Science As A Business

Click here to load reader

download Science As A Business

of 46

description

Presented at Career Day 2009 VCU/MCV School of Pharmacy

Transcript of Science As A Business

  • 1. Chris L. Waller, Ph.D.
    Science as a Business
  • 2.
  • 3. Outline
    Introduction
    Histories
    Large Pharma
    Biotech/Academic
    Academic/Government
    Current Business Landscape
    Current Scientific Landscape
    Future
  • 4. Outline
    Introduction
    Histories
    Large Pharma
    Biotech/Academic
    Academic/Government
    Current Business Landscape
    Current Scientific Landscape
    Future
  • 5. Medicines Life Cycle
  • 6. R&D: Long, Expensive and Risky
    6
    Target
    Selection
    Chemical
    Selection
    Clinical
    Trials
    Launch
    Discovery(2-10 years)
    Pre-clinical TestingLaboratory and animal testing
    Phase 120-80 healthy volunteers - safety and dosage
    Phase 33,000-5,000 patient volunteers used to monitoradverse reactions to long-term use
    FDA Review/Approval
    Years
    16
    14
    12
    10
    8
    6
    4
    2
    0
    Cost = $1.3B/new drug
    Phase 2
    100-300 patient volunteers efficacy & safety
  • 7. Outline
    Introduction
    Histories
    Large Pharma
    Biotech/Academic
    Academic/Government
    Current Business Landscape
    Current Scientific Landscape
    Future
  • 8. Pharma History
    http://www.irs.gov/businesses/article/0,,id=169579,00.html
  • 9. Evolution of Innovative Medicines
  • 10. Top Ten Pharmaceutical Companies
  • 11. Productivity is Decreasing
    11
    Source: Tufts Center for the Study of Drug development, PhRMA
  • 12. Outline
    Introduction
    Histories
    Large Pharma
    Biotech/Academic
    Academic/Government
    Current Business Landscape
    Current Scientific Landscape
    Future
  • 13. Biotechnology Revolution
    Over the past century, semiconductors, computers, advanced materials have used science as a tool for the creation of new products and services. Science is outside of the business.
    In 1976, Genetech, the first biotechnology company, was founded. The first of a number of private firms conducting basic research. Science became the business.
    Today, academicians seeking venture capital to advance technologies and develop new drugs, etc. continue to blend science and business.
    Science Business, Gary P. Pisano, 2006.
  • 14. The Promise
    Biotechnology R&D was organized through a web of collaborative agreements between large pharma and entrepreneurial entrants.
    The pharmaceutical industry (and human health) would be transformed as the industry would follow the semiconductor path with dramatic improvements in products and a reshaped competitive landscape.
    Science Business, Gary P. Pisano, 2006.
  • 15. The Reality
    Over the past 20 years:
    The biotechnology sector saw exponential growth in revenues, but no or negative growth in operational income (they lost money).
    Compared to traditional pharmaceutical companies, there was no discernable difference in R&D productivity as measured by drug launches.
    Footnote: In 2008, 31 new medicines were added to the nations medicine chest for maintaining health and treating disease. The new medicines include 21 new drugs (also called new molecular entities or NMEs), three new therapeutic biologics and seven other biologics. (Source: PhRMA)
    Science Business, Gary P. Pisano, 2006.
  • 16. Root Causes
    The focus on the monetization of intellectual property has:
    Impeded flows of information
    Led to fragmentation
    Created a proliferation of new firms
    Root cause: The sector has indiscriminately borrowed business models, organizations, and approaches from other high tech industries. Science-based businesses have unique challenges not faced by other high tech businesses.
    Science Business, Gary P. Pisano, 2006.
  • 17. Top 10 Biopharmaceutical Companies
    Company2008 Revenues
    01 Amgen $14,687,000
    02 Genentech $10,531,000
    03 Novo Nordisk $8,989,000
    04 Merck Serono $7,338,000
    05 Baxter BioScience $5,308,000
    06 Biogen Idec $3,968,000
    07 Genzyme*$3,751,000
