

0

100

200 ppq

f. PCO-LCO -3.75•106

0

3.75•106

molec cm-3 s-1

ppt

GEOS-­‐Chem NIWA-­‐UKCA

Second  &  later  stages  of  isoprene  oxida>on  chemistry  proceed  faster  in  NIWA-­‐UKCA  than  in  GEOS-­‐Chem  —>  less  downwind  CO  produc>on  at  low  alCtude

Jenny  A.  Fisher   ([email protected])   2014  ACCOMC

c. CO

b. CH2O

a. Isoprene

−90 0 90Longitude

4

8

12

Altit

ude

(km

)

0

GEOS−Chem

0

100

200 ppt

−90 0 90Longitude

NIWA-UKCA

0

250

500 ppt

−90 0 90Longitude

−90 0 90Longitude

4

8

12

Altit

ude

(km

)

0

0

50

100 ppb

−90 0 90Longitude

−90 0 90Longitude

4

8

12

Altit

ude

(km

)

0

1 2 3 1 2 3

Transport of biogenic-sourced CO also critical

GEOS-­‐Chem NIWA-­‐UKCA15-­‐45°S  cross-­‐sec>ons

S.  America

Africa

Australia

CGOP  Profiles

Jenny  A.  Fisher   ([email protected])   2014  ACCOMC

c. CO

b. CH2O

a. Isoprene

−90 0 90Longitude

4

8

12

Altit

ude

(km

)

0

GEOS−Chem

0

100

200 ppt

−90 0 90Longitude

NIWA-UKCA

0

250

500 ppt

−90 0 90Longitude

−90 0 90Longitude

4

8

12

Altit

ude

(km

)

0

0

50

100 ppb

−90 0 90Longitude

−90 0 90Longitude

4

8

12

Altit

ude

(km

)

0

1 2 3 1 2 3

Transport of biogenic-sourced CO also critical

GEOS-­‐Chem NIWA-­‐UKCA15-­‐45°S  cross-­‐sec>ons

S.  America

Africa

Australia

CGOP  Profiles

NIWA-­‐UKCA  vs  GEOS-­‐Chem:  

More  deep  convecCve  injecCon  of  isoprene  over  South  American  max

Jenny  A.  Fisher   ([email protected])   2014  ACCOMC

c. CO

b. CH2O

a. Isoprene

−90 0 90Longitude

4

8

12

Altit

ude

(km

)

0

GEOS−Chem

0

100

200 ppt

−90 0 90Longitude

NIWA-UKCA

0

250

500 ppt

−90 0 90Longitude

−90 0 90Longitude

4

8

12

Altit

ude

(km

)

0

0

50

100 ppb

−90 0 90Longitude

−90 0 90Longitude

4

8

12

Altit

ude

(km

)

0

1 2 3 1 2 3

Transport of biogenic-sourced CO also critical

GEOS-­‐Chem NIWA-­‐UKCA15-­‐45°S  cross-­‐sec>ons

S.  America

Africa

Australia

CGOP  Profiles

NIWA-­‐UKCA  vs  GEOS-­‐Chem:  

More  deep  convecCve  injecCon  of  isoprene  over  South  American  max

More  UT  producCon  of  CH2O  and  subsequently  CO

Jenny  A.  Fisher   ([email protected])   2014  ACCOMC

c. CO

b. CH2O

a. Isoprene

−90 0 90Longitude

4

8

12

Altit

ude

(km

)

0

GEOS−Chem

0

100

200 ppt

−90 0 90Longitude

NIWA-UKCA

0

250

500 ppt

−90 0 90Longitude

−90 0 90Longitude

4

8

12

Altit

ude

(km

)

0

0

50

100 ppb

−90 0 90Longitude

−90 0 90Longitude

4

8

12

Altit

ude

(km

)

0

1 2 3 1 2 3

Transport of biogenic-sourced CO also critical

GEOS-­‐Chem NIWA-­‐UKCA15-­‐45°S  cross-­‐sec>ons

S.  America

Africa

Australia

CGOP  Profiles

NIWA-­‐UKCA  vs  GEOS-­‐Chem:  

More  deep  convecCve  injecCon  of  isoprene  over  South  American  max

More  zonal  transport  of  CO  to  UT  regions  downwind

More  UT  producCon  of  CH2O  and  subsequently  CO

Jenny  A.  Fisher   ([email protected])   2014  ACCOMC

What’s next for SHMIP?• Fisher  et  al.  (this  work)  in  ACPD  now:  www.atmos-­‐chem-­‐phys-­‐discuss.net/14/27531/2014/  

• Zeng  et  al.  in  prep.,  focus  impact  of  biogenic  emissions  on  CO  from  surface  in  situ  and  ground-­‐based  total  column  measurements  

• Jason  Williams  (KNMI)  invesCgaCng  sensiCvity  of  NOY  in  UTLS  to  biogenic  emissions  

• Kaitlyn  Lieschke  (UOW,  2015  Honours  student)  evaluaCng  UT  NOX  and  O3  to  invesCgate  impacts  of  model  differences  in  lightning  NOX  parameterisaCons.

SHADOZGEOS−ChemCAM−ChemNIWA−UKCATM5

January

0 100

O3 (ppb)

1000

800

600

400

200

0

Pre

ssu

re (

hP

a)

April July October

0 100 0 100 0 100

San  Cristobal  ozonesonde

Jenny  A.  Fisher   ([email protected])   2014  ACCOMC

Conclusions

• Aircrai  in  situ  data  provide  a  rare  &  valuable  perspecCve  to  evaluate  global  model  representaCons  of  the  chemical  state  of  the  background  atmosphere  

• The  CO  ver>cal  gradient  is  a  sensi>ve  test  of  the  combined  impacts  of  model  emissions,  chemistry,  and  transport  

• Models  &  observaCons  agree  in  winter-­‐spring,  when  primary  biomass  burning  emissions  dominate  the  SH  CO  budget  

• Large  model-­‐model  &  model-­‐observaCon  discrepancies  in  summer-­‐autumn,  when  gradients  are  driven  by  secondary  CO  of  biogenic  origin  

• Disambigua>ng  model  error  in  emissions,  chemistry,  and  transport  requires  broader  in  situ  sampling  of  mul>ple  species,  across  a  range  of  al>tudes,  in  different  chemical  environments  

Acknowledgements:  UOW  Vice  Chancellor’s  Fellowship,  NCI  Na8onal  Facility,  CSIRO  GASLAB,  Australian  Bureau  of  Meteorology/Cape  Grim  Baseline  Air  Pollu8on  Sta8on,  HIPPO  Science  Team,  NeSI  high  performance  compu8ng  facili8es,  UKMO,  UCAR,  Na8onal  Science  Founda8on,  Jingqiu  Mao,  Dagmar  Kubis8n,  Clare  Murphy.