Search for lepton-flavor, lepton- and baryon-number violating...

12
Search for lepton-flavor, lepton- and baryon-number violating tau decays at Belle Debashis Sahoo (on behalf of Belle collaboration) TIFR, Mumbai and Utkal University, Bhubaneswar, India ANOMALIES 2020 September 12, 2020 Contents National and International Organizing Committee ANOMALIES 2020 International Conference (online) IIT Hyderabad, Kandi, Telengana - 502285 Debashis Sahoo LFV, LNV and BNV 1 / 12

Transcript of Search for lepton-flavor, lepton- and baryon-number violating...

Page 1: Search for lepton-flavor, lepton- and baryon-number violating ...anomalies19/Anomalies_talks/...Search for lepton-flavor, lepton- and baryon-number violating tau decays at Belle Author

Search for lepton-flavor, lepton- andbaryon-number violating tau decays at Belle

Debashis Sahoo

(on behalf of Belle collaboration)TIFR, Mumbai and Utkal University, Bhubaneswar, India

ANOMALIES 2020September 12, 2020

Contents Dark matter anomalies by XENON1T

Models with gravitational wave like signature

Experiment vs theory on g-2 of electron and muon

New developments on kaon Physics

Lattice results on semileptonic B decays

Neutrino Physics

National and International Organizing Committee Dr. Priyotosh BandyopadhyayIndian Institute of Technology, Hyderabad

Prof. Rahul SinhaInstitute of Mathematical Sciences, Chennai

Dr. Bhupal DevUniversity of Washington, St. Louis

Prof. Amarjit SoniBrookhaven National Lab

ANOMALIES 2020 International Conference (online)

IIT Hyderabad, Kandi, Telengana - 502285

Website : https://www.iith.ac.in/~anomalies19/anomalies2020

Local Organizers

Dr. Priyotosh BandyopadhyayProf. Anjan GiriDr. Narendra SahuDr. Raghavendra Srikanth Hundi

K K K K

For registration send an email to [email protected] on or before 17th August 2020.

11th - 13th September, 2020

Debashis Sahoo LFV, LNV and BNV 1 / 12

Page 2: Search for lepton-flavor, lepton- and baryon-number violating ...anomalies19/Anomalies_talks/...Search for lepton-flavor, lepton- and baryon-number violating tau decays at Belle Author

Outline

Lepton-flavor, lepton- and baryon-number violating tau decays

Search for τ → p``′ (`(′) = µ, e) decays [NEW] Belle preliminary

KEKB and Belle detector

Introduction

Selection criteria

Sideband study

Expected background

Results in data

Summary

Debashis Sahoo LFV, LNV and BNV 2 / 12

Page 3: Search for lepton-flavor, lepton- and baryon-number violating ...anomalies19/Anomalies_talks/...Search for lepton-flavor, lepton- and baryon-number violating tau decays at Belle Author

KEKB and Belle detector

KEKB: Mostly e+ (3.5 GeV) and e− (8 GeV) mostly collide at center-of-mass energy10.58 GeV.

σ(bb) ∼ 1.1nb and σ(ττ) ∼ 0.9nb: So a B factory as well as τ factory.

Collected close to 1ab−1 data at different resonances and off-resonances.

Debashis Sahoo LFV, LNV and BNV 3 / 12

Page 4: Search for lepton-flavor, lepton- and baryon-number violating ...anomalies19/Anomalies_talks/...Search for lepton-flavor, lepton- and baryon-number violating tau decays at Belle Author

Introduction

Sakharov formulated three conditions to explain matter-antimatter asymmetry in theuniverse [JETP Lett. 5, 24-27, 1967]1. Baryon number violation 2. C-symmetry and CP-symmetry violation 3. Interaction outof thermal equilibrium

Searching for six decay channels τ− → pµ−µ−, p̄µ+µ−, pe−e− , p̄e+e−, p̄e+µ− and

p̄e−µ+ using the data recorded by Belle

Any observation of lepton flavor,lepton and baryon number violationwould be a clear sign for new physics

A diagram for τ− → p̄µ+µ− possible

in a new physics scenario proposed by

Fuentes-Martin et al. [JHEP 1501,134

(2015)], shown in right

LHCb set B(τ− → pµ−µ−) < 4.4× 10−7 and B(τ− → pµ+µ−) < 3.3× 10−7 at 90%confidence level using 1 fb−1 pp collision data [Phys. Lett. B 724 (2013)]

Debashis Sahoo LFV, LNV and BNV 4 / 12

Page 5: Search for lepton-flavor, lepton- and baryon-number violating ...anomalies19/Anomalies_talks/...Search for lepton-flavor, lepton- and baryon-number violating tau decays at Belle Author

Data and reconstruction

711 fb−1 (89.4 fb−1) data recorded at (60MeV below) the Υ(4S) resonance and a

sample of 121 fb−1 collected near the Υ(5S) peak are used in the analysis.

