Science_DamBreakThesis.pdf

59
1 Dam Break Risk Assessment in Baker Valley (Chilean Patagonia) by Elisabetta Natale B.S. Civil and Environmental Engineering Università di Pavia, 2007 SUBMITTED TO THE DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ENGINEERING IN CIVIL AND ENVIRONMENTAL ENGINEERING AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY JUNE 2009 ©2009 Elisabetta Natale. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author: __________________________________________________________________________ Department of Civil and Environmental Engineering May 8, 2009 Certified by: __________________________________________________________________________ Dara Entekhabi Professor of Civil and Environmental Engineering Thesis Supervisor Accepted by: __________________________________________________________________________ Daniele Veneziano Chairman, Departmental Committee for Graduate Students

Transcript of Science_DamBreakThesis.pdf

  • 1

    DamBreakRiskAssessmentinBakerValley(ChileanPatagonia)

    by

    ElisabettaNatale

    B.S.CivilandEnvironmentalEngineeringUniversitdiPavia,2007

    SUBMITTEDTOTHEDEPARTMENTOFCIVILANDENVIRONMENTAL

    ENGINEERINGINPARTIALFULFILLMENTOFTHEREQUIREMENTSFORTHEDEGREEOF

    MASTEROFENGINEERINGINCIVILANDENVIRONMENTALENGINEERING

    ATTHEMASSACHUSETTSINSTITUTEOFTECHNOLOGY

    JUNE2009

    2009ElisabettaNatale.Allrightsreserved.

    TheauthorherebygrantstoMITpermissiontoreproduceandtodistributepubliclypaperandelectroniccopiesofthisthesisdocumentinwholeorinpartinanymediumnowknownorhereaftercreated.SignatureofAuthor:__________________________________________________________________________

    DepartmentofCivilandEnvironmentalEngineeringMay8,2009

    Certifiedby:__________________________________________________________________________

    DaraEntekhabiProfessorofCivilandEnvironmentalEngineering

    ThesisSupervisorAcceptedby:__________________________________________________________________________

    DanieleVenezianoChairman,DepartmentalCommitteeforGraduateStudents

  • 2

    DamBreakRiskAssessmentinBakerValley(ChileanPatagonia)

    by

    ElisabettaNatale

    B.S.CivilandEnvironmentalEngineeringUniversitdiPavia,2007

    SubmittedtotheDepartmentofCivilandEnvironmentalEngineering

    onMay8,2009inPartialFulfilmentoftheRequirementsfortheDegreeofMasterofEngineeringinCivilandEnvironmentalEngineering

    ABSTRACTAnhydroelectricprojectwasproposedbyHidroAysnCompanyintheAysnRegionofChileanPatagonia.Itconsistedoftheinstallationoffivehydroelectricpowerstations,twoonRioBakerandthreeonRioPascua,withanaverageannualenergyproductionof18,430GWH.TheEnvironmentalImpactAssessment(EIA)presentedbyHidroAysnlackedofadamfailureimpactassessment,crucialtopreventorminimizetheimpactofunexpectedfloodingcausedbyadamfailure.AdambreakriskassessmentwasperformedforthesocalledBaker2,aproposedconcretegravitationaldamlocatedontheRioBaker,upstreamthesmallcommunityofCaletaTortel,anareaofconcernforpotentialflooding.UsingORSACode,softwaredevelopedbyaresearchcollaborationbetweentheUniversityofPaviaandtheUniversityofRomeLaSapienza(Italy),acomputationalmodelwasperformedtosimulatethefloodwavepropagationassociatedwithadambreakfailurescenario.Theareassubjecttofloodingweremappedonthedigitalelevationmodel(DEM)ofthesurfacetopography.ThesisSupervisor:DaraEntekhabiTitle:ProfessorofCivilandEnvironmentalEngineering

  • 3

    1. Project Overview __________________________________________________________- 5 - Background __________________________________________________________________- 5 -

    1.1 Location ___________________________________________________________________- 5 - 1.2 Water Rights _______________________________________________________________- 6 - 1.3 Energy Demand_____________________________________________________________- 7 - 1.4 Proposed Hydroelectric Project________________________________________________- 7 -

    2. Glacial-Lake Outburst Floods (GLOFs) _______________________________________- 8 - 2.1 GLOF Frequency in the Aysn Region of Chilean Patagonia ______________________- 10 -

    3. Dam Failure Impact Assessment ____________________________________________- 12 - Guidelines __________________________________________________________________- 12 -

    3.1 Dam Site Inspection ________________________________________________________- 13 - 3.2 Data Collection ____________________________________________________________- 13 -

    3.2.1 General Information______________________________________________________________ - 13 - 3.2.2 Dam and storage information_______________________________________________________ - 13 - 3.2.3 Topographic information __________________________________________________________ - 14 - 3.2.4 Hydrographic data _______________________________________________________________ - 15 - 3.2.5 Hydrologic data _________________________________________________________________ - 15 - 3.2.6 Downstream community information ________________________________________________ - 15 - 3.2.7 Determination of Flood Prone Areas _________________________________________________ - 16 - 3.2.8 Population at risk ________________________________________________________________ - 16 -

    3.3 Accuracy of population at risk calculations _____________________________________- 17 - 3.4 Analytical Techniques ______________________________________________________- 18 -

    3.4.1 Two-dimensional flow analysis _____________________________________________________ - 18 - 3.4.2 Simplified assessment ____________________________________________________________ - 18 - 3.4.3 Comprehensive assessment ________________________________________________________ - 18 - 3.4.4 Two or more dams on the same watercourse ___________________________________________ - 19 - 3.4.5 Other failure events ______________________________________________________________ - 19 -

    3.5 Periodic Re-Assessment of Failure Impact Rating _______________________________- 20 - 4. Case study ______________________________________________________________- 21 - The Proposed Hydroelectric Dam Baker 2_________________________________________- 21 -

    4.1 Dam Site__________________________________________________________________- 25 - 4.1.1 Topographic Information __________________________________________________________ - 25 - 4.1.2 Topographic Editing using ArcGIS 9.3 _______________________________________________ - 26 -

    Dam-Break Modeling _________________________________________________________- 26 - 4.2 Calibration________________________________________________________________- 26 -

    4.2.1 Hydrologic Data Collection ________________________________________________________ - 26 - 4.3 Dam-Breach Analysis _______________________________________________________- 26 -

    4.3.1 NWS Simplified Dam-break model __________________________________________________ - 27 - 4.3.2 Generalized Ritter Dam-Break Solution ______________________________________________ - 28 - 4.3.3 Estimated Peak Discharge at Dam Site _______________________________________________ - 29 -

    5. Dam-Break Simulation ____________________________________________________- 30 - ORSA Code _________________________________________________________________- 30 -

    5.1 Numerical Solvers __________________________________________________________- 30 - 5.2 Surface Topography Acquisition and Analysis __________________________________- 30 -

  • 4

    5.2.1 Breakline ______________________________________________________________________ - 30 - 5.2.2 Sections _______________________________________________________________________ - 30 - 5.2.3 Visualization ___________________________________________________________________ - 31 - 5.2.4 Assignation of Mannings Coefficient ________________________________________________ - 31 -

    GLOF Simulation ____________________________________________________________- 32 - 5.3 Initial Conditions __________________________________________________________- 32 - 5.4 Boundary Conditions _______________________________________________________- 32 -

    5.4.1 Upstream B.C. __________________________________________________________________ - 33 - 5.4.2 Downstream B.C.________________________________________________________________ - 34 -

    5.5 Simulation Characterization _________________________________________________- 34 - 5.6 Results ___________________________________________________________________- 34 -

    Dam-Break Simulation ________________________________________________________- 35 - 5.7 Initial Conditions __________________________________________________________- 35 - 5.8 Boundary Conditions _______________________________________________________- 35 -

    5.8.1 Upstream B.C. __________________________________________________________________ - 35 - 5.8.2 Downstream B.C.________________________________________________________________ - 37 -

    5.9 Simulation Characterization _________________________________________________- 37 - 5.10 Results ___________________________________________________________________- 37 -

    5.10.1 Dam-Break Wave Outflow ______________________________________________________ - 37 - 5.10.2 Water Level__________________________________________________________________ - 40 - 5.10.3 Flooded Width________________________________________________________________ - 40 - 5.10.4 ORSA Code Output____________________________________________________________ - 41 -

    6. Literature Review: Dam-Break Modeling _____________________________________- 43 - Hydrodynamic Model: Shallow Water Equations ___________________________________- 43 -

    6.1 Numerical Solvers __________________________________________________________- 45 - 6.1.1 Lax-Friedrichs Scheme ___________________________________________________________ - 45 - 6.1.2 MacCormacks Scheme ___________________________________________________________ - 46 - 6.1.3 TVD Methods __________________________________________________________________ - 47 - 6.1.4 Roes Method___________________________________________________________________ - 48 - 6.1.5 Lax-Friedrich Type Scheme applied on a staggered grid _________________________________ - 49 -

    6.2 ONE-Dimensional Dam-Break Simulation Codes ________________________________- 49 - 6.2.1 SMPDBK Simplified Dam Break Model______________________________________________ - 49 - 6.2.2 DAMBRK _____________________________________________________________________ - 50 - 6.2.3 CASTOR ______________________________________________________________________ - 50 - 6.2.4 HEC-RAS _____________________________________________________________________ - 50 -