    08 CSL Ltd.*$2,961,000
    09 Allergan* $1,311,000
    10 AlexionPharma* $259,000
  • 18. Outline
    Introduction
    Histories
    Large Pharma
    Biotech/Academic
    Academic/Government
    Current Business Landscape
    Current Scientific Landscape
    Future
  • 19. The BayhDole Act: A model for promoting research translation?
    Abstract
    The Bayh-Dole Act of 1980 was passed with the intention of promoting research into cancer and other diseases by providing institutions and researchers with a commercial incentive, even though much of their work was publicly funded. Now, many are questioning whether the system has worked as promised and some warn it may be jeopardizing the pursuit of science with no direct market relevance.
    Samuel Loewenberg, Molecular Oncology, Volume 3, Issue 2, April 2009, Pages 91-93
  • 20. NIH Funded Academic Drug Discovery Centers
    Burnham was awarded a $98 million grant to establish one of four comprehensive national screening centers as part of the National Institute of Health's (NIH) Molecular Libraries Probe Production Centers Network (MLPCN).
    83 National Center for Research Resources (NCRR)-funded Centers of Biomedical Research Excellence (COBRE).
    Two consecutive, five-year, $10 million grants
    New $11 Million Center to Speed Drug Discovery (NorthWestern)
    A grant from the National Institutes of Health will help establish the Chicago Tri-Institutional Center for Chemical Methods and Library Development.
    The National Institutes of Health will pump $62 million into more than twenty studies focused on using epigenomics to understand how environmental factors, aging, diet, and stress influence human disease.
  • 21. NIH (NCI) Funded Academic Drug Discovery Centers
    Frye Leads UNC Team Selected for NCI Drug-Discovery Initiative
    a new National Cancer Institute (NCI) Chemical Biology Consortium, an integrated network of chemical biologists, molecular oncologists and chemical screening centers. The consortium will establish a new paradigm in the use of public-private partnerships to translate knowledge from leading academic institutions into new drug treatments for patients with cancer
    Other consortium centers are: Burnham Institute for Medical Research in La Jolla, California; Southern Research Institute in Birmingham, Alabama; Emory University in Atlanta; Georgetown University in Washington, DC; the University of Minnesota in St. Paul and Minneapolis; the University of Pittsburgh and the University of Pittsburgh Drug Discovery Institute; Vanderbilt University Medical Center in Nashville, Tennessee; SRI International in Menlo Park, California; and the University of California at San Francisco.
    NCI Funded Projects in 2008 $12,809,274,079
  • 22. Outline
    Introduction
    Histories
    Large Pharma
    Biotech/Academic
    Academic/Government
    Current Business Landscape
    Current Scientific Landscape
    Future
  • 23. Mergers Defined the Landscape
    The Top 10 Deals
    Johnson & Johnson and Centocor
    Warner-Lambert and Agouron
    Celltech and Chiroscience
    Pharmacia & Upjohn (Pharmacia) and SUGEN
    Millennium and LeukoSite
    Gilead and NeXstar
    ALZA and SEQUUS
    MedImmune and U.S. Bioscience
    Corixa and Ribi
    V.I. Technologies and Pentose
    The current pace of mergers in the pharmaceutical industry willif left uncheckedproduce an industry by 2001 that will be very different from the one in 1999. Approximately eight giant firms will divide 80% of the market and distance themselves from second-tier companies according to all financial indicators.
    Note: Glaxo and Smith-Kline announced merger plans in 1998
    www.freshfigdesign.com/images/BusNeeds/lg/topten.pdf
  • 24. Top Ten Pharmaceutical Companies
  • 25. Pharma Family Tree
    1. Pfizer Pfizer, Warner-Lambert, Pharmacia, Upjohn, Monsanto
    2. GlaxoSmithKline Glaxo, Wellcome, SmithKline Beckman, Beecham
    3. Sanofi-Aventis Rhone-Poulenc, Rorer, Hoechst, Marion Merrell Dow, Sanofi
    4. Johnson & Johnson
    5. Merck
    6. Novartis Ciba-Geigy, Sandoz
    7. Astrazeneca Astra, Zeneca
    8. Roche Roche, Syntex, Genentech