We reconstruct τ → p``′ (`(′) = µ, e)

Variables to identify signal:

Mrec =√

E2p``′ − ~p

2p``′ ,

∆E = ECMp``′ − ECM

beam

Red box denotes the signal region.

The sideband is the ∆E–Mrec regionoutside the red box; we use it to checkthe overall data - MC agreement fordifferent variables.

The ∆E strip, indicated by the region

between two green lines excluding the

red box is used to calculate the

expected background yield in the

signal region.

1.7 1.72 1.74 1.76 1.78 1.8 1.82 1.84

(GeV)recM

0.4−

0.3−

0.2−

0.1−

0

0.1

0.2

E (

Ge

V)

∆E -Mrec distribution for τ− → p̄e−e+ in

signal MC

Debashis Sahoo LFV, LNV and BNV 5 / 12

Page 6: Search for lepton-flavor, lepton- and baryon-number violating ...anomalies19/Anomalies_talks/...Search for lepton-flavor, lepton- and baryon-number violating tau decays at Belle Author

Preliminary selections

Select events with 17◦ < θ < 150◦, whereθ is the polar angle relative to the z axis.

Impact parameters: |dr | < 0.5 cm and|dz| < 3 cm

Transverse momentum pT > 0.1 GeV andenergy of γ, Eγ > 0.1 GeV

Sum of charge : |qsum| =0

Maximum pT of charged track, pmaxT >

0.5 GeV

Erec >3 GeV or pmaxT > 1 GeV

where Erec = sum of momentum of allcharged tracks and energy of all photonsin CM frame.

For two-track events: EECL < 11 GeV &5◦ < θmiss < 175◦

For 2-4 track events: Etot < 9 GeV orθmax < 175 degree or 2 < EECL < 10GeVwhere Etot = Erec + pCM

miss, EECL is thesum of energy deposited in the ECL

|dr | < 0.5 cm and |dz| < 3.0 cm

0 1 2 3 4 5 6

(GeV)max

Tp

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

En

trie

s/0

.12

Ge

V Two­photon

Bhabha

ττ

qq

µµ

pmaxT > 0.5 GeV

Debashis Sahoo LFV, LNV and BNV 6 / 12

Page 7: Search for lepton-flavor, lepton- and baryon-number violating ...anomalies19/Anomalies_talks/...Search for lepton-flavor, lepton- and baryon-number violating tau decays at Belle Author

Additional selections

3-1 event topolgy is used to select theττ events.

Protons are identified withP(p/K) > 0.6 and P(p/π) > 0.6.

We apply eID > 0.9 and µID > 0.9 toselect the electron and muoncandidates.

eID(p) < 0.9 to suppress electron

misidentification.

In addition, thrust>0.9, cos θCMtag−miss > 0 and 5 < θmiss < 175 degree are applied for all

the channels.

For τ− → pe−e+, τ− → pe−e−, τ− → pe+µ− and τ− → pµ−µ− channels, gammaconversion veto >0.2 GeV (on oppositely-charged track pairs assuming electron masshypothesis) applied.

In addition EECL < 10 GeV applied for τ− → pe−e+, τ− → pe−e− channels to rejectthe remaining two-photon and radiative Bhabha backgrounds.

Debashis Sahoo LFV, LNV and BNV 7 / 12

Page 8: Search for lepton-flavor, lepton- and baryon-number violating ...anomalies19/Anomalies_talks/...Search for lepton-flavor, lepton- and baryon-number violating tau decays at Belle Author

Sideband studySideband shape is shown in the case of τ− → pe+e− channel without conversion veto.

Belle preliminary

1.7 1.72 1.74 1.76 1.78 1.8 1.82 1.84

(GeV)recM

1−10

1

10

210

310

410

510E

ntr

ies/(

0.0

05 G

eV

)

Data

Bhabha

ττ

qq

µµ

Two­photon­

e+ep → ­τ

Mrec sideband

0.4− 0.3− 0.2− 0.1− 0 0.1 0.2

E(GeV)∆

1−10

1

10

210

310

410

510

Entr

ies/(

0.0

2 G

eV

)

DataBhabhaττ

qq

µµ

Two­photon­

e+ep → ­τ

∆E sideband

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(GeV)+ e­

eM

1−10

1

10

210

310

410

510

Entr

ies/(

0.0

25 G

eV

)

Data

Bhabhaττ

qq

µµ

Two­photon­e+ep → ­τ

Me−e+

0 0.2 0.4 0.6 0.8 1 1.2 1.4(GeV)+ ep

M

1−10

1

10

210

310

410

510

Entr

ies/(

0.0

3 G

eV

)

Data

Bhabha

ττ

qq

µµ

Two­photon­

e+ep → ­τ

Mp̄e+

Me−e+ and Mp̄e+ are obtained assuming electron mass hypothesis.Debashis Sahoo LFV, LNV and BNV 8 / 12

Page 9: Search for lepton-flavor, lepton- and baryon-number violating ...anomalies19/Anomalies_talks/...Search for lepton-flavor, lepton- and baryon-number violating tau decays at Belle Author

Expected background in signal region

1.7 1.72 1.74 1.76 1.78 1.8 1.82 1.84

(GeV)recM

0.4−

0.3−

0.2−

0.1−

0

0.1

0.2

E (

GeV

)∆

1 2 3

4 5 6

7 8 9

Division of region to predict the ex-

pected background

We estimate the expected number of backgrounds in the signal region from the sidebandassuming background events are distributed uniformly in regions 4 and 6 (∆E strip).