    6.3 Comparisons of Dam-Break Simulation Codes __________________________________- 52 - 6.3.1 SMPDBK vs. DAMBRK __________________________________________________________ - 52 - 6.3.2 HEC-RAS vs. ORSA _____________________________________________________________ - 53 -

    6.4 Case Studies of Dam Failure: comparison of breach predictions____________________- 54 - 6.4.1 Simulation of the Big Bay Dam failure _______________________________________________ - 54 - 6.4.2 Simulation of the St. Francis Dam failure _____________________________________________ - 55 -

    References __________________________________________________________________- 56 -

  • 5

    1. ProjectOverview

    Background1

    1.1 LocationChileisaSouthAmericancountryflankedbyArgentinaandBoliviatotheEast,PerutotheNorth,andthePacificOceantotheWest.Withatotalareaof757,000sqkm,ChileisapproximatelytwicethesizeofMontana.Becauseofitsuniquegeographyspanningfromapproximately20to56latitude,Chilesclimatevariesgreatly.Generallytemperate,theclimatecanbecharacterizedasdesertinthenorth,Mediterraneaninthecentralregion,andcoolanddampinthesouth(CIA,2008).Chilesterrainisasvariedasitsclimatewithacombinationoflowcoastalmountains,afertilecentralvalley,andtheruggedAndesintheeast.(Figure1)

    Figure1MapofChile(source:www.southwindadventures.com)

    1FromAnalysisofproposedhydroelectricdamsinChileanPatagonia,KristenBurrall,GiannaLeandro,LauraMar,ElisabettaNatale,FlaviaTauro,MIT,USA.

  • 6

    The10millionhectareAysnRegionishometotheRioBakerandisChilesleastpopulousadministrativeregionwithapproximately0.9person/sqkm(personalcommunication).Withsuchalowpopulationdensity,theregionisaprimeexampleofpristinenaturalconditions.ThewatershedthatcontainstheRioBakerencompassesawidevarietyofhabitatsfrommountainglacierstoriverbraidedfloodplains,andinthesevariedphysicalhabitatsalargearrayofplantandanimalspeciesthrive(Strittholt,2008).TheRioBakerisa170kmriverwhichoriginatesinBertrandLakeandemptiesintothefjordsofthePacificOceannearthesmallcommunityofTortel.DuetotheremotelocationoftheRioBakerwatershedfewstudieshavebeenconductedastothepotentialimpactsofdaminstallationontheregionsbiologyandecology(Strittholt,2008).Accordingly,thispaperelucidatesthekeyimpactsofthedamsinanapproachthatcombinesvariousresearchobjectivesthroughasystematicevaluation.

    1.2 WaterRightsCurrently,waterrightsinChileareprivatizedunderasystemofwaterlawsimilartothatoftheWesternUnitedStates(personalcommunication).EndesaSpain,oneofthelargestelectricalcompaniesintheworld,controlsmorethan80%ofthewaterrightsontheRioBakerand,withthisjurisdictionalfreedom,Endesaendeavorstoinstalltwohydroelectricdamsontheriver.Thereareahostofproponentsforandopponentsagainstthedams.ProponentsarguethatthedamswillhelpsecureChilesenergyindependence,createjobs,andprovidepowerfortheminingindustrythatsupportstheChileaneconomy,whereasopponentsarguethatthedamswillirreparablydestroynaturalhabitatswhilesimultaneouslyincreasingenergycostsforChileans(personalcommunication).

    1.3 EnergyDemandElectricitydemandinChilecentersonSantiagoandthenationsminingindustries(personalcommunication).IncreasedGDPandtransportinChilehaveheightenedenergydemandthroughoutthecountryandespeciallyinthenorthernregions.Installingthedamswilladdressthisincreaseddemand.Thecombinedcapacityoftheprojectwilltotal2,750megawatts,approximately20%ofSantiagoscurrentenergydemand.ThiselectricitywillbetransportednorthwardfromtheAysnRegiontoSantiagovia2,240kmoftransmissionlines,whichrequirea92meterwideclearcutswaththrough14nationalparks(InternationalRivers,2008).InadditiontosupplyingSantiagoandindustrywithelectricity,thedamsareasteptowardincreasingChilesdomesticenergysecurity.

    1.4 ProposedHydroelectricProjectHidroAysnisajointventurebetweenEndesaChile,aSpanishenergycompany,andColbunS.A.,aChileanelectricitygenerationcompany(HidroAysn,2007).The

  • 7

    HidroAysnprojectconsistsoffivehydroelectricdamsontworivers:theRioBakerandtheRioPascua.Thecombinedcapacityofthedamsystemwouldgenerate,onaverage18,430GWhofpowerannually,theequivalentof30%ofthepowercurrentlyinstalledintheCentralInterconnectedSystem(SIC)grid.Powergeneratedbythedamsconnectthroughlocaltransmissionlines,longdistancehighvoltagetransmissionlineswillconnectthedams,whichareintheAysngridtotheSIC(HidroAysn,2008).Ifconstructed,thefivedamswillinundate5,910hectares;further,damconstructionandoperationwilldisturbanadditional11,000hectares.Alocalelectricitygridwillcombinetheoutputfromthefivedamsandwillconvertalternatingcurrent(AC)todirectcurrent(DC)forlongdistancetransmission(HidroAysn,2008).The2,240kmtransmissionlinewillrequirefivethousand50metertowersspaced400metersapartthrougha70metereasement(PatagoniawithoutDamsCampaign).Sincegeneration,transmissionanddistributionunderChilesGeneralLawofElectricalServices,TranselecwilldesignthehighvoltagetransmissionlineseparatelyfromtheHidroAysndams.CONAMA,ChilesequivalentoftheUnitedStatesEnvironmentalProtectionAgency,willevaluatetheenvironmentalimpactofthedamsandthetransmissionlinesseparately.Thetransmissionlinesareagreatsourceofcontroversy.OnequestionsurroundsthetotalcapacityoftheDCline:iftheircapacityisgreaterthanthe2750MWthattheHidroAysendamprojectwouldprovide,willotherhydroelectricdevelopmentsfollow?

  • 8

    2. GlacialLakeOutburstFloods(GLOFs)

    Therecentglobalclimaticchangehasbroughtatremendousimpactonthehighmountainousglacialenvironment.Manyofthebigglaciersmeltedrapidlyandgavebirthtotheoriginofalargenumberofglacierlakes.GLOFsarenotanewphenomenonbutwiththeworldwiderecedingofglaciersandrisingtemperature,theprobabilityoftheiroccurrenceshasdramaticallyrisen.

    Asglaciersretreat,glaciallakesformbehindmoraineoricedams.Thesedamsarecomparativelyweakandcanbreachsuddenly,leadingtoadischargeofhugevolumesofwateranddebris.Suchoutburstshavethepotentialofreleasingmillionsofcubicmetersofwaterinafewhourscausingcatastrophicfloodingdownstream.

    Alakeoutburstcanbetriggeredbyseveralfactors:iceorrockavalanches,thecollapseofthemorainedamduetothemeltingoficeburiedwithin,thewashingoutoffinematerialbyspringsflowingthroughthedam(piping),earthquakesorsuddeninputsofwaterintothelakee.g.throughheavyrainsordrainagefromlakesfurtherupglacier.

    Manyresearchershavedemonstratedthatinfrequent,largemagnitudefloodsinmountainenvironmentsaresignificantgeomorphicagentsbecauseonlythesefloodsarecapableofgeneratingthehydraulicforcesnecessarytoentrainandtransportthelargematerialthatconstitutesthechannelandvalleybottomintheseregions.

    ErosionalanddepositionalfeaturesproducedbyGLOFvarylongitudinallyalongthefloodroutesascomplexinteractionsbetweenfloodhydraulics,boundaryconditions,sedimentsupply,andthetemporalsequenceandmagnitudeofpastfloods.Figure2

    Thelargescaleerosionalanddepositionalfeaturescreatedbyanextremefloodinmountainousenvironmentsaretypicallypersistentfeaturesthatremainunalteredbecausenormalfloodsarenotabletoreworkthecoarsesediments(Cenderellietal.2003).

  • 9

    Figure2GeomorphicmapsshowingthedistributionoferosionalanddepositionalfeaturesproducedbyaGLOF.Forthecrosssections,theelevationsarerelativeandinunitsofmetres(afterCenderelliandWohl,2001.ReprintedwithpermissionfromElsevierScience).

    AGLOFmightbemodelledasashallowwatersurfacewavegeneratedbylandslides.

    Insucheventstheprimaryriskisnotassociatedwiththeslidingmassbutinsteadtothewavesgeneratedbytheenergytransferredtothewaterbythecollision.Asecondaryriskisthepossibilityoflargescaledepositionofmaterialontheriverbedforminganartificialdamabletoaccumulatealargeamountofwatertemporarily,givingrisetofurthercatastrophicdamfailure.(Perezetal.2006).

    AnappropriatenumericalmethodcouldbebasedonRoesapproximateRiemannsolver(see6.1.4),asORSAcodeone.MoreoverarecentstudydemonstratesthatonedimensionalmodellingofGLOFpropagationprovidesresultsbroadlycomparabletodataderivedfrommorecomplexsimulations.(Petterietal.2007).

