Schwinger Effect in Curved Spacetimes

37
Schwinger Effect in Curved Spacetimes Sang Pyo Kim Kunsan National University Black Holes’ New Horizons CMO, Oaxaca, May 15-19, 2016

Transcript of Schwinger Effect in Curved Spacetimes

Schwinger Effect in Curved

Spacetimes

Sang Pyo KimKunsan National University

Black Holes’ New Horizons

CMO, Oaxaca, May 15-19, 2016

Outline

• Why Schwinger Effect in Curved Spacetimes?

• Perturbation Theory & Borel Summation &

Vacuum Persistence Amplitude

• Effective Actions in In-Out Formalism

• Reconstructing Effective Action

• QED in (anti-) de Sitter Space

• Schwinger Effect in Near-extremal RN BHs

• Schwinger Effect in Near-extremal KN BHs

• Conclusion

Why Schwinger Effect in Curved

Spacetimes?

What is Schwinger Effect?

• Constant E-field changes energy

spectra in Minkowski spacetime:

• Spontaneous creation of a particle-

antiparticle pair from the Dirac sea

(quantum mechanical tunneling)

• Critical (Schwinger) field to

energetically separate the pair

22 mpxeE

2mcmc

eEc

m

qE

πT,

T

mN S

S

S2

1

2exp

Schwinger Effect in Charged Black HolesZaumen (‘74)

Carter (‘74)

Gibbons (‘75)

Damour, Ruffini (‘76)

⋮

Khriplovich (‘99)

Gabriel (‘01)

SPK, Page (‘04), (‘05), (‘08)

Ruffini, Vereshchagin, Xue (‘10)

Chen, SPK, Lin, Sun, Wu (‘12); Chen, Sun, Tang, Tsai (‘15)

Ruffini, Wu, Xue (‘13)

SPK (‘13)

Cai, SPK (‘14)

SPK, Lee, Yoon (‘15); SPK (‘15)

Chen, SPK, Tang, Kerr-Newman BH, in preparation (‘16)

Why Schwinger Effect in (A)dS2?Near-Horizon Geometry of RN BHs

RN Black Holes

Near-extremal BH

AdS2S2

NonextremalBH

Rindler2 S2

Rotating BH in dS

S-scalar wave

QED in dS2

Near-horizon Geometry of Near-extremal

RN BH

Inner Outer Horizons

AdS2S2

G. t’Hooft & A. Strominger, “conformal symmetry near the

horizon of BH,” MG14, July 2015.

magnification

Schwinger Effect in (A)dS[Cai, SPK (‘14)]

Vacuum

Fluctuations

QEDSchwinger

Effect/ Unruh Effect

de SitterGibbons-Hawking Radiation

Effective Temperature for

Unruh Effect in (A)dS[Narnhofer, Peter, Thirring (‘96); Deser, Levin (‘97)]

Effective Temperature

Unruh Effect

TU = a/2

(A)dSR = 2H2

or -2K2

2

2

Ueff8

RTT

Perturbation Theory & Borel

Summation & Vacuum Persistence

Borel Summation

• Large-order perturbation theory may have a divergent

power series with the asymptotic form with three real

constant , >0 and [Le Guillou, Zinn-Justin (‘90)]

• Leading Borel approximation for alternating case (+ sign)/

nonalternating case ( sign) and vacuum persistence

)(,)()1()(00

ngngagf n

n

nn

n

n

n

/1/

/1/

0

1exp

1)(Im

exp1

11)(

gggf

g

s

g

s

ss

dsgf

Borel Summation

• Heisenberg-Euler-Schwinger QED action in a constant

electric field E

• Borel summation leads to the vacuum persistence in a

constant electric field E [one-loop by Dunne, Hall (‘99);

two-loop by Dunne, Schubert (‘00)]

• Borel summation of real effective action for dS (AdS) and

vacuum persistence for Gibbons-Hawking radiation

[Dunne, Das (’06)]

2

2424226

24)1( ,

3

1

2

11

)22(

41

m

eEg

ngma

nnn

n

n

eE

πkm

km

eE

π

m(E)L

k

eff

2

12

2

23

4

exp1

4Im2

Perturbative QED Action in Curved Spacetime[Davila, Schubert (‘10)]

Borel summation? Find large-order perturbation for vacuum persistence!