    9. Bristol-Myers Squibb Bristol-Myers, Squibb, DuPont Pharmaceuticals
    10. Wyeth American Cyanamid, American Home Products, Genetics Institute
    Research and Development in the Pharmaceutical Industry, October 2006, Congressional Budget Office
  • 26. Pfizer Family Tree
  • 27.
  • 28. Outline
    Introduction
    Histories
    Large Pharma
    Biotech/Academic
    Academic/Government
    Current Business Landscape
    Current Scientific Landscape
    Future
  • 29. The Druggable Human Genome
    Most small molecule drugs interact with or modify the activity of proteins
    ~30,000 genes in the human genome express proteins
    ~130 protein families represent the known drug targets
    50% of these come from just six families:
    G-protein-coupled receptors (GPCRs)
    serine/threonine and tyrosine protein kinases
    zinc metallopeptidases
    serine proteases
    nuclear hormone receptors
    Phosphodiesterases
    Drug targets live in the intersection between druggable genome and genes known to be related to disease. 2-5% intersection yields 600-1500 targets.
    ~400 (120) proteins are targets of known drugs
    The limited number of small-molecule drug targets suggests that to exploit the opportunity of the druggable genome in a cost-effective manner, the next round of innovation for the pharmaceutical industry lies not necessarily just in the science, but also in the business models.
    http://www.nature.com/nrd/journal/v1/n9/full/nrd892.html
  • 30. A Better Analogy?
  • 31. Outline
    Introduction
    Histories
    Large Pharma
    Biotech/Academic
    Academic/Government
    Current Business Landscape
    Current Scientific Landscape
    Future
  • 32. Trends: Pharma Industry 2009+
    R&D Efficiency: Continued high costs and lengthy development times, combined with growing regulatory and economic pressures, will drive drug developers to partner, outsource, and in-source to improve R&D productivity.
    Regulatory Environment: Insufficient personnel and staff turnover will impede the FDAs ability to confront and resolve pressing challenges. Europes EMEA and Japans MHLW will continue to harmonize with U.S. policies on a broad range of regulatory issues.
    Biotechnology Trends: Market introduction of monoclonal antibodies will continue to increase as drug sponsors become more adept at development and drug regulators become more familiar with evaluating this product class.
    Prescription Drug Policy: U.S. payers will increase their use of formulary management tools to contain costs, particularly with regard to specialty pharmaceuticals. Though the latter account for less than 15% of total drug expenditures, annual growth in specialty pharmaceutical spending is approaching 25%.
    Drug Development Management Trends: Under growing pressure to achieve faster timelines, reduce costs, and deliver quality submissions, sponsor companies will look to improve protocol design and leverage relationships with CROs and sites.
  • 33. Trends: Business Models
    "2009 is set to redefine the structure and dynamics of the pharmaceutical industry in a way not seen since the year 2000"
    On 26th January 2009, Pfizer announced plans to acquire Wyeth for $68 billion. Pfizers CEO, Jeffrey B Kindler, insisted the deal would be different from the companys earlier mega-deals involving the acquisitions of Pharmacia (2002) and Warner-Lambert (2000) the acquisition of Wyeth would provide a broad and diversified portfolio, rather than been focused on a single product or cost-cutting. Pfizers strategy of growing its portfolio through a mega M&A deals follows the 2008 acquisitions of Millennium by Takeda and ImClone by Eli Lilly.
    These major deals are likely to result in two alternative industry responses:
    a wave of consolidation involving further mega-deals;
    the emergence of independent players that continue to build their portfolios through internal development, licensing and smaller scale acquisitions.