    AlthoughtheenormousnumbersoflimitationsofaGLOFstudy,theresultsofahydrodynamicmodellingcanbeacosteffective.

  • 10

    Thevulnerabilitymapsgeneratedthroughsuchtoolprovideascientificbasisforidentifyingwhoisvulnerableandwhichinfrastructureandagriculturallandismostlikelytobeaffected.Thisinformationcanbeofgreatvalueindevelopingbetteroptionsformanagementplansandtheirimplementation.(Bajracharyaetal.2007).

    2.1 GLOFFrequencyintheAysnRegionofChileanPatagonia

    UntilApril2008,noGLOFeventshadbeenrecordedintheNorthernPatagonianIcefield(NPI).Sincethatyear,thisphenomenonhasoccurredfourtimessofar.LagoCachet2,a5squarekilometerwideand100meterdeepglaciallakenearthesnoutoftheColoniaGlacier,hascreatedaGLOFbyemptyingitsvolumethroughasystemof8kmlongtunnels.ThewaterhasbeenreleasedintoLagoColoniawhichfeedsRioColonia.LagoColoniasincreaseinwaterlevelwasnotsignificant:itdischargedtheexcesswaterintotheRioBaker.

    TheeffectofaGLOFintotheRioBakerresultsintoanincreaseofthewaterlevelandanassociatedwatertemperaturedrop(Table1).

    Apr072008 Diff.

    Oct082008 Diff.

    Dec222008 Diff.

    Mar052009 Diff.

    max 3575 303% 3007 561% 3052 291% 3812 324%Q(m3/s)

    average 1181 536 1048 1176

    max 6.71 241% 5.85 522% 5.92 235% 7.06 254%WaterLevel(m) average 2.79 1.12 2.52 2.78

    minimum 4.6 53% 4.5 62% 8.1 74% 3.8 36%Temperature(C) average 8.6 7.3 10.9 10.5

    Table1SummaryofrecentGLOFs(Q,waterlevel,waterT)withacomparisonbetweenpeakvaluesandbasevalues

    Apossibleexplanationforthesuddenoccurrenceoftheseeventscanbefoundintheclimatechangethatthisareahasexperiencedinthelastfourdecades.MeteorologicalstationsintheAysnregionhaverecordedahalfdegreeincreaseintemperaturesincetheearly1970s.Atthesametime,precipitationisdecreasing,causingdiminishediceformation.Glacialsystemsarebasedonanequilibriumthatisverysensitivetoclimatefluctuations.TheNPIisatemperateglacierthatcontainsicebelowthemeltingtemperaturethroughoutitsmass.Iceformationoccursonlyin

  • 11

    winteranditisaresultofsnowcompaction.Ifprecipitationdecreasesandtemperatureincreases,therateatwhichtheglaciermeltswillbefasterthantherateatwhichiceisformed.Thisproducesamassshrinkage.TheColoniaGlacierhasbeenshrinkingsincethelastdecadebutthisfacthasnotproducedvisibleresultsuntiltheoutburstoccurred.

    WithrespecttoLagoChachet2GLOFs,theincreaseintemperaturehasledtomultipleeffects:

    Icemelting.TheresponsibleistheincreasedtemperatureoftheairthathasallowedthemeltingoftheglacierandconsequentlytheformationandfillingofLagoCachet2.

    Bankthinning.Duetothedoubleactionoftheairandlaketemperature(thatreflectstheclimatechangeaswell),thebanksofLagoCachet2havereducedaswellandtheiceoverburdenissignificantlydecreased.

    Tunnelformation.Thefracturesalreadypresentintheglacierhaveprobablyformedlargerandinterconnectedmoulinsthat,undertheeffectofthewarmerlaketemperatureduringtheoutbursts,havecontinuedtogrowandtoletthedrainageofthelakeitself.

    Theroleoftheairtemperatureisparticularlyrelevantforthefrequencyoftheoutburst:therateatwhichLagoCachet2isfilledisaconsequenceofthewarmingtrend.

    WhilethepeakrunoffofeachrecentGLOFeventwasalmostconstant,thetrendisalarming.Infact,thetimebetweeneventshasdecreasedalongageometricprogression.

  • 12

    3. DamFailureImpactAssessment

    Thedambreakinundationzoneisdefinedastheareadownstreamofadamthatwouldbeinundatedorotherwisedirectlyaffectedbythefailureofadam.

    ThesimulationofdambreacheventsandtheassociatedfloodedareaarecrucialtoreducethreatsfromunexpectedfloodingcausedbyadamfailureandareoftenrequiredbyStateslegislationandtechnicalregulation.Thedamfailureimpactassessmentwoulddeterminewhetherthedamisareferabledam,ifthereisadangerofthedamfailingandwhichactionisnecessarytopreventorminimisetheimpactofthefailure.

    AlthoughitseemsthattheChileanlawdoesntincludeanydamssafetyregulation,amassivedamprojectshouldbesupportedbyacompletefloodriskassessment.

    Dambreakstudiesarenotonlyachievedtopursuesafetylegislation,oftenlacking,buttheyarefrequentlycommissionedbythedamownersinordertoavoidthecostlyupgradestotheirdamtomeetincreaseddamsafetystandardsthatareappliedasaresultofthedownstreamdevelopment.

    ThedamfailureassessmentproceduresherepresentedfollowstheguidelinepublishedbytheDepartmentofNaturalResourcesandMinesoftheQueenslandGovernment,Australia(2002).

    GuidelinesThemethodologyofdamfailureimpactassessmentshouldrequirethefollowingactivities:

    Inspectionofdamsite Accuratecollectionofdata Identificationoffloodproneareas Identificationofpopulationatrisk Certificationofafinalwrittendamfailureimpactassessmentbyaregistered

    professionalengineerandsubmissiontothechiefexecutive.

    3.1 DamSiteInspectionSiteinspectionsaremandatoryandensurethattheinformationuponwhichthedamfailureimpactassessmentisbasediscorrectanduptodate,andalsoenablean

  • 13

    appreciationofthecharacteristicsofthesite.Siteinspectionsmustincludeareasthatcouldbeaffectedbydamfailurebothupstreamanddownstreamofthedam.

    Siteinspectionsareneededto:

    Verifytheaccuracyofallmapping/aerialphotogrammetrythatisusedintheassessment

    Verifytheexistenceofbuildingsandotherplacesofoccupationtojustifythefailureimpactratingidentifiedintheassessment

    Identifyotherstoragesonthesamewaterway Identifybuildingsandotherplacesofoccupationalongwaterways,which

    mayhousepopulationatrisk

    Identifycatchmentmodificationworks(e.g.diversiondrainsandleveebanks).

    3.2 DataCollectionTheappropriatenessandaccuracyoftheinformationincludedintheassessmentmustbejudgedbytheengineerthatcertifiesthefailureimpactassessment.Awidearrayofinformationneedstobecollectedtodeterminetheeffectsofadamfailure.Theseinclude:

    3.2.1 GeneralInformationFloodsrelatedtodamfailurearegenerallysignificantlylargerthannaturalfloods.Informationthatshouldbeincludedintheassessmentis:

    Availablehistoricfloodlevels Hydrographicdata Rainfall/runoffmodelresults Dambreakfloodmodelresultsundersunnydayandincremental

    conditions.

    3.2.2 DamandstorageinformationTheinformationusedtodeterminepotentialbreachcharacteristicsandincrementalfloodingeffectsshouldinclude:

    Typeofdamandlocation(includinglatitudeandlongitude)

  • 14

    Spillwaytypeandadequacy(includingfloodcontrolfacilitiessuchasgatesandsecondaryspillways)

    Dimensionssuchasheightandlengthofembankmentsandthewidthofthecrest

    Storagecapacitytofullsupplylevelandtothecrestofthedam(stagecapacitycurve)

    Useofdamincludingcontentsofthestoragearea Possiblecausesandmodesoffailure Commentsondesign,foundationsandanyunusualconditions Designstudiesorreports.

    Additionalpiecesofinformationshouldregardthestabilityofslopesandearthquakeeffects.

    3.2.3 TopographicinformationSufficienttopographicinformationmustbeobtainedtoaccuratelydetermine:

    Theshapeandslopeofthevalleydownstreamofallpotentialfailurelocations

    Controlsonthedownstreamflow(i.e.culverts,vegetation,weirs,bridges,embankments,surfaceroughnessandtemporarystorageonthefloodplains)

    Locationofmajordownstreamtributaries.Ifregionalmapsdonotprovidesufficientdetailforafailureimpactassessment,furtherinformationmayneedtobeobtainedfromsourcessuchas:

    Roadmaps Orthographic,topographic,militaryandcadastralplans Surveyedcrosssections Aerialphotographs Satelliteimagery Localresidents.

    Itisimportanttonotethatmappingoraerialphotogrammetrymaynotcontainrecentdevelopmentse.g.housesorotherplacesofoccupation.Informationcontainedinphotogrammetrythatplaysanintegralroleintheassessmentmustbeverifiedbysiteinspections.

  • 15

    Whereextremeprecisionisrequired,extensive,detailedsurveysofthedownstreamvalleymaybenecessary.Insuchcircumstances,surveysmayalsoberequiredtolocateanddeterminenaturalsurfacelevelsatallbuildingsorotherplacesofoccupationthatarethoughttobeatrisk.