Effective Actions in In-Out

Formalism

In-Out Formalism for QED Actions

• In the in-out formalism, the vacuum persistence amplitude

gives the effective action [Schwinger (‘51); DeWitt (‘75), (‘03)]

and is equivalent to the Feynman integral

=

• The complex effective action and the vacuum persistence for

particle production

in0,|out0,eff

2/1)(

xLdgDiiW ee

k

Im22

)1ln(Im2,in0,|out0, k

W NVTWe

Effective Actions at T=0 & T

• Zero-temperature effective actions in proper-time integral

via the gamma-function regularization [SPK, Lee, Yoon (‘08),

(‘10); SPK (‘11)]; gamma-function & zeta-function

regularization [SPK, Lee (‘14)]; quantum kinematic

approach [Bastianelli, SPK, Schubert, in preparation (’16)]

• finite-temperature effective action [SPK, Lee, Yoon (‘09),

(‘10)]

kk

*

k )k(lnln ll

l

ibaiiW

)(Tr

)(Trin,0,in,0,exp

in

ineff

3

UUxdtLdi

-Regularization

• Assumption: Bogoliubov coefficients of the form

• The effective action from Schwinger variational

principle

• The integral representation for gamma-function

)(

)(;

)(

)(

ikh

igf

idc

ibakk

away regulated be totermsedrenormaliz be toterm

)(

0)1(

11)(ln z

z

z

z

zibaz

eibae

e

e

e

z

dziba

k

*

keff lnin0,|out0,ln iiW

-Regularization• -regularization [SPK, Lee, Yoon (‘08), (‘10); SPK

(10), (‘11)]

• The Cauchy residue theorem

epersistenc vacuum

1

)2)((

onpolarizati vacuum

0

))((

0

)(

211

n

iniba

is

isiba

z

ziba

in

ei

e

e

s

dsP

e

e

z

dz

Reconstructing Effective Action

Conjecture

• Can one find the effective action from the pair-production

rate? inverse procedure of Borel summation (Gies, SPK,

Schubert)

• If the imaginary part (vacuum persistence) of the effective

action can be factorized into a product of one plus or one

minus exponential factors, then the structure of simple poles

and their residues of these factors uniquely determine the

analytical structure of the proper-time integrand of the

effective action (vacuum polarization) (modulo entire

function independent of renormalization via Mittag-Leffler

theorem):

states }{stateseff )1ln()()1ln()Im(2

}{

I

S I

eNL

Reconstructing Effective Action

from Pair-Production Rate

• Scalar/Spinor effective action (Real part) vs Imaginary part

(Cauchy theorem vs Mittag-Leffler theorem/Borel

summation)

• Most of imaginary parts from the pair-production rate

(Schwinger formula in E & B, Bose-Einstein or Fermi-Dirac

distribution) can be written as a sum of the form

10 2

1

1

0 2

11ln

3

1

sin

cos

)1(1ln

6

1

sin

1

n

SnSSs

n

Snn

SSs

en

ieis

ss

s

s

edsP

en

ieis

sss

edsP

}{}{states

eff )1ln()1ln()Im(2}{}{

II

R

I

S III

eeL

QED in (A)dS

Schwinger formula in (A)dS

• (A)dS metric and the gauge potential for E

• Schwinger formula (mean number) for scalars in dS2

[Garriga (‘94); SPK, Page (‘08)] and in AdS2 [Pioline, Troost

(‘05); SPK, Page (‘08)]

)1)(/(,

)1)(/(,

0

2222

1

2222

KxKx

HtHt

eKEAdxdteds

eHEAdxedtds

2

2

2

2

22

16211

42

,

qE

R

qE

Rm

m

R

qE

mSeN S

Effective Temperature for

Schwinger formula• Effective temperature for accelerating observer in (A)dS

[Narnhofer, Peter, Thirring (‘96); Deser, Levin (‘97)]

• Effective temperature for Schwinger formula in (A)dS

[Cai, SPK (‘14)]

)2(,2,8

, 22

2

2

Ueff

/ eff KHRR

TTeNTm

U2

2

UAdSU

2

GH

2

UdS

GHU

2/

8;

2,

2

/,

8,eff

TR

TTTTTT

HT

mqET

RmmeN

Tm

Scalar QED Action in dS2• Mean number for pair production and vacuum polarization

from the in-out formalism [Cai, SPK (‘14)]

2

22

2

/

0

nsubtractio Schwinger

2/)(2

(1)

dS

dS

)1(

dS2

2)(

dS

2,4

12

6

2

)2/sin(

)2/cos(

12

2

)2/sin(

1

22

1lnIm2,1

H

qES

H

m

H

qES

s

ss

se

s

sse

s

dsP

SHL

NWe

eeN

sS

sSS

S

SSS

Scalar QED Action in AdS2

• Mean number for pair production and vacuum polarization

2

22

2

0

2/2

(1)

AdS

AdS

)1(

AdS)(

)()(

AdS

2,4

12

12

2

)2/sin(

1)2/cosh(

22

1lnIm2,1

K

qES

K

m

K

qES

s

sssSe

s

dsP

SKL

NWe

eeN

sS

SS

SSSS

Spinor QED Action in dS2

• Mean number for pairs and vacuum polarization [SPK (‘15)]