    Leading pharmaceutical and biotechnology companies must decide how best to respond Pfizers proposition that size matters. Those that choose to consolidate will have to identify the best prospects, consolidate portfolios and execute synergy cost savings. Those that choose not to embark down the mega-deal path will still have to adapt to a more consolidated world in which broad, diverse portfolios and an efficient cost base or a minimum requirement to compete.
    http://www.urchpublishing.com/publications/pharma_industry_trends/mergers_acquisitions_pharmaceuticals_sector.html
  • 34. Marking a New Phase in Pharma/Biotech Relations
    The pharmaceutical industry has been growing more and more reliant on deals and agreements with innovative biopharmaceutical companies to extend and fill its research pipeline. Deals between the two are not novel, but what is new is the realization that the business model based on creating a range of volume-based blockbuster products may have had its day. There will still be blockbuster drugs, but the revenues will be based on selling products at US$10,000 a treatment and not US$10. Can anyone envisage another product such as Pfizers Lipitor (atorvastatin) with volumes to drive US$13.5-billion revenues?
    http://www.urchpublishing.com/publications/pharma_industry_trends/mergers_acquisitions_pharmaceuticals_sector.html
  • 35. Alliances Acquistions
    After years of successful research collaboration, Roche has secured outright control of Genentech in a US$46.8 billion deal. The question is, why? Why change what many see as a model commercial marriage? In the words of the adage: "If it aint broken, dont fix it."
    The official rationale for the merger, from Roches point of view, is compelling:
    Gaining control of the companies shared cancer franchise, which includes the blockbuster drugs Avastin and Herceptin, and particularly Genentechs US revenues
    Bolstering both its early and late-stage pipeline
    Enabling the company to cut between US$750 million to US$850 million of combined annual costs.
    http://www.urchpublishing.com/publications/pharma_industry_trends/mergers_acquisitions_pharmaceuticals_sector.html
  • 36. Alliances Acquisitions
    The innovation strategies we found to be most complementary when pursued together were alliances and acquisitions. That's because forming a joint venture with a company before trying to buy it gives a company inside information about the target's worth and the value of the research it is seeking to acquire.
    Eli Lilly & Co., for example, was involved in a joint venture with Icos Corp., maker of the $1 billion-plus erectile-dysfunction drug Cialis, before purchasing the company outright in January 2007. More recently, Lilly, which has an entire department devoted exclusively to managing alliances, was able to outmaneuver Bristol-Myers Squibb Co. to acquire ImClone Systems Inc., maker of the cancer-fighting drug Erbitux, which also has more than $1 billon in annual sales.
    http://online.wsj.com/article/SB10001424052970204261704574274221768062750.html
  • 37. FIDDCO a Thing of the Past?
    Cost pressures, disruptive technologies, and other forces often drive business processes to be externalized.
    Fully Internal
    Model
    Selectively
    Integrated
    Model
  • 38. The Importance of CROs
    PHARMA
    1
    CRO
    1
    CRO
    2
    PHARMA
    2
    CRO
    3
    PHARMA
    3
    CRO
    4
  • 39. The Pistoia Alliance, Inc.
    In Pistoia, Italy circa. 2007
    Meeting of GSK, AZ, Pfizer and Novartisidentified similar challenges and frustrations in the IT/Informatics sector of Pharmaceutical Discovery
    39
  • 40. The Path Forward: Standardize, Simplify, Centralize
    Standardize our interfaces and messages
    Simplify our cross-industry architectures and support models
    Centralize services to reap economies of scale and scope
  • 41. The Pistoia Alliance, Inc.:Description and Purpose
    Mission
    To streamline pre-competitive workflow elements of pharmaceutical research and development by specifying common business terms, relationships and processes
    Goal
    • Develop taxonomies and vocabularies, application interface specifications, data dictionaries, data models, etc.
    • 42. Establish standards that will be embraced by producers and consumers of pre-competitive workflows