    3.2.4 HydrographicdataTheresultsofadambreakanalysiswilldependonanumberofparameterssuchas:

    Thesizeoftheavailablefloodstorage Theheightofthedam Thesizeandcapacityofitsspillway Theshapeofthevalleydownstreamofthedam.

    Foranaccuratedambreakanalysis,thevaluesoftheManningroughnesscoefficient2shouldbevariedineachcrosssectionaccordingtothelocalsurvey.Forloweraccuracyanalyses,onlyoneroughnesscoefficientmightbesufficientinrepresentingthewholefloodplain.

    Wherepreviousfloodrecordsexistintheriverorstreamreachunderconsideration,thehydraulicmodelshouldbecalibratedtomatchtheavailablefloodinundationdatasothatthenumericaldambreakmodelcanbedemonstratedtoapproximateactualflowconditions.Iftheserecordsarenotavailable,orareavailableforalimitedrangeofflows,someassessmentmustbemadeofthepotentialimpactontheaccuracyofthemodelledresults.Allmodellingmustbesubjectedtosensitivityanalysestotestsensitivitytomodelassumptions.

    3.2.5 HydrologicdataDownstreamtributaryinflowsmayimpactonthedambreakflood,particularlyifpopulationcentresaresomedistancedownstreamofthedam.Simpleranalysesonsmallerdamswouldnotnormallyconsiderinflowsfromtributariesdownstreamofthedams.

    2TheManningcoefficientisaroughnessparameterusedtomodelenergylossesinstreams.Unlessreasonabledischargeandwaterlevelcalibrationisavailable,referenceshouldbemadetostandardhydraulicengineeringtextsforappropriatevaluesoftheparameter.

  • 16

    3.2.6 DownstreamcommunityinformationDownstreamcommunityinformationmustincludethelocation,numberandnatureofbuildings,otherplacesofoccupationandapprovedcampingandrecreationalareasinthefailureimpactzone.

    Thisinformationmaybeobtainedfrommaps,personswithlocalknowledgeandemergencyactionplansforthedam.Recentaerialphotogrammetryalsoprovidesusefulinformationonthelocationofdownstreamstructures.Asstatedabove,siteinspectionsmustbeundertakentoverifydownstreamcommunityinformation(forexample,toensuretheinformationisuptodateandidentifiesbuildingsandotherplacesofoccupationobscuredbytrees).

    3.2.7 DeterminationofFloodProneAreasThefloodpronearea,definedasthefailureimpactzone,istheareaaffectedbyfloodingasaresultofamajorfloodevent,e.g.thefailureofthedam.Failureimpactzonesmustbedeterminedforallfailureeventsspecifiedwithintheanalyticaltechniqueusedforthefailureimpactassessmentandforallotherfailureeventsrelevanttothedam.

    Itshouldbenotedthatwhilethedamfailureimpactzoneisgenerallylocateddownstream,areasupstreamcanalsobeaffectedandshouldbeincludedwhererelevant(e.g.anupstreamareamaybeaffectedbytheabnormaloperationofdischargecontroldevicessuchasgatesorinflatablebags).

    Amapshowingtheextentofthefloodproneareasmustbeincludedinthewrittenassessment.

    3.2.8 PopulationatriskPeopleareconsideredpartofthepopulationatriskifbuildingsoranypartofthegroundwherethesebuildingsarelocatedliewithinthefailureimpactzone.

    Whenthefailureimpactzoneisbeingdetermined,thenumber,locationandnatureofbuildingsandotherplacesofoccupationmustbeidentified.

    Thepopulationatriskisthedifferencebetweenthepopulationatriskforaspecificdamfailureandthepopulationatriskfromthenaturalfloodingevenifdamfailuredoesnotoccur.

    Damfailureduringaflood:somepeoplecouldbeatriskfromthenaturalfloodingevenifdamfailuredoesnotoccur.(Figure3)

  • 17

    Figure3Damfailureduringaflood.(GuidelinesforFailureImpactAssessmentofWaterDams,StateofQueenland,2002)

    Asunnydaydamfailure (whenfloodingisduetodamfailureonly):nobodyisatriskifthedamdoesnotfail.(Figure4)

    Figure4Sunnydaydamfailure

  • 18

    3.3 AccuracyofpopulationatriskcalculationsAvarietyoffactorsmayaffecttheaccuracyofpopulationatriskcalculations.Thesemustbeconsideredtoensurethereliabilityofpopulationatriskcalculations.Factorsinclude:

    Theaccuracyofcrosssectionsusedintheanalysis Thelocationsofcrosssectionsusedintheanalysis Theaccuracyofthehydraulicmodelling Availabilityandaccuracy/reliabilityofcalibrationdataandthedegreeof

    extrapolationrequiredtomodeldambreakflows

    Assumedhydraulicroughnessparameters Assumedbreachdevelopmenttimes Locations,numbersandelevationsofbuildingsandotherplacesof

    occupation.

    Thedegreeofconservativenessshouldreflecttheamountofcalibrationdataavailabletodeterminestreamchannelroughnessforthewatercoursereachesinquestion.

    Thewrittendamfailureimpactassessmentshouldincludeastatementontherangeoftheestimateofpopulationatriskforthecriticalcase.Suchanassessmentshouldindicatevaluesfortheupperlimitofpopulationatriskthatcouldreasonablybeexpectedasaresultoftheanalysisandasimilarlyderivedlowerlimitofpopulationatrisk.

    3.4 AnalyticalTechniquesThreeanalyticaltechniquesmaybeusedinpreparingdamfailureimpactassessments.Thesearetwodimensionalflowanalysis,simplifiedassessmenttechniquesandcomprehensiveassessmenttechniques.Thesetechniquesmaybeusedaloneorincombination.Certifyingregisteredprofessionalengineersneedtobesatisfiedthatthetechniquesselectedandtheaccuracyofthemodelsdevelopedarereasonableforthesituationsunderconsideration.

    3.4.1 TwodimensionalflowanalysisThisanalysiswilltypicallyneedtobeusedifthepopulationissituatedinarisklocationclosetoapossibledambreachandthereisariskthatthepopulationwillbeflooded.

  • 19

    Modelsusedinsuchanalysesneedtobeabletosimulatethedynamicbehaviourofoverlandflowovercomplexgeometries,determininginundatedareasfortwodimensionalflows.

    3.4.2 SimplifiedassessmentAsimplifieddamfailureimpactassessmenttechniquemaybejustifiedwherethereislittledoubtastothepopulationatriskandthecostofacomprehensiveassessmentisanticipatedtobehighrelativetothepotentialbenefits.Itinvolvestheconservativeuseoftopographicandhydrographicdataandanempiricallydeterminedbreachdischarge.

    Thisisanapproximatetechnique,whichusesthenormaldepthatasectiontoestimatemaximumfloodlevelsatapointforagivendischarge.Assuchthistechniquedoesnottakeanybackwatereffectsintoaccount.Itmustnotbeusedwherebackwatereffectsareexpectedtobesignificantintermsoftheaffectedpopulationatrisk.Asidefromthebackwatereffects,theprincipalareasofuncertaintyaretheaccuracyofthestreamslopes,thecrosssections,andthelocationsandlevelsoftheimpactedbuildings.

    Themaximumbreachdischargefromadamduringabreachingeventistypicallydeterminedusingempiricalrelationshipbasedonstatisticalanalysisofpreviousdamfailures.

    3.4.3 ComprehensiveassessmentIfasimplifiedassessmentisnotaccurateenoughtoadequatelycalculatethepopulationatrisk,thenacomprehensivedambreakanalysismayberequired.Acomprehensiveassessmentisadetailedassessmentofthefailureimpactzoneandthepopulationatriskifthedamfails.Dambreakanalysesmustbeundertakenforarangeofdamfailurescenariosandusecurrenthydraulicmodelingpracticeandsuitablydocumentedandvalidatednumericalmodels.

    Someestimateoftheaccuracyofeachnumericalmodelusedforthedambreakanalysismustbemadeandthisaccuracymustbetakenintoaccountinassessingpotentialpopulationatriskasindicatedintheprevioussections.Theimpactonpopulationatriskwillbegreatestinareaswithhigherpopulations(e.g.towns),anditmaybejustifiedtoselectivelyimproveaccuracyintheseareas.

    3.4.4 TwoormoredamsonthesamewatercourseSometimes,twoormoredamsoccuronthesamewatercourse.Insuchcircumstances,itmustbeassumedthatthefailureofanupstreamdammaytrigger

  • 20

    thefailureofdownstreamdams.Ifthedownstreamdamcannotstorethecontentsoftheupstreamdamwithoutfailure,thecombinedeffectofmultipledamfailuresmustbeconsideredwhendeterminingtheincrementalpopulationatriskfortheupperdamforfailureevents.Similarly,iffailureofadownstreamdamcouldcontributetothefailureofanupstreamdam(suchasthrougharapiddrawdownfailureifheadwatersofthedownstreamdambackupagainsttheupstreamdam),thepotentialfailureoftheupperdammustbeconsideredwhendeterminingtheincrementalpopulationatriskofthelowerdamforfailureevents.