2

22

2

0

/2/)(2

sp

dS

sp

ds

)1(

dS2

2)(

sp

ds

2,2

6

2)

2cot(

2

1lnIm2,1

H

qES

H

m

H

qES

s

s

see

s

dsP

SHL

NWe

eeN

sSsSS

S

SSS

Spinor QED Action in AdS2

• Mean number for pairs and vacuum polarization

2

22

2

0

2/)(2/)(2

sp

AdS

sp

AdS

sp

AdS)(

)()(sp

AdS

2,2

6

2)

2cot(

2

1lnIm2,1

K

qES

K

m

K

qES

s

s

see

s

dsP

SKL

NWe

eeN

sSSsSS

SS

SSSS

Schwinger Effect in D-dimensional dS

• The Schwinger effect in a constant E in a D-dimensional dS

should be independent of 𝑡 and 𝑥 due to the symmetry of

spacetime and the field, and the integration of 𝑘 gives the

density of states D.

• dS radiation in E=0 limit and Schwinger effect in H=0 limit

222

222

2

2

2)(

2

22

1

dS

/

/2,

2

12

1)2(22

12

kHqE

HqE

H

qES

D

H

m

H

qES

e

eekdSH

xdtd

NdS

SSS

D

D

D

D

Schwinger Effect in Near-

extremal RN Black Hole

Interpretation of Schwinger Effect

• Thermal interpretation of Schwinger formula for

charged scalars (upper signs) and fermions (lower signs)

in spherical harmonics [SPK, Lee, Yoon (‘15)]

Qm

qmqET

QTTT

QTTT

e

e

e

eeN

HU

UURNUURN

T

m

T

qA

T

qA

T

m

T

m

T

m

NBH

RNH

H

RN

RNRN

22

/

)2

1(,)

2

1(

,

1

1

1

2222

)( 0

0

Schwinger Effect and Hawking

Radiation• Thermal interpretation of Schwinger formula for charged

scalars and fermions [SPK, Lee, Yoon (‘15); SPK (‘15)]

charges ofRadiation Hawking('00) AP Spindel & Gabriel

SpaceRindler in Effect Schwinger ('14) JHEPSPK & Cai

AdSin Effect Schwinger

0

0

2

1

)1(

1

RNH

HRN

RN

RNRN

RN

T

m

T

qA

T

qA

T

m

T

m

T

m

T

m

T

m

NBH

ee

ee

e

eeeN

Schwinger Effect in Near-

extremal Kerr-Newman BH

Chen, SPK, Tang, in preparation (‘16)

Near-Horizon Geometry

• Kerr-Newman (KN) black hole: 𝑀,𝑄, 𝑎 =𝐽

𝑀; 𝑟0

2 ≡ 𝑄2 + 𝑎2

• Near-horizon geometry warped AdS2 of near-extremal KN

BH

dar

arrdt

ar

arQA

rdtar

ard

ar

ar

dBr

drdtBrards

r

BrMt

artt

ar

arrr

222

0

2

0

222

0

222

0

2

22

0

0

222

0

222

0

2

22

2222222

0

2

0

2

0

22

0

22

0

0

cos

sin

cos

cos

,2

cos

sin

cos

2,,,

Schwinger Effect for Charged Scalars

• Schwinger formula for charged scalars in spheroidal

harmonics in near-extremal KN BH

BS

armS

Sar

narqQS

e

e

e

eeN

c

aba

SS

SS

SS

SSSS

NKNbc

ac

ba

baba

2

,4

1

22,

22

,1

1

1

22

0

2

2

22

0

0

3

)(

)(

)(

)()(

Interpretation of Schwinger Effect• Thermal interpretation of Schwinger formula for charged

scalars in spheroidal harmonics in near-extremal KN BH

BH KN extremal-Nearfor Factor BH KN Extremal

1

1

1

MH

t

MH

t

KN

KNKN

T

m

T

T

m

T

T

m

T

m

T

m

NKN

e

e

e

eeN

22

0

222

0

222

0

0

3

2

2

2

2

4/11,

2,

2

2

112,

112

8,

8

armm

arR

arm

narqQT

TTTTTT

RTTT

RTTT

U

KNKNMKNKNM

UUKNUUKN

Conclusion• The in-out formalism is consistent and systematic QFT

method for vacuum polarization and vacuum persistence in

backgrounds (gauge and/or curved spacetimes) [cf. worldline

formalism and instanton in progress with Schubert.]

• The vacuum polarization of QED in (A)dS and near-extremal

RN black hole exhibits the gravity-gauge relation (or

AdS/CFT).

• The production of charged particles from an near-extremal

RN and Kerr-Newman black hole shows a strong interplay of

the Schwinger effect and the Hawking radiation and may

have a thermal interpretation.