Background event density =Nstrip

Areawhere Nstrip is the number of events observed in regions 4 and 6.

The event density is then multiplied by the area of signal blind (region 5) to determine thenumber of events expected in the signal region.

The method is first verified in MC then applied to data.

The uniformity in region 4 and 6 is checked without applying proton ID.

Debashis Sahoo LFV, LNV and BNV 9 / 12

Page 10: Search for lepton-flavor, lepton- and baryon-number violating ...anomalies19/Anomalies_talks/...Search for lepton-flavor, lepton- and baryon-number violating tau decays at Belle Author

ResultsNumber of observed events are consistent with the background prediction.

Belle preliminary

1.7 1.72 1.74 1.76 1.78 1.8 1.82 1.84

(GeV)recM

0.4−

0.3−

0.2−

0.1−

0

0.1

0.2

E (

GeV

)∆

­e+ep →­τ

1.7 1.72 1.74 1.76 1.78 1.8 1.82 1.84

(GeV)recM

0.4−

0.3−

0.2−

0.1−

0

0.1

0.2

E (

GeV

)∆

­e­ pe→­τ

1.7 1.72 1.74 1.76 1.78 1.8 1.82 1.84

(GeV)recM

0.4−

0.3−

0.2−

0.1−

0

0.1

0.2

E (

GeV

)∆

­µ+ep →­τ

1.7 1.72 1.74 1.76 1.78 1.8 1.82 1.84

(GeV)recM

0.4−

0.3−

0.2−

0.1−

0

0.1

0.2

E (

GeV

)∆

+µ­ep →­τ

1.7 1.72 1.74 1.76 1.78 1.8 1.82 1.84

(GeV)recM

0.4−

0.3−

0.2−

0.1−

0

0.1

0.2

E (

GeV

)∆

­µ­

µ p→­τ

1.7 1.72 1.74 1.76 1.78 1.8 1.82 1.84

(GeV)recM

0.4−

0.3−

0.2−

0.1−

0

0.1

0.2

E (

GeV

)∆

+µ­µp →­τ

Debashis Sahoo LFV, LNV and BNV 10 / 12

Page 11: Search for lepton-flavor, lepton- and baryon-number violating ...anomalies19/Anomalies_talks/...Search for lepton-flavor, lepton- and baryon-number violating tau decays at Belle Author

LimitsUpper limit (UL) on the signal yield is set using the Feldman-Cousins [G. J. Feldman and

R. D. Cousins, Phys. Rev. D 57, 3873 (1998)] method.

For τ− → pµ−µ−:No event in the signal regionExpected background in the signalregion = 1.30± 0.46UL on the signal yield = 2.6 at 90%CL.

Upper limit on

B(τ− → pe−µ+) <NULsig

2Nττ ε,

Nττ = 841× 106 ττ pairs , ε = 4.6%,signal efficiency

< 3.4× 10−8 at 90% CL.

0 2 4 6 8 10

sigN

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p v

alu

e

Observed CLs+b

Observed CLs

Observed CLb

Expected CLs+b ­ Median

σ 1 ±Expected CLs+b

σ 2 ±Expected CLs+b

Scan result for upperlimit,

τ− → pe−µ+

All channels ε (%) NBG Nobs NULsig B (×10−8)

τ− → pe+e− 7.8 0.50± 0.35 1 3.2 < 2.4τ− → pe−e− 8.0 0.23± 0.07 1 3.6 < 2.7τ− → pe+µ− 6.5 0.22± 0.06 0 1.8 < 1.6τ− → pe−µ+ 6.9 0.40± 0.28 0 2.0 < 1.7τ− → pµ−µ− 4.6 1.30± 0.46 1 2.6 < 3.4τ− → pµ−µ+ 5.0 1.14± 0.43 0 1.5 < 1.8

Debashis Sahoo LFV, LNV and BNV 11 / 12

Page 12: Search for lepton-flavor, lepton- and baryon-number violating ...anomalies19/Anomalies_talks/...Search for lepton-flavor, lepton- and baryon-number violating tau decays at Belle Author

Summary

LHCb set B(τ− → pµ−µ−) < 4.4× 10−7 and B(τ− → pµ+µ−) < 3.3× 10−7 at 90%CL using 1 fb−1 pp collision data.

Our limit for B(τ− → pµ−µ−) < 3.4× 10−8 and B(τ− → pµ−µ+) < 1.8× 10−8

improve by an order of magnitude using 841× 106 τ+τ− events.

Also set the world’s first limit on other four channels.

More improved results are expected from Belle II.

THANK YOU

Debashis Sahoo LFV, LNV and BNV 12 / 12