    Thedamfailurecaseproducingthehighestincrementalpopulationatriskmustbeusedtodeterminethefailureimpactratingforthedam.

    3.4.5 OtherfailureeventsIftheregisteredprofessionalengineerconsidersthatotherfailureeventscouldresultinahigherincrementalpopulationatrisk,thesefailureconditionsmustbeconsideredanddescribedinthewrittendamfailureimpactassessment.Thesefailuresmayinclude:

    Storageriminstability. Factorssuchasdeterioration,oldage,designorconstructionfaultsandpoor

    maintenance.

    Damageduetofire,windandescapeofwaterintominingtunnels/shaftsbeneathreservoirs.

    Vandalism.

    3.5 PeriodicReAssessmentofFailureImpactRatingThedamownersshouldprovideaperiodicreassessmentofthedamfailureincludingwhetherornottherehasbeensubstantialchangesin:

    thestreamchannelcrosssectionsandroughness theembankmentandspillwaygeometry themagnitudeofthedesignfloods thedownstreampopulation

    Thepopulationatriskmustberecalculatedaspartofeachreassessmentofthefailureimpactrating.

  • 21

    4. CasestudyThedambreakanalysishereafterdescribedissupplying,althoughinasmallportion,thetotalabsenceofadamfailuresafetyassessmentintotheEIApresentedbyEndesa.

    ThestartingcasestudyoftheanalysisconsistedofthesimulationofarecentGlacialLakeOutburstFlood(GLOF)event.Thisfirststepallowedtocalibratethemodelcomparingthemathematicalresultsofthesoftwarewiththerealdatacollectedduringtheevent.Furthermore,theanalysisgivesanadditionalinsightontheGLOFphenomenon.

    Afterthecalibrationandtheevidenceofconsistencyofthemodel,theactualdambreakwavefloodinghasbeenimplementedandsimulated.

    TheProposedHydroelectricDamBaker2ThesocalledBaker2isaproposedconcretegravitationaldam,whosedesignlifeis40years,thatwouldbelocated2kmupstreamtheconfluenceoftheRioElSaltnintotheRioBaker.Theprojectcapacityofthestationis360MWandtheaverageannualpowerproducedwouldbe2530GWh.

    Thedesigndischargeis1275m3/s,whiletheaverageannualdischargeoftheRioBakeris948m3/s.ThemaindesignaspectsofthedamaredescribedinTable2.

    DamBaker2:Concretegravitytype

    Elevation(m) 40

    Height(m) 93

    Lenght(m) 320

    Width(m) 8

    Reservoirsurface(ha) 3600

    Reservoirvolume(hm3) 380

    Table2Baker2:designcharacterization

    ThedamBaker2,accordingtotheEIApublishedbyHydroaysn,ismeantnottohaveanysignificanteffectontheregulationofflowregime,namelyitwouldcauseflowvariationnotgreaterthanthe5%ofthenaturaldailyandmonthlyvariation.Theaverageretentiontime,forthedesigndischarge,is8hours.

  • 22

    Figure5Baker2reservoir(fromHydroAysenEIA)

  • 23

    Figure6RioBakerdownstreamdamBaker2(fromHydroAysenEIA)

  • 24

    4.1 DamSiteOnJanuary2009anonsitefieldtripintheAysnRegionhasbeenorganized.

    DuringthatperiodtheRioBakerwatershedhasbeenanalyzedcarefullywithacomplementaryraftexperiencefromhisoriginBertrandLake,fedbygeneralCarreraLake,untilhisdeltaintothePacificOceannearthetownofCaletaTortel.

    TheonsiteevaluationhasallowedappreciatingthecharacteristicofthevegetationsurroundingthewaterwayandtheriverbedgranulometryinordertodefinetheappropriatevaluesoftheManningcoefficientdownstreamthelocationoftheproposeddamBaker2.

    ThesiteinspectionofCaletaTortelgavethoroughinformationaboutthecontextofthemajortownthreatenedbytheimpactofapotentialdambreakfailure.

    4.1.1 TopographicInformationWithintheprocessofdatacollection,thegatheringoftopographicmaterialhasbeenthemostchallenging.TheprincipalofficeoftheDireccinGeneraldeAguas(DGA),Chilesstatebodyresponsibleforpromotingthemanagementandadministrationofwaterresources,hasntbeenabletoprovideanyorthographic,topographic,militaryorcadastralplanofthevalley.

    TheonlyavailabletopographicdatahavebeenprovidedfreelybytheU.S.GeologicalSurveywebsite.

    TheDigitalElevationModel(DEM)providedbytheUSGSisaproductoftheShuttleRadarTopographyMission(SRTM)isajointprojectbetweenNASAandNGA(NationalGeospatialIntelligenceAgency)tomaptheworldinthreedimensions.SRTMutilizeddualSpaceborneImagingRadar(SIRC)anddualXbandSyntheticApertureRadar(XSAR)configuredasabaselineinterferometer,acquiringtwoimagesatthesametime.Theseimages,whencombined,canproduceasingle3Dimage.FlownaboardtheNASASpaceShuttleEndeavourFebruary1122,2000,SRTMsuccessfullycollecteddataover80%oftheEarthslandsurface,forallareabetween60degreesNand56degreesSlatitude.

    SRTMdatawereprocessedfromrawradarechoesintodigitalelevationmodelsattheJetPropulsionLaboratory(JPL)inPasadena,CA.Theseoriginaldatafileshadsamplesspaced(posted)atintervalsof1arcsecondoflatitudeandlongitude(about30metersattheequator).ThesedataweretheneditedbytheNationalGeospatialIntelligenceAgency(NGA,formerlytheNationalImageryandMappingAgency),anddistributedaspartoftheirDTEDproductset.

    Theediting,alsoreferredtoasfinishing,consistedofdelineatingandflatteningwaterbodies,betterdefiningcoastlines,removingspikesandwells,andfilling

  • 25

    smallvoids.Thissetispubliclyavailableattwopostings:1arcsecondfortheUnitedStatesanditsterritoriesandpossessions,and3arcsecondsforregionsbetween60degreesNand56degreesSlatitude.(Source:http://seamless.usgs.gov).

    4.1.2 TopographicEditingusingArcGIS9.3ThedatadownloadedfromtheUSGSwebsitewasa90meterDEMaffectedbysomeissuese.g.occasionalbaddataontheriverbedandholesinthedatasetincertainplaces.

    TheDEMhasbeencleanedandelaboratedusingArcMapfromArcGIS9.3.

    Thedatasethasbeenimported,reducedtotheareaofinterest,thewatershedhasbeendefinedcarefully,andtheoccasionalholeshasbeenlocatedandeliminatedperformingamovingaverage.Thedatasetprovidedbythemovingaveragehasbeenmergedretainingforthefinalmapthebestdataavailable(thefirst)fromeachpassageoftheaverage.

    DamBreakModeling

    4.2 CalibrationAfundamentalprocessinthedamfailureimpactassessmentisthecalibrationofthemodel.Theexistenceofpreviousfloodrecordsallowscalibratingthemodelmatchingtheavailablefloodinundationdatatothenumericaldambreakmodelresults.Thisanalysisteststheaccuracyofthemodeladopted.

    TheeventsimulatedtocalibratethemodelhasbeentheGlacialLakeOutburstFloodrecordedonMarch5th2009.

    ThischoicewasdrivenbythefactthattheGLOFunderconsiderationisthelatestandtheonewiththebiggestpeakdischargerecordedsofar.TherearestillmanyconcernsabouttheimpactofGLOFsonthesafetyofthedownstreamBakervalley,withorwithoutdam,hencethisfloodsimulationisanadditionaltoolforabetterunderstandingofthephenomenonandhispotentialimpact.

    4.2.1 HydrologicDataCollectionThehydrologicdatadownloadedfromtheDGAwebsiteenabledthedefinitionoftheflowhydrographassociatedtotheGLOFeventanalyzed.

    AdetaileddescriptionoftheGLOFimpactsimulationwillbetreatedinChapter5.Nevertheless,inordertogiveconsistencytothenextparagraphs,itisanticipatedthattheresultsofthecalibrationprocessguaranteedthemodelaccuracydesired.

  • 26

    4.3 DamBreachAnalysisThemostimportantcomponentofadambreakanalysisisthedefinitionofreasonablebreachparameters,whicharehighlydifficulttobeaccuratelypredicted.

    Thebreachwidthandbreachtimehaveagreatinfluenceontheforecastoftheoutflowandthefloodedareadownstreamthedam.Thedevelopingtimeforabreachisdefinedasthepointwheredamfailureisimminentandendwhenthebreachhasreacheditsmaximumsize.Forrelativelysmallreservoirs,thedambreakpeakoutflowusuallyoccursbeforethebreachiscompletelydeveloped,resultingfromaconsistentdropinreservoirlevelsduringtheformationoftherupture,whileinlargereservoirsthepeakoutflowoccursassoonasthebreachhasextendedtoitsmaximumsize.

    Breachparametersandrelateddambreakpeakoutflowhavebeendefined,usingthelimitedavailabledata,adoptingtwomethods:

    TheNWSSMPDBKmodeldevelopedbytheNationalWeatherService(NWS)

    TheGeneralizedRitterDamBreakSolution(1892)suggestedbytheUSACE

    4.3.1 NWSSimplifiedDambreakmodelTheempiricalpredictorequationsusedbytheNWSSMPDBKmodelarebasedonregressionanalysesofanumberofhistoricalbreaks,andtheyhavebeenultimatelydescribedbyFroehlichin1995.

    NWSSMPDBKPeakdischarge:

    3

    1.3

    +=

    d

    p

    HCT

    CbQ where:b

    aSC4.23= and

    Qp=Peakflow(cfs)

    Sa=SurfaceArea(Ac)

    Hd=BreachHead(ft)definedasDepthofWaterattimeofBreaching

    b=Breachwidth(ft)

  • 27

    T=Time(Minutes)

    NWSSMPDBKconcretegravitydamBreach:

    b=5Hd

    where:

    b=Breachwidth(ft)

    Hd=BreachHead(ft)definedasDepthofWaterattimeofBreaching

    Theestimatedbreachwidthresultingfromthemodel,giventheavailabledata,isb=265m.

    ThecorrespondingpeakoutflowisQp=61098m3/s.

    4.3.2 GeneralizedRitterDamBreakSolutionForcompletenessandtoprovideanalternativefloodforecast,thepeakdischargehasbeencalculatedalsoaccordingtotheUSACEGuidelinesforCalculatingandroutingaDam

    BreakFlood.

    Peakdischarge:

    23

    278

    dp HgbQ =

    where:

    Qp=Peakflow(m3/s)

    Hd=BreachHead(m)definedasDepthofWaterattimeofBreaching

    b=Breachwidth(m)

    g=gravitycoefficient(m/s2)

  • 28

    Thestandardguidelinesrecommendtoconsiderastandarddambreachcorrespondingtothe30%ofthetotaldamlength:

    b=0.3L

    where:

    b=Breachwidth(m)

    L=Damlength(m)

    Theestimatedbreachwidthresultingfromthemodel,giventheavailabledata,isb=96m.

    ThecorrespondingpeakoutflowisQp=34375m3/s.

    4.3.3 EstimatedPeakDischargeatDamSiteInordertoguaranteeacautiousanalysis,thefinaldecisiondisposedtochoseforthemostconservativeestimationofthepeakflow,thatistheQpestimatedthroughtheNWSSMPDBKmodel.

    ThebreachtimehasbeenthereforeevaluatedusingtherelationsadoptedbytheNWSSMPBDBKmodelforaconcretegravitydam:

    40d

    bH

    t =

    where:

    tb=BreachTime(minutes)

    Hd=BreachHead(ft)definedasDepthofWaterattimeofBreaching

    Theestimatedbreachwidthresultingfromthemodelis7.6minutes.

  • 29

    5. DamBreakSimulation

    ORSACodeORSACodeisa1Dimensionalcomputationalmodelwhichsimulatesfloodwavepropagationandidentifiesfloodproneareasastheareaswherethegroundislowerthanthecomputedwaterelevation.ThesoftwarehasbeendevelopedbyaresearchcollaborationbetweentheUniversityofPavia3andtheUniversityofRome,LaSapienza4.

    Thehydraulicsimulationreproducesdifferentscenariosmappingtheresultantfloodedareasonthedigitalelevationmodel(DEM)ofthesurfacetopography.

    5.1 NumericalSolversORSACodeadoptstwodifferentfinitevolumessolverstointegratetheShallowWaterEquations,thesimplified1Dgoverningequationsofunsteadyopenchannelflow:theRoeschemeandamodifiedLaxFriedrichsscheme.

    AswillbediscussedinChapter6,thosemathematicalmodelssolvetheSWEwritteninconservativeform,whichallowsthesoftwaretoreproducethediscontinuitiesofaflowregimevariationswithoutincurininstabilitiesofthesolution.

    Theshockcapturingcapabilityofthesoftwarewhendealingwithtranscriticalflowregime,whichismainlyduetosuddenchangesinthechannelgeometry,haspracticalinterest.

    5.2 SurfaceTopographyAcquisitionandAnalysisTheRioBakerDigitalElevationModel(DEM),alreadyprocessedinapreviouspassage(see4.1),hasbeenuploadedandverified.ORSACodeinterfaceallowstoautomaticallyoutliningthecontourlinesforagivendistance.Thecontourlineshavebeendefinedevery20meters.

    5.2.1 BreaklineThebreaklineisapolilinethathasbeendrawnintotheriverbedinordertodefinetheaxislineofthechannel.ThebreaklinestartsatthelocationoftheproposeddamBaker2andhasbeentraceduntiltheRioBakerdelta;itstotallengthis65km.

    3L.Natale,G.Petaccia,M.Zanotti4F.Savi

  • 30

    5.2.2 SectionsThedefinitionofthecrosssectionsisanaccuratepassageofthetopographyediting.Theoutputvaluesofthecalculationarealwaysreferredtoaparticularsection.Hence,forathoroughunderstandingofthefloodedareainacertainlocation,forinstanceCaletaTortel,anattentivechoiceisveryimportant.Thecrosssectionsarealwaysperpendiculartothebreakline.66sectionshavebeenedited.

    5.2.3 VisualizationAlthoughthecorrelationbetweenORSACodetopographicinterfaceandanothertopographictoolisoptional,itresultedofgreatimportanceinunderstandingtheplanimetryandinconfirmingthecoherencyoftheinformation.

    SomeinterestingcomparisonbetweenORSACodeinterfaceandGoogleEarthimagesareshowninfiguresherebelow.Figure7

    Figure7RioBakerdownstreamBaker2dam.ViewfromGoogleEarthandORSACodeinterface

    5.2.4 AssignationofManningsCoefficientManningsroughnesscoefficientvaluesareusedintheManningsformulaforflowcalculationinopenflowchannels.Roughnesscoefficientsrepresenttheresistancetofloodflowsinchannelsandfloodplains.

    Roughnesscoefficientshouldbevariedtoaccountforseasonalvariability.Floodsoftenoccurduringthewinterwhenthereislessvegetation,whileinspringvegetationgrowthisdenser.Nevertheless,thecalibrationcasestudy,assaid,has

  • 31

    beenasimulationofaGLOF,phenomenonalwayshappeningduringwarmseason(Spring/Summer)whenicemeltingoccurs.ForthisreasontheManningscoefficientchoicereferstothespringvegetationgrowth.

    Foramoreaccuratedambreakanalysis,thevaluesoftheManningroughnesscoefficientshouldbevariedineachcrosssectionaccordingtothelocalsurvey.Whenlocalanalysesarenotaccurateenough,onlyoneroughnesscoefficientmightbesufficientinrepresentingthewholefloodplain.

    Onaccountoftheseconsiderations,theManningsroughnesscoefficientassignedhasbeen0.03625(Table3).

    SurfaceMaterial ManningsRoughnessCoefficientn

    Earthchannelgravelly

    0.025

    Earthchannelstony,cobbles 0.035

    Floodplainspasture,farmland

    0.035

    Floodplainslightbrush 0.05

    Averagevalue 0.03625

    Table3ManningsRoughnessCoefficientvalues

    GLOFSimulationThesimulationoftheGlacialLakeOutburstFloodofMarch5th2009,andtherelatedfloodedareahavebeenafundamentalprocessforthemodelcalibration.(see4.2)

    Thenextparagraphscontaintheassumptionandthecharacterizationswhichresultedmoresuitableforafairmatchingoftheavailablefloodinundationdatatothenumericalmodeloutputs.

    5.3 InitialConditionsORSACodeinterfaceisabletosimulatethewavepropagationduringaflood,specifyingacertainsectionanditswaterlevel,orasituationofsunnyday,assumingdrybed.

  • 32

    Theappropriatechoicehasbeentheassumptionoftheconditiondrybed(orsunnyday).

    5.4 BoundaryConditionsThedefinitionoftheBoundaryConditions,thatistheassignationinacertainsectionofaknownvaluefromwhichproceedinthecalculusoftheunknowns,isacriticalpassageoftheanalysisanditisalwaysaffectedbyacertaindegreeofincertitude.ThemanipulationoftheB.C.,evaluatingtheirdifferentimpactsontheevolutionoffinalresults,isanimportantgoalofthecalibrationprocess.

    HereinafterfollowsadescriptionoftheB.C.finallyassignedtotheGLOFcasestudy.

    5.4.1 UpstreamB.C.Consideringasupercriticalflow,twoconditionshavebeenassignedintheinitialupstreamsection:

    Fr=1,wherethecriticalvalueoftheFroudenumber5indicatesthattheinitialsectionisacontrolsection

    GLOFhydrograph(representedinFigure8),basedonthehydrologicdatadownloadedfromtheDGAwebsite.

    5TheFroudenumber,Fr,isadimensionlessvaluethatdescribesdifferentflowregimesofopenchannelflow.TheFroudenumberisaratioofinertialandgravitationalforces.

    hgvFr = where:

    vistheflowvelocitygisthegravitationalaccelerationhisthehydraulicdepth

  • 33

    GLOF_March 5th 2009

    0

    500

    1000

    1500

    2000

    2500

    3000

    3500

    4000

    4500

    0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

    t(hrs)

    Q(m

    3 /s)

    Figure8HydrographoftheGLOFeventthathappenedonMarch5th2009

    Thetotaldurationofthefloodwavehavebeenchosentobe20hours,aftersomeattemptsandanevaluationoftheaverageflowvelocity,inordertoguaranteethereachingoftheclosuresection(thesimulationstopsassoonasthewaveiscompletelyreleasedfromtheinitialsection).

    5.4.2 DownstreamB.C. Fr=1

    Assigningastateofcriticalflowhastwodifferentimplicationsdependingontheflowwavestatearrivingatthesection.Ifcasethewaveissupercritical,thisB.C.isredundant.Incasethewaveissubcritical,thisB.Crepresentstheclosureofthenumericalsimulation.Thelastcaseisthemorelikely,becauseitrepresentsawavejumpingintotheocean,wheretheactualwaterdepthisbelowcriticaldepth.

    5.5 SimulationCharacterization CFL=0.16,thesolutionstabilityhasbeenguaranteed Dt=0.1s,whereDtistheminimalintegrationtimestep

    6TheCourantFriedrichsLewycondition(CFL)isaconditionforconvergencewhilesolvingthehyperbolicpartialdifferentialequationswithtimeexplicitschemes.Thetimestepmustbesmallerthanacertaintimeintervalinordertohavestabilityintheresults.CFLvariesbetween0.1and1.

  • 34

    5.6 ResultsThemaximumfloodexperiencedintheBakerValleyduetoaGLOFcanbedepictedbyagraphonwhichmaximumfloodedwidthscalculatedbythesoftwareORSACodeareplottedagainstdrainagearea.

    Thiswayofrepresentingthesimulationresultsprovidesthemostconcisedescriptionofthecatchmentsizemagnitude.

    Theresultsareconsistentwiththeavailablefloodinundationdata(DGAreport,March6,2009).Themodelisthereforecalibrated.

    Envelope Curve (GLOF)

    -900-800-700-600-500-400-300-200-100

    0100200300400500600700800900

    100001100012000130001400015000160001700018000190002000021000220002300024000250002600027000280002900030000310003200033000340003500036000370003800039000400004100042000430004400045000460004700048000490005000051000520005300054000550005600057000580005900060000610006200063000

    Distance (m)

    Floo

    ded

    Wid

    th (m

    )

    Figure9GLOFfloodedwidthenvelopecurve

    DamBreakSimulationThesimulationoftheGlacialLakeOutburstFloodofMarch5th2009,andtherelatedfloodedareahavebeenafundamentalprocessforthemodelcalibration(see4.2).

    Thenextparagraphscontaintheassumptionandthecharacterizationswhichresultedmoresuitableforafairmatchingoftheavailablefloodinundationdatatothenumericalmodeloutputs.

    5.7 InitialConditionsORSACodemodelingtools,asillustratedinpreviousparagraphs,cansimulatedifferentscenariosandtheresultingdownstreaminundationmap.Duetothespare

  • 35

    availabilityofhydrologicdata,theanalysisconsidersasunnydayscenario,whichaccountsfornonrainfallcausesoffailure.

    Thescenarioassumesthatthebreachwilloccurundernormaloperatingconditions,i.e.thereisnoaddedinflowtothereservoirtoincreasethepoolnormalfullstorage.

    5.8 BoundaryConditions

    5.8.1 UpstreamB.C.Consideringasupercriticalflow,twoconditionshavebeenassignedintheinitialupstreamsection:

    Fr=1,wherethecriticalvalueoftheFroudenumberindicatesthattheinitialsectionisacontrolsection(DamBreachhappens)

    Hydrographfordambreakwave(representedinFigure10)

    Thedesignhydrographhasbeenestimatedusingatwoparametergammadistribution,commonlyusedtoestimatequantilesofhydrologicalrandomquantities.

    Thegammadistributionisveryflexibleinfittingdata.Itsparametershavebeengaugedinordertofulfillthefollowingrequirement:

    peakoutflowQp=61098m3/s(definedthroughtheNWSSMPDBKmodel(see4.3.1)

    breachtimetb=7.6min(definedthroughtheNWSSMPDBKmodel(see4.3.1)

    areaunderthecurve3600ha(Baker2designcharacterization)

  • 36

    Dam-Break wave

    0

    10000

    20000

    30000

    40000

    50000

    60000

    70000

    0 20 40 60 80 100120140160180200220240260280300320340360380400420440460

    time(min)

    Q(m

    3 /s)

    Figure10Dambreakwavehydrograph

    5.8.2 DownstreamB.C. Fr=1

    Assigningastateofcriticalflowhastwodifferentimplicationsdependingontheflowwavestatearrivingatthesection.Ifcasethewaveissupercritical,thisB.C.isredundant.Incasethewaveissubcritical,thisB.Crepresentstheclosureofthenumericalsimulation.Thelastcaseisthemorelikely,becauseitrepresentsawavejumpingintotheocean,wheretheactualwaterdepthisbelowcriticaldepth.

    5.9 SimulationCharacterization CFL=0.01,thesolutionstabilityhasbeenguarantee Dt=0.1,whereDtistheminimalintegrationtimestep

  • 37

    5.10 Results

    5.10.1 DamBreakWaveOutflowThefollowingchartsrepresentthedambreakwavedischargedownstreamBaker2damalongthewaterway.Eachgraphcorrespondstotheindicatedtime.

    Forabetterunderstandingoftheresults,thegraphshavebeencomparedindifferentcharts.

    Figure11showshowthedischargedecreasesrapidlyintime.

    After2hoursfromthebeginningofthedambreakwavethedischargesaretoosmalltobecomparedwiththestartingoutflow,forthisreasontheyarepresentedindifferentcharts.Figure12,Figure13andFigure14showthefinaldevelopmentoftheoutflows.

    0

    10000

    20000

    30000

    40000

    50000

    60000

    70000

    80000

    90000

    100000

    0 10000 20000 30000 40000 50000 60000 70000 80000

    distance (m)

    Q (m

    3/s) t=0.5 hrs

    t=1 hrt=1.5 hrs

    Figure11Dambreakdischargeafter0.5hours,1hourand1.5hours

  • 38

    0

    1000

    2000

    3000

    4000

    5000

    6000

    7000

    8000

    9000

    0 10000 20000 30000 40000 50000 60000 70000 80000

    distance (m)

    Q (m

    3/s)

    t=2 hrst=2.5 hrs

    Figure12Dambreakdischargeafter2and2.5hours

    0

    1000

    2000

    3000

    4000

    5000

    6000

    0 10000 20000 30000 40000 50000 60000 70000 80000

    distance (m)

    Q (m

    3/s) t=2.5 hrs

    t=3 hrst= 3.5 hrs

    Figure13Dambreakdischargeafter2.5,3and3.5hours

  • 39

    0

    200

    400

    600

    800

    1000

    1200

    0 10000 20000 30000 40000 50000 60000 70000 80000

    distance (m)

    Q (m

    3/s) t=3 hrs

    t= 3.5 hrst=4 hrs

    Figure14Dambreakdischargeafter3,3.5and4hours

    5.10.2 WaterLevelThefollowingchartshowshowthewaterheightsdevelopalongdifferentsectionsatdifferenttimes.Figure15

    Thehigherwaterlevelpresentedatthefinalsectionsoftheprogressiveareconsistentwiththephysicalrealityofthecase:thefinalsectionscorrespondtotheriverdelta,wherethevalleywidens:theriverflowvelocitydecreasesandconsequentlythewaterlevelincreases.

    After3hourstheimpactofthedambreakwaveonthelastsectionsoftheBakerValleyisnomoresignificant.

  • 40

    water height

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    0 10000 20000 30000 40000 50000 60000 70000 80000

    distance (m)

    heig

    ht (m

    .a.s

    .l.)

    riverbedt=0.5 hrst= 1 hrt=3 hrs

    Figure15Waterlevelsat0.5,1and1.5hours

    5.10.3 FloodedWidthThegraphpresentedhereinafter(Figure16)showsthefloodpropagationandthefloodrouting.Theenvelopecurveisobtainedbyplottingthelargestfloodpeaksversusthedrainageareaandrepresentsthemaximumfloodedwidthineachsectionevaluatedinallthetimeintervals.

    Thechangeinshapeofthefloodedareacorrespondstothechangeinshapeofthevalley,whichnarrowsandenlargessuccessivelymanytimesfromtheBaker2damtotheriverdelta.

  • 41

    Envelope Curve

    -1600

    -1400

    -1200

    -1000

    -800

    -600

    -400

    -200

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    10000

    12000

    14000

    16000

    18000

    20000

    22000

    24000

    26000

    28000

    30000

    32000

    34000

    36000

    38000

    40000

    42000

    44000

    46000

    48000

    50000

    52000

    54000

    56000

    58000

    60000

    62000

    64000

    66000

    68000

    70000

    72000

    74000

    76000

    Distance (m)

    Floo

    ded

    Wid

    th (m

    )

    Figure16Floodedwidthenvelopecurve

    5.10.4 ORSACodeOutputORSACodepresentsafloodsimulationtoolwhichallowstheusertovisualizethefloodpropagationinrealtime.AnimageoftheresultingfloodedareaisgiveninFigure17.

    ThefirstredlinecorrespondstotheBaker2damproposedlocation,whiletheyellowlinescorrespondtoeachdesignsection.

    Figure18isfocusedontheriverdelta,whichcoincideswiththelocationofCaletaTortel,themainvillageofthearea.With320inhabitants(Census,2002),CaletaTortelconsistsmainlyofstilthousesbuiltalongthecoastforseveralkilometres.Insteadofconventionalstreetstherearewoodenwalkways.

    Theresultsofthedambreakanalysisshowahighrisklevelforthepopulationlivingintheaforementionedarea.

    Thissimplifiedassessmentisnotaccurateenoughtoadequatelycalculatethepopulationatrisk.Amorecomprehensiveassessmentofthefailureimpactzonerequiresdetailsaboutthelocaldistributionofthepopulation,thelocation,thenumber,theelevationofeachbuildingandthedefinitionofthemostcriticalzones(e.g.hospitals,school).

    ORSACodeisabletodefineaccuratelythefloodedarea,nonethelessaplanimetricbackgroundisnecessarytointerprettheactualriskforthedownstreampopulationandaccomplishathoroughdambreakimpactassessment.

  • 42

    Figure17ORSACode,overviewoffloodpropagation

  • 43

    Figure18ORSACode,floodpropagationattheRioBakermouthandimageoftheareadownloadedfromGoogleEarth

  • 44

    6. LiteratureReview:DamBreakModeling

    Indamsafetyprogramsandfloodforecast,dambreakmodellingisanindispensabletooltoevaluatedaminducedriskandtosupportemergencyplan,optimizingresponseeffortsanddirectingfirstresponseteamstodamagedareas.

    However,abetterunderstandingoffloodpredictabilityandmodelefficiencyisneededbeforesuchsystemscanbeeffectivelyimplemented.

    Thissectionpresentsandcomparessomeonedimensionalnumericalmodelsandtheirbasicmathematicalandnumericalexpressions.

    HydrodynamicModel:ShallowWaterEquationsDespitethethreedimensionalstructureofthedetailedfreesurfaceflows,itispossibletosimplifythegoverningequationsofunsteadyopenchannelflowincasesinwhichthelongitudinalflowscaleisgreaterthanthetransversaldimensionsandtheproblemisapproximatedasvariableonlyinthespatialdirectionalongthemainflow(Prezetal.2006).(Figure19).

    TheconservationofmassandmomentumalongthedirectionofthemainflowisgovernedbytheshallowwaterorSaintVenantequations,derivedfromNavierStokesequationsbymakingcertainassumptions.

    Thisisareasonableapproachinmanypracticalapplicationsassumingthatwaterisincompressible,pressuresarehydrostatic,verticalaccelerationsarenegligible,andwavesarenondispersive.TheSaintVenantequationsareanonlinearhyperbolicsystemmathematicallyanalogoustothecompressibleEulerequations.

    UndertheDeSaintVenanthypothesis,theconservationlawsare(Cungeetal.1980)

    RxF

    tU =

    +

    With

    ( ) ,, TQAU =

    ,, 12 T

    gIA

    QQF

    +=

  • 45

    ( )TfSSgAgIR )(,0 02 +=

    Aisthewettedcrosssectionalarea,Q,thedischargeandg,theaccelerationduetogravity.I1representsahydrostaticpressureforcetermasdescribedinCungeetal.(1980).

    I2accountsforthepressureforceinavolumeofconstantdepthhduetolongitudinalwidthvariations.

    S0isthebedslope;Sfstandsfortheenergygradeline.

    GarciaNavarroetal.(1999)defineitintermsoftheManningsroughnesscoefficientnas:

    342

    2||

    RA

    nQQS f = ,

    ThehydraulicradiusisR=A/P,Pbeingthewettedperimeter.

    TheJacobianmatrixofthesystemis

    ==

    uucUFA

    210

    22 ,

    Whereu=Q/Aand bgAc /= .AccordingtotheformulationofGarciaNavarroetal.(1999),theeigenvaluesandeigenvectorsofArespectivelyare:

    cua =2,1

    ( )Tcue = ,12,1 .

  • 46

    Figure19.Onedimensionalflowalongxdirection.(Prezetal.2006).

    6.1 NumericalSolversThefirstdifficultyinanycaseofintegrationofasystemofquasilinearpartialdifferentialequationsisthechoiceofthenumericalscheme.

    Thenumericalmodellingofunsteadyflowinriversisacomplicatedtaskandthedifficultiesgrowasthepretensionstoobtainbetterqualityormoregeneralsolutionsdo(Cungeetal.,1980).

    Currentlythereisawiderangeoftechniquessuitablefornumericalintegrationofshallowwaterflowequations(SWE).However,ithastraditionallybeendifficulttohaveasinglemethodabletoreproduceautomaticallyanygeneralsituation.

    Hereafter4schemesaredescribed.Theyareallexplicitintime.

    Scheme1.isusuallyadoptedforsubcriticalflowsbecauseitpresentsinstabilitiesduringflowregimetransitions(passagethroughcriticalphase)orsupercriticalflows;Scheme2.isapplicablealsoforflowswithafewflowregimetransitions;Schemes3.and4.aregeneralforsubcriticalandsupercriticalflow.

    Schemes1.,2.,and3.arefinitedifference(FD)whileScheme4.and5.arefinitevolume(FV).

    6.1.1 LaxFriedrichsSchemeTheLaxFriedrichs(LxF)methodisabasicmethodforthesolutionofhyperbolicpartialdifferentialequations(PDEs).Itsuseislimitedbecauseitsorderisonlyone,butitiseasytoimplement,applicabletogeneralPDEs,andhasgoodqualitativepropertiesbecauseitismonotoneandveryrobust.TheLxFmethodisoftenusedtoshowtheeffectsofdissipation,butitisnotactuallyadissipativemethod(Strikwerda1989).

  • 47

    Forthegeneralcaseofhomogeneousconservationsystem

    0=+

    xF

    tU

    theprocedureofnodalupdatingofaregulargridforeachtimesteptis:

    ( ) ( )nininininini FFxtUUUU 11111 221 +++ ++= 0

  • 48

    Correctorstep

    ( )pipipici FFxtUU 1= Thefinalsolutionisgivenby

    ( )cipini UUU +=+ 211 .

    6.1.3 TVDMethodsWiththetotalvariationdiminishing(TVD)method,someclassicalnumericalschemesarereformulatedimprovingtheirperformancewithoutgreateffort.

    Onlymonotonicitypreservingschemes,whichneverprovidenonphysicalsolutions,areTVD.GodunovstheoremprovesthatonlyfirstorderlinearschemesaremonotoneandarethereforeTVD.

    GarciaNavarroetal.(1999),proposeareformulationoftheMacCormackmethodaddingaconservativeandnonlinearmodificationoftheschemetomakeitnonoscillatoryatlocalextremawithoutlosingitsaccuracyinotherregionsoftheflow.

    Afirstorder(LaxFriedrichs),asecondorder(MacCormack)andahighresolution(TVDMacCormack)explicitfinitedifferenceschemesareappliedtothesimulationof1Dunsteadyflowinrivers(GarciaNavarroetal.1999).

    Whileforsmoothersituationthethreemethodsperformwell,thepresenceofextremeslopesandstrongchangesintheirregulargeometryrepresentasourceofnumericalerrors.

    Inthesekindsofproblem,theTVDversionoftheMacCormackschemehasaclearsuperiority,overallinmassconservationability.(Figure20).

  • 49

    Figure20ImprovementprovidedbytheTVDscheme.(GarciaNavarroetal.1999).

    6.1.4 RoesMethodItsastrategyforobtainingnumericalsolutionstohyperbolicinitialvalueproblems.(Roe,1981).

    TheRoesapproximateRiemannsolverappliedtoanupwindfinitevolumemethodhasprovedefficientforunsteadyshallowwaterproblemsoverafixedbedbothinsimplecasesandincasesinvolvingvariablebedslopeandchannelwidth(GarcaNavarroand

    VzquezCendn1999),itsaccuracyandstabilityconstraintshavingbeenstudiedinBurgueteandGarciaNavarro(2001).

    Themethodisbasedonthelocallinearizationachievedbymeansofanapproximated

    Jacobianmatrix J~ ,suchthat

    UJF = ~

  • 50

    with ii UUU = +1 andbuiltaccordingtoaseriesofnecessaryconditionsforconservationandconsistency(HubbardandGarcaNavarro2000).

    ThefirstorderexplicitRoesmethodissuitableforthedescriptionofrigidlandslidemovementsandtheirinteractionwithshallowwaterbodies.(Perezetal2006).

    6.1.5 LaxFriedrichTypeSchemeappliedonastaggeredgridThisisasemiimplicitIorderschemeappliedonastaggeredgrid;themomentumequationiswrittenaccordingtothecharacteristicsoftheflowinthecurrentnode.Thisscheme,developedbyNataleandSavi(1992)modifyingtheschemeproposedbySielecky(Vreugdenhil1989),isintuitivefromthephysicalpointofviewandeasytoimplement.Themomentumequationisfullyexplicitandreads:

    ( ) 2/1112/1

    2/12/11

    2/1 +++

    ++++ +

    = iiii

    ini

    ni StgIgIx

    tMtQQ

    where

    = ++++

    +n

    i

    n

    sisii A

    QA

    Qx

    M2/1

    2

    2/1

    2

    2/12/1